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We investigate the relationship between colour confinement and topological structures derived from the
gauge invariant Abelian (Cho–Duan–Ge) decomposition. This Abelian decomposition is made imposing an
isometry on a colour field n which selects the Abelian direction; the principle novelty of our study is that
we have defined this field in terms of the eigenvectors of the Wilson loop. This allows us to establish
an equivalence between the path ordered integral of the non-Abelian gauge fields with an integral over
an Abelian restricted gauge field which is tractable both theoretically and numerically in lattice QCD. By
using Stokes’ theorem, we can relate the Wilson loop in terms of a surface integral over a restricted field
strength, and show that the restricted field strength may be dominated by topological structures, which
occur when one of the parameters parametrising the colour field n winds itself around a non-analyticity
in the colour field. If they exist, these objects will lead to an area law scaling for the Wilson loop and
provide a mechanism for quark confinement. We search for these structures in quenched lattice QCD. We
perform the Abelian decomposition, and find that the restricted field strength is dominated by peaks on
the lattice. Wilson loops containing these peaks show a stronger area-Law and thus provide the dominant
contribution to the string tension.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Colour confinement in QCD is one of the outstanding prob-
lems in physics. Although several possible confinement mecha-
nisms have been proposed (for example, Abelian dominance [1,2]
or monopole condensation [3–7]), none have been convincingly
demonstrated to be correct. However, there has been important re-
cent progress. Using a gauge invariant Abelian decomposition (the
Cho–Duan–Ge (CDG) decomposition) and introducing the concept
of the C-projection similar to the GSO-projection in string theory,
Cho (and collaborators) have shown how to calculate the one-loop
effective action of QCD gauge-invariantly and demonstrated that
the effective potential condenses the monopole liquid [8], imply-
ing that monopole condensation drives confinement. This project
(of which this Letter is the start) aims to verify and expand on this
result in lattice QCD.

Lattice QCD has demonstrated the linear confining potential,
but it has not been so successful determining what causes confine-
ment. A popular mechanism studied in lattice QCD is Abelian dom-
inance proposed by ’t Hooft, which asserts that only the Abelian
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SCOAP3.
(i.e., neutral) part of QCD causes confinement [9]. This makes in-
tuitive sense, since the coloured part of QCD is confined. It has
been studied on the lattice by decomposing the QCD potential into
colour-neutral and coloured parts, using a gauge condition, such as
the Maximal Abelian Gauge (MAG) or Laplacian Abelian Gauge to
separate the Abelian part [10–13]. Similar approaches have been
used to study monopole condensation in lattice QCD [14,15].

This approach has serious defects. The whole process is centred
around fixing to one particular gauge, so it does not demonstrate
a gauge-invariant confinement mechanism. It also does not in-
dicate what confines the colour. If an Abelian potential alone is
enough for colour confinement, we ought to have confinement in
the Abelian QED.

However, the gauge invariant CDG decomposition (also referred
to as the Cho–Faddeev–Niemi decomposition) avoids such defects
[16–20]. Unlike the more popular MAG, this decomposition splits
the QCD potential into the restricted (neutral) part and the valence
(coloured) part gauge invariantly. It also separates the topological
part of the Abelian part of the gauge field. This decomposition can
be used for a gauge-invariant investigation of the topological basis
of confinement.

Consider SU(2) QCD, and select a normalised (nana = 1) Abelian
direction n ≡ λana , where λ represents a Pauli matrix (or Gell-Mann
under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by
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matrix in higher gauge groups). To construct the Abelian decom-
position, we impose the isometry condition on Aμ to obtain the
restricted potential Âμ

Dμ[ Â]n = 0, Aa
μ → Âa

μ = Ba
μ + Ca

μ,

Ba
μ = 1

2
na Ab

μnb, Ca
μ = i

2g
εabcnb∂μnc . (1)

The CDG decomposition arises by adding the valence potential
Xμ = Aμ − Âμ to the restricted potential

Aμ = Âμ + Xμ = Bμ + Cμ + Xμ, tr(nXμ) = 0. (2)

The decomposition has several important features [16,17]: Firstly,
the restricted potential, despite being reduced, retains the full non-
Abelian gauge degrees of freedom. Secondly, the valence poten-
tial transforms gauge covariantly: it represents the gauge covari-
ant coloured gluons. Thirdly, the decomposition is gauge invariant.
Once the Abelian direction n is chosen, the decomposition follows
automatically regardless of the choice of gauge.

But most importantly, the decomposition separates the topolog-
ical potential gauge independently. The restricted potential Âμ is
made of two parts, the naive Abelian potential Bμ and the topolog-
ical potential Cμ , which can describe the Wu–Yang monopole [21]
when n has an isolated point singularity representing the mono-
pole topology π2(S2) [16,17]; this monopole structure is invariant
under infinitesimal and analytic gauge transformations.

We aim (eventually) to identify the cause of confinement by
examining the topological structures contained within a suitably
chosen Abelian direction n and their effects on the correspond-
ing restricted field strength. The purpose of this initial Letter is to
demonstrate the feasibility of our approach, to isolate the topo-
logical potential and to suggest that it dominates the confining
string. Later studies will further examine the consequences of this
construction. We aim to confirm whether the topological struc-
tures in the restricted gauge field strength F̂μν [ Â] which, if they
exist, might drive confinement can be associated with isolated
monopoles, a condensed monopole/anti-monopole liquid, or some
other topological structures.

To construct the Abelian decomposition on the lattice, we must
first choose the NC − 1 Abelian directions n j , built from a SU(NC )

matrix θ , so n3 = θλ3θ † (NC is the number of colours, the sub-
script 3 indicates that n3 is constructed from the third Gell-Mann
matrix). There are different ways of selecting θ , including θ ∈
SU(NC )/(SU(NC − 1) × U (1)) and θ ∈ SU(NC )/(U (1))NC −1. Choos-
ing θ ∈ SU(NC )/(U (1))NC −1 is advantageous as it contains all the
possible Abelian directions. It is important to select this θ so all
these configurations contribute to confinement [16].

In this Letter we observe that we can always choose θ so
that the static quark potential for the restricted field is identi-
cal to that of the full gauge field.1 We note that there always exists
a SU(NC )/(U (1))NC −1 field θ which diagonalises the gauge links and
removes the path ordering of the Wilson loop, an observable used to
measure the static potential. By choosing the Abelian direction ju-
diciously, we can always avoid the complicated path ordering in
the Wilson loop and reduce it to an Abelian form: we can always
make the contribution of the valence potential Xμ to the Wilson
loop vanish. This is natural: Xμ describes the coloured gluons and
cannot play any role in confinement. This is Abelian dominance,

1 In practice, a different n should be selected for each Wilson loop to ensure that
the restricted field can account for the confining potential. In this initial work, to
save computer time, we use a single choice of n for all our Wilson loops, mean-
ing that the link between the static potential of restricted and full QCD is inexact.
Simulations without this simplification will be presented in a future work.
which has been demonstrated theoretically [9]. But to show it by
explicitly choosing a particular Abelian direction is really remark-
able.

Having thus selected n, we implement the isometry condition
(1) on the lattice and construct the restricted field consistently,
which allows us to express the Wilson loop in terms of a surface
integral over the restricted gauge field strength tensor. Our rela-
tionship for the string tension in terms of this restricted field is
exact: we do not require any approximations or additional path
integrals. We perform the lattice CDG decomposition, isolate the
restricted potential Âμ and the topological potential Cμ and search
for the topological structures in the restricted field strength, find-
ing that they may cause an area law behaviour of the Wilson loop.
We outline how these topological structures arise in SU(2), leaving
a fuller description and the extension to higher gauge groups to a
subsequent work. If these structures exist (we do not prove in the
theoretical analysis here that configurations containing them will
contribute in practice) they will provide a mechanism for quark
confinement.

By calculating the Wilson loop in a pure Yang Mills SU(3) lat-
tice gauge theory with the full potential Aμ , the restricted po-
tential Âμ , and the topological potential Cμ , we pinpoint which
potential generates the confining area law and is thus responsi-
ble for confinement. In this initial calculation, we concentrate on
the string tension and an examination of the component of the re-
stricted field responsible for confinement. Our result suggests that
confinement is caused by the topological potential.

Similar lattice calculations, by the Chiba-KEK Lattice Group
led by Kondo [22–24], have recently used the gauge independent
Abelian decomposition to provide evidence for monopole domi-
nance in the confining potential. As far as we know, these are the
first gauge invariant lattice calculations to suggest monopole dom-
inance in the confining potential. The most important difference
between their work and ours is that they use a different choice
of n whose θ is taken from a different subgroup of SU(3). These
calculations, however, have unsatisfactory features. Firstly, their re-
lationship between the Wilson loop and the restricted field (based
on [25,26]) requires a path integral over all possible θ , in effect
enlarging the gauge group by introducing a new SU(3)/U (2) dy-
namical field. They then fixed θ (restoring the gauge group to
SU(3)) by imposing the condition [n, D2[A]n] = 0, which breaks
the relationship between the Wilson loops of the restricted and
original gauge fields. Secondly, they have chosen the ‘minimal’
Abelian configuration for n which leaves SU(3)/(SU(2) × U (1)) in-
variant, choosing n as only the λ8-like Abelian direction, neglecting
any contribution from the second Abelian direction constructed
from λ3. Clearly this n can not describe the most general SU(3)

Abelian topologies. In this sense their monopole dominance is in-
complete.

Here we construct the Abelian decomposition by rigorously im-
posing the isometry (1), choosing an Abelian direction n which
covers all possible SU(3) topological structures, and gives an ex-
act equivalence between the Wilson loops of the restricted and
original gauge fields. This novel feature of our Letter not only re-
enforces the topological dominance but also makes it more precise.
We will search for evidence of monopole condensation or some
other mechanism in future work.

The Letter is organised as follows. In Section 2 we discuss the
Abelian decomposition and its relation to the Wilson loop and thus
the static quark potential. In Section 3 we discuss how topological
structures which generate confinement may arise in this construc-
tion. We present numerical evidence in Section 4. We conclude in
Section 5. Early results were presented in [27,28].
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2. Abelian decomposition and Stokes’ theorem

We use the convention that the superscript a on a Gell-Mann
matrix, λa , implies that it should be summed over all values of

a (λa Aa ≡ ∑N2
C −1

a=1 λa Aa), while the index j is restricted only to
the diagonal Gell-Mann matrices (in the standard representation
A jλ j ≡ ∑

j=3,8,...,N2
C −1 λ j A j). The Wilson loop, W L , measures the

confining potential in a theory with a SU(NC ) gauge field, Aμ =
1
2 Aa

μλa [29],

W L[Cs] = tr W [Cs]
NC

, W [Cs] = P
[
e−ig

∮
Cs

dxμ Aμ(x)]
. (3)

Cs is a closed curve of length L which starts and finishes at a
position s and P represents path ordering. It is expected that
the vacuum expectation value of the Wilson loop should scale
as 〈W L[Cs]〉 ∼ e−ρΣ , where Σ is the area of the surface en-
closed by the curve Cs and ρ is the string tension. We only
consider planar Wilson loops: Cs is a rectangle of temporal ex-
tent T and spatial extent R (we will later restrict ourselves to
loops in the xt plane). The static quark potential is given by
V (R) = − limT →∞ log(〈W L[Cs]〉)/T . A linearly rising V (R) is a sig-
nal for confinement [29].

To define the path ordering, we split Cs into infinitesimal
segments of length δσ , with the gauge link Uσ ∈ SU(NC ) =
P[e−ig

∫ σ+δσ
σ Aσ dσ ] ∼ e−igδσ Aσ , 0 � σ � L represents the position

along the curve and Aσ ≡ Aμ(σ)(x(σ )). We have assumed and will
require throughout this work that the gauge field is differentiable.
This limits us to continuous gauge transformations (formed by re-
peatedly applying Aμ → Aμ + 1

g ∂μα + i[Aμ,α] for infinitesimal

and differentiable α ≡ 1
2 αaλa). We also neglect the effects of the

corners of the Wilson loop (rounding them as necessary to avoid a
discontinuity as σ increases). This gives,

W [Cs] = lim
δσ→0

L−δσ∏
σ=0,δσ ,2δσ ,...

Uσ . (4)

We introduce a field θσ ≡ θ(x(σ )) ∈ U (NC ) and insert the iden-
tity operator θσ θ

†
σ between each pair of neighbouring gauge links

on Cs . θ is chosen so that θ
†
σ Uσ θσ+δσ is diagonal.2 θs there-

fore contains the eigenvectors of W [Cs] (the index s indicates
that θs refers to the field at the location where the Wilson loop
starts and ends). As the phases of the eigenvectors are arbi-
trary, this definition only determines θ up to a (U (1))NC trans-
formation θ → θχ . No physical observable depends on χ , but
in practice it is useful to select the phases and ordering of the
eigenvectors by some arbitrary fixing condition, giving a unique
choice of θ ∈ SU(NC )/(U (1))NC −1. Under a gauge transformation,
Uσ → Λσ Uσ Λ

†
σ+δσ for Λ = eiαaλa ∈ SU(NC ), θ → Λθχ , where

the (U (1))NC −1 factor χ depends on the fixing condition. With

θ
†
σ Uσ θσ+δσ = e

i
∑

λ j diagonal δσ û jλ j

for real û,

θ
†
s W [Cs]θs = ei

∑
j=3,8,... λ

j
∮

Cs
dσ û j

σ , (5)

removing the non-Abelian structure and the path ordering.
We will apply Stokes’ theorem to express W as a surface inte-

gral. First we extend the definition of θ and û j across all space. For
θ , we construct nested curves in the same plane as Cs and stack
these curves on top of each other in the other dimensions. We de-
fine θ so it diagonalises each W constructed from one of these

2 The proof that this can be done for each link on a Wilson loop is straightfor-
ward, and shall be provided in the follow-up article.
curves. For û j , we construct a field Û such that θ †(x)Ûμ(x)θx+δσ μ̂

is diagonal ∀x,μ and Ûμ(x) = Uμ(x) ∀x,μ ∈ Cs . Thus

[
λ j, θ

†
x Ûμ,xθx+μ̂δσ

] = 0, (6)

Ûμ,xn j,x+δσ μ̂Û †
μ,x − n j,x = 0, n j,x ≡ θxλ

jθ
†
x (7)

are satisfied ∀x, j. Note that n j is independent of the choice of
χ . We relate Û to the physical gauge field through a second field
X̂ , defined by Uμ(x) = X̂μÛμ . For later convenience (Eq. (12)), we
impose the condition

tr
[
n j,x

(
X̂†

μ,x − X̂μ,x
)] = 0. (8)

We choose the solution to Eqs. (7) and (8) which maximises
tr( X̂), a condition which is both gauge invariant and satisfied
along Cs where Û = U and X̂ = 1. Under a gauge transformation,
nx → ΛxnxΛ

†
x , Ûμ(x) → ΛxÛμ,xΛ

†
x+μ̂δσ

and X̂μ,x → Λx X̂μ,xΛ
†
x ,

so Eqs. (7) and (8) are gauge-invariant. Eqs. (7) and (8) are lat-
tice equivalents of the defining equations of the CDG decomposi-
tion [16,17,19,20,18], described in the continuum by the isometry
condition (Eqs. (1) and (2))

Aμ = Âμ + Xμ, Dμ[ Â]n j = 0,

Dμ[ Â]α ≡ ∂μα − ig[ Âμ,α], tr(n j Xμ) = 0,

Âμ = 1

2

[
n jtr(n j Aμ) + i

2g
[n j, ∂μn j]

]
, (9)

with Uμ ∼ e−iδσ Aμ and X̂μ ∼ e−iδσ Xμ (to O(δσ 2)).

We express Û as Ûμ,x ≡ θxeiλ jδσ û j
μ,xθ

†
x+μ̂δσ

for real û. Since

Ûμ(x) = Uμ(x) ∀x ∈ Cs , W [Cs, U ] = W [Cs, Û ] = θs W [Cs, θ
†Ûθ]θ †

s =
θseiλ j

∮
Cs

û j
σ dσ

θ
†
s . If û is differentiable, applying Stokes’ theorem to

this line integral gives

θ
†
s W [Cs]θs = eiλ j

∫
x∈Σ dΣμν F̂ j

μν , F̂ j
μν = ∂μû j

ν − ∂ν û j
μ, (10)

where F̂ j (like û) is gauge invariant, Σ the (planar) surface bound
by the curve Cs , and dΣ an element of area on that surface. Where
û is not differentiable, we will have to break this integral into a
surface integral over the region where û is analytic, and line in-
tegrals surrounding each of the non-analyticities in û. We shall
concentrate on the contribution from these non-analyticities be-
low.

Through this choice of θ , we have suggested that the dynam-
ics describing confinement can be expressed in terms of only an
Abelian field, and the suggestion and feasibility of using this choice
of θ as the basis of a CDG decomposition is the most important
novelty and result of this work. The coloured part of the gauge
field, Xμ , does not contribute to confinement. We do not require
any additional path integrals. This procedure is gauge invariant, in
the sense that θ transforms gauge covariantly, and therefore the
restricted field strength F̂μν and all other observables constructed
from the restricted field Â are gauge invariant.

3. Topological structures

Now suppose that û j contains a non-analyticity. We integrate
the field around a loop C̃ parametrised by σ̃ surrounding the dis-
continuity in û j , bounding the surface integral by an additional
line integral

∮
C̃ dσ̃ û j

σ̃
. We define {C̃n} as the set of curves sur-

rounding all these discontinuities, and Σ̃ the area bound within
these curves. Thus

eiλ jδσ̃ û j
μ,x = θ

†
x X̂†

μ,xθxθ
†
x Uμ,xθx+δσ̃ , (11)
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and û j
μ,x is continuous on C̃ . After gauge-fixing, we expand Uμ =

1− i 1
2 gδσ̃ Aa

μλa and θ
†
x θx+δσ̃ = 1+δσ̃ θ

†
x ∂σ̃ θx . We assume that X0 ≡

1
2 θ

†
x ( X̂μ,x + X̂†

μ,x)θx , which will be close to the identity operator, is

well-defined along C̃ .

iδσ̃ û j
μ,x = 1

tr(λ j)2
Im

(
tr

[
λ jθ

†
x X̂†

μ,xθxθ
†
x Uμ,xθx+δσ̃ μ̂

])

= 1

2tr(λ j)2
tr

[
λ jθ

†
x
(

X̂†
μ,x − X̂μ,x

)
θx

− iλ jδσ̃ θ
†
x [X0]μ,x g Aa

μ,xλ
aθx

+ 2λ jθ †[X0]μ,xθxδσ̃ θ
†
x∂σ̃ θ

]
. (12)

Using (8), if Aμ and X0 are analytic the final term with a derivative
in θ will dominate, giving

θ
†
s W [Cs]θs = exp

(
iλ j

[ ∫

(x∈Σ)∩(x/∈Σ̃)

dΣμν F̂ j
μν

+
∑

n

∮

C̃n

dσ̃
1

tr(λ j)2
tr

[
λ j X0θ

†∂σ̃ θ
]])

. (13)

There are three occasions when θ (and thus û) may be dis-
continuous: if the Wilson loop has degenerate eigenvalues; if the
gauge field Aμ is discontinuous; but we will here concentrate on
the possibility described below, which occurs in locations where
Aμ is analytic [35].

In SU(2), we parametrise θ as

θ = (cos aI+ i sin aφ)eid3λ3
, φ =

(
0 eic

e−ic 0

)
,

φ̄ =
(

0 ieic

−ie−ic 0

)
, λ3 =

(
1 0
0 −1

)
, (14)

with c ∈ R and 0 � a � π/2. d3 ∈ R is determined by the fixing
condition. I is the identity operator. As θ contains the eigenvectors
of W [Cs], it is differentiable except where W [Cs] has degener-
ate eigenvalues and those points at a = 0 or a ≈ π/2 where c is
ill-defined. We parametrise the plane of the Wilson loop using po-
lar coordinates (r,ψ), with r = 0 at a = π/2. At infinitesimal but
non-zero r, c(r,ψ = 0) = c(r,ψ = 2π) + 2πνn for integer winding
number νn . With c ill-defined at r = 0, we may find that νn 
= 0.
This will lead to the emergence of structures in F̂ with a large
field strength. a and c are not gauge invariant, so the correspond-
ing structures in the gauge invariant F̂ will be extended over a
region rather than just a single point. This means that when we
integrate the gauge invariant û along a curve around the singular-
ity we should not choose the curve precisely at a = π/2, but some
other path which both respects gauge invariance and contains the
singularities in all gauges. We could, perhaps, use loops of non-
vanishing magnetic current kμ = 1

2 εμνρσ ∂ν F ρσ to define this path
(cf. [30] and its references for a discussion of these loops), but,
for simplicity, we have here assumed that we can construct a suit-
able curve at some constant a = a0; while other choices might be
better, they will not make any significant difference to our conclu-
sions. It is straightforward to calculate

θ †∂σ θ = e−id3λ3[
i∂σ aφ + iλ3∂σ d

+ i sin a cos aφ̄∂σ c − i sin2 a∂σ cλ3]eid3λ3
. (15)

We integrate along a path at fixed a surrounding the structure in
F̂ , with a fixing condition holding d3 constant,
θ
†
s W [Cs]θs = eiλ3[∫

(x∈Σ)∩(x/∈Σ̃)
dΣμν F̂ j

μν−∑
n

∮
C̃n

dσ̃ ∂σ̃ c sin2 a0n]

= eiλ3[∫
(x∈Σ)∩(x/∈Σ̃)

dΣμν F̂ j
μν−∑

n 2πνnλ3 sin2 a0n]
. (16)

If νn 
= 0 the structures arising from this discontinuity give a signif-
icant contribution to the restricted field strength. The total Wilson
loop will be the product of a perimeter term, any remaining area
law contribution from the surface integral over F̂ xt , and contribu-
tions from all these structures. As we can expect the number of
structures to be proportional to the area of the loop, this leads to
an area law for the Wilson loop and a linear string tension.

Although F̂ (and therefore the structures) is gauge-invariant, θ ,
X̂ and Û depend on the gauge. Since we require that the gauge
field is continuous, we can only use continuous gauge transforma-
tions. However, to undo the winding in θ requires a discontinuous
gauge transformation. Thus the discontinuities in θ will survive
any smooth gauge transformation. For example, in SU(2), we can
parametrise an infinitesimal gauge transformation as

Λ =
(

cos l1 i sin l1eil2

i sin l1e−il2 cos l1

)(
eil3 0
0 e−il3

)
, (17)

with l1 and l3 infinitesimal and analytic and 0 < l2 < 2π . If we fix
d3 = 0, we find that for |a| � O (l1, l3) and |π/2 − a| � O (l1, l3),

c → c′ = c + 2l3 + l1 sin(l2 − c) cot a − l1 sin(l2 − c) tan a,

a → a′ = a + l1
cos(l2 − c)

cos a
. (18)

The winding number becomes

ν →
∮

∂σ̃ c′dσ̃ =
∮

∂σ̃

(
c′ − c

)
dσ̃ + 2πν, (19)

and since l1 and l3 are infinitesimals and cannot change by 2π
and (c′ − c) is invariant under c → c + 2πν , the winding number
is unaffected. The location where a = π/2 or 0 may, however, be
shifted by a small amount.

In a SU(NC ) gauge theory, we parametrise θ in terms of
NC − 1 diagonal elements eid jλ

j
and (N2

C − NC )/2 matrices eiaiφi ∈
SU(2)/U (1), with each φi a different embedding of Eq. (14) into
su(NC ) [35]. Since the different φi do not commute, this parametri-
sation is not unique; nonetheless once the parametrisation is fixed
the analysis proceeds as in SU(2), and the winding number is inde-
pendent of the choice of parametrisation. There will be a peak in
F̂μν whenever a ci winds around a point where ai = π/2 for any
of the SU(2)/U (1) matrices, and each of those peaks contributes
to the string tension.

4. Numerical results

We generated 163 × 32 and 203 × 40 quenched lattice QCD
(SU(3)) configurations with a Tadpole Improved Luscher–Weisz
gauge action [31] using a Hybrid Monte Carlo routine [32] (see Ta-
ble 1). The lattice spacing was measured using the string tension
ρ ∼ (420 MeV)2. We applied ten steps of improved stout smear-
ing [33,34] with parameters ρs = 0.015 and ε = 0. θ and Û were
extracted from the gauge field by solving equations (5), (7) and
(8) numerically. Our algorithms and numerical set-up will be fully
described in a subsequent publication.

To match the continuum calculations, we need to work in a
continuous gauge, which is difficult to realise on the lattice. We
have therefore only used gauge-invariant observables here, the
string tension and restricted field strength. Extracting the com-
ponents a and c from the gauge-dependent θ is straightforward:
we presented some results for the winding of c around the peaks
in [27]. However, it is unclear what physical meaning can be given
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Table 1
Parameters for our simulations: the lattice size, the spatial extent of the lattice, L,
the inverse gauge coupling β , the lattice spacing a, and the number of configura-
tions in each ensemble #.

Lattice size L (fm) β a (fm) #

163 × 32 2.30 8.0 0.144(2) 91
163 × 32 1.84 8.3 0.114(1) 91
163 × 32 1.58 8.52 0.099(1) 82
203 × 40 2.30 8.3 0.112(5) 61

to this as we will be in a different gauge to the continuum calcu-
lations.

The string tension from the restricted potential is gauge invari-
ant, and can be extracted from the Wilson loop in a standard way.
The restricted field strength can be measured using the gauge-
invariant plaquette definition

eF̂ j
xt (x+ 1

2 a,t+ 1
2 a)λ j

∼ θ
†
x Ûx(x, t)Ût(x + a, t)Û †

x(x, t + a)Û †
t (x, t)θx. (20)

Constructing the θ contribution to the restricted field strength
is more challenging because the direct calculation, measuring
trλ j(θ

†
x θx+aμ̂ − 1) ∼ trλ j(θ

†
x+ 1

2 aμ̂
∂μθx+ 1

2 aμ̂) for lattice spacing a, is

not gauge-invariant. A gauge transformation which would be dis-
continuous in the continuum could lead to additional discontinu-
ities appearing in the observable or the removal of discontinuities
already present. Fixing the gauge does not help, as we might fix
to a gauge where Aμ is discontinuous. We need to instead study

the quantity θ
†
x Ũx,μθx+μ̂ for some gauge covariant field Ũ (so the

whole expression is gauge-invariant) which has only a minor ef-
fect on physical observables such as the string tension so that only
θ contributes to the Wilson loop (the operator we use to represent
Ũ is given later).

Stout smearing [33,34] is a well-known tool to smooth the
gauge field while preserving gauge invariance. Each Stout smear-
ing sweep replaces Ux,μ → U ′

x,μ = ei Q x Ux,μ where Q is a Hermi-
tian operator constructed from closed loops of gauge links start-
ing and finishing at x (we constructed Q from plaquettes and
2 × 1 rectangles [34]). A few smearing sweeps are often used to
remove unwanted discontinuous fluctuations in the gauge field.
Too many smearing steps risk destroying the physical features of
the gauge field. This is what we require: we set Ũ to be the
gauge field U subjected to a large number of stout smears: Ũ
should resemble a pure gauge transformation, as any closed loop
of gauge links will give the identity operator and thus a zero field
strength. We perform an Abelian decomposition on θ

†
x Ũx,μθx+μ̂ to

extract the restricted field ˆ̃U x,μ which satisfies [ ˆ̃U x,μ, λ j] = 0 and

tr(λ j( X̃ − X̃†)) = 0 with X̃ = θ
†
x Ũx,μθx+μ̂(

ˆ̃U x,μ)−1. We compare the

field strength from this ˆ̃U , representing the θ contribution to the
restricted field strength, to the field strength from the restricted
field Û . We expect that the observables calculated from the θ

field and the restricted field should be similar: the string tensions
should be similar, and the field strengths should contain similar
features.

In Fig. 1 and Table 2, we extract the string tension, ρ , for the
original gauge field U , the restricted field Û and the θ contribution

to the restricted field, ˆ̃U . We have calculated the expectation value
of the R × T Wilson loop in the xt plane for one of the fields, and
fit it to the function ρRT + aR + bT + c + dR/T + eT /R + f /T +
g/R +h/(T R) for unknown coefficients ρ,a, . . . ,h. The cited errors
are statistical, calculated using the bootstrap method, and system-
atic, reflecting uncertainties in the fitting. To reduce the computa-
Fig. 1. The string tension extrapolated to infinite time for the original gauge field U ,
the restricted gauge field Û , the over-smeared field Ũ and the θ contribution to Û ,
ˆ̃U , for a β = 8.52 ensemble.

Table 2
The string tension extrapolated to infinite time across all our ensembles. 8.3L refers
to the 203 × 40 ensemble. The last two rows give the ratio of the topological and
restricted string tensions and the restricted and actual string tensions.

β 8.0 8.3 8.52 8.3L

U 0.094(2) 0.064(3) 0.041(1) 0.059(1)

Û 0.106(4) 0.087(2) 0.072(1) 0.095(1)

Ũ100 0.0835(4) 0.0536(3) 0.0413(3) 0.0554(3)
ˆ̃U 100 0.111(5) 0.080(2) 0.071(2) 0.093(2)

Ũ300 0.0465(2) 0.0297(2) 0.0231(3) 0.0295(2)
ˆ̃U 300 0.099(5) 0.079(2) 0.068(2) 0.091(2)

Ũ500 0.0317(2) 0.0214(1) 0.0168(2) 0.0207(2)
ˆ̃U 500 0.096(5) 0.080(2) 0.067(2) 0.096(1)

Ũ600 0.0273(2) 0.0187(1) 0.0148(2) 0.0178(1)
ˆ̃U 600 0.094(5) 0.080(2) 0.067(2) 0.093(1)

Ũ800 0.0212(2) 0.0150(1) 0.0121(2) 0.0142(1)
ˆ̃U 800 0.093(7) 0.080(2) 0.068(2) 0.092(2)

Ũ1000 0.0173(2) 0.0123(1) 0.0103(2) 0.0119(1)
ˆ̃U 1000 0.093(7) 0.080(2) 0.068(2) 0.092(2)

ˆ̃U 1000

Û
0.88(7) 0.92(3) 0.94(3) 0.97(2)

U
Û

0.89(4) 0.74(4) 0.57(2) 0.62(1)

tional overhead, for this initial study we did not recalculate a new
θ field for each Wilson loop but reused the same θ field for our
whole configuration, a simplification which destroys the identity
between the Wilson loops for the U and Û fields; but is likely

to keep any correlation between the ˆ̃U and Û fields intact. We
are currently in the process of calculating the string tension with
θ recalculated for each Wilson loop, and intend to present the up-
dated result in a follow-up publication (early results are mentioned
in [28]). We do not expect that the string tension between the U
and Û fields will be identical, and, indeed, there is a large dis-
crepancy in our results (which increases with decreasing lattice
spacing). This would be particularly true for Wilson loops not on
the xt plane (we have broken the hypercubic symmetry of the lat-
tice by singling out the xt plane while constructing θ ), so we have
here restricted our study to Wilson loops in the xt plane. In this
work, we are therefore more interested in the relationship between

the string tension extracted from ˆ̃U and Û . Were these closely re-
lated, it would suggest that the topological (θ ) contribution to the
string tension dominates, which is likely to be replicated in the full
calculation where the string tensions for Û and U will be identical.

We calculate Ũ after 100, 300, 500, 600, 800 and 1000 sweeps
of stout smearing with parameters ε = 0, ρs = 0.1 (following [34]).
We also show the string tension for Ũ , and can confirm that it is
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Fig. 2. A comparison between the peaks in F̂ 3
xt (contours) against the topological

field strength extracted from ˆ̃U (shaded background). In this presentation the nega-
tive and positive peaks cannot be distinguished. We show one (typical) slice of the
lattice at Y = 0, Z = 11. Due to the limited resolution of the lattice, the extrapolated
contour lines and the shading have an error of up to one lattice spacing.

much smaller than that of the original gauge field and decreases

as we increase the level of smearing. The string tension for ˆ̃U is
unaffected by sufficiently large amounts of smearing, suggesting
that we have indeed measured the contribution from θ∂μθ † rather
than any remnant of U remaining after the smearing.

There is a considerable difference between the string tension
for the original gauge field and for the restricted and topological
fields, and this seems to increase as the lattice spacing decreases
(the β = 8.0 163 ensemble and 203 ensemble have roughly the
same physical volume at different lattice spacings). The difference
becomes very pronounced on the β = 8.52 ensemble. The Û string
tension has a weaker dependence on β than that calculated from
the actual gauge field. This is an artefact of the approximation we
have made to accelerate the calculation, and both the approxi-
mation and its artefact will be removed in future work. Of more
interest is the difference between the topological and restricted
string tension, more likely to be duplicated in the calculation after
our approximation has been removed. We see that the topological
string tension appears to be slightly lower than the restricted ten-
sion on all our ensembles, by about 2σ or 88–97%. The variation
of this discrepancy across our ensembles is not statistically signif-
icant. In all our ensembles the topological part of the restricted
field dominates the restricted string tension.

Is the restricted field strength dominated by the expected
peaks? We use a contour plot to display the distribution of F̂ 3

xt

in Fig. 2 on a slices of the lattice. The results for F̂ 8
xt are simi-

lar. F̂ 3
xt is indeed dominated by objects one or two lattice spacings

across. There is no correlation with the structures on the neigh-
bouring lattice slices, indicating that these are point like objects
rather than strings or surfaces. Do these peaks emerge from the θ

field? The background shading of Fig. 2 shows the topological ( ˆ̃U )
field strength, and there is a strong correspondence between the
location of the peaks in these two fields (albeit sometimes shifted
by a lattice spacing – the resolution of our operators, and a few
structures visible in the topological field strength but not F̂ xt ). This
pattern is repeated across all our ensembles.

We next investigate whether these peaks are responsible for the
string tension. Does excluding these peaks reduce or eliminate the
confining potential? We usually measure the expectation value of
the Wilson loop by averaging over every planar loop in the con-
figuration (in the xt plane). Here we only include loops which do
not contain peaks higher than a cut-off | F̂ | > K, excluding those
Wilson loops which contain one of the peaks from the average. In
Fig. 3 and Table 3, we see that the string tension gradually de-
creases when averaging only over those loops with |F | < 1.0 – as
expected if the peaks rather than the fluctuations around zero are
Fig. 3. The Û string tension, ρ , excluding Wilson loops containing peaks of height
|Fxt | > K from the average (β = 8.52 ensemble).

Table 3
The Û string tension, ρ (in units of 10−2a−1), excluding Wilson loops containing
peaks of height |Fxt | > K from the average (β = 8.52 ensemble). β8.3L refers to
the 20340 ensemble.

K 2.55 1.30 1.05 0.55 0.30

β8.0 12.1(5) 12.0(4) 11.5(3) 10.3(4) 5.00(1)
β8.3 9.2(1) 9.0(1) 8.8(1) 7.7(1) 3.82(1)
β8.52 7.7(1) 7.8(1) 7.6(1) 6.7(1) 5.0(3)
β8.3L 9.8(1) 9.0(1) 8.4(1) 7.3(1) 4.56(7)

responsible for the confining string. This pattern is again dupli-
cated across our ensembles.

5. Conclusions

We have proposed a method to express the Wilson loop of a
non-Abelian field in terms of an Abelian field without gauge fix-
ing. Implementing the gauge invariant Abelian decomposition (the
CDG decomposition) on the lattice we relate the Wilson loop to a
surface integral over the CDG decomposition’s restricted potential,
and show that the restricted potential leads to an area law scaling
for the quark–quark potential, and thus confinement. This confirms
Abelian dominance of confinement.

The restricted potential contains two terms, one from the orig-
inal gauge field (the naive Abelian part) and the other from the
derivative of the θ field (the topological part). To isolate the cause
of confinement, we must show which of these parts is most im-
portant for confinement. In this Letter we have given evidence
suggesting that the topological part dominates the Wilson loop
integral, and thus confines the colour. This strongly endorses the
recent Chiba-KEK lattice calculations [22,23].

The Wilson loop describes the chromoelectric flux between
quarks. While the topological part of the restricted gauge po-
tential is known to contain coloured monopoles [16,17], so our
lattice simulations are consistent with the recent theoretical anal-
ysis showing that monopole condensation generates confinement
[8], in this work we have only demonstrated that the topologi-
cal potential is responsible for the area law of the Wilson loop.
The structures we have found in the this component of the field
strength are points rather than lines, suggesting that there is some-
thing else occurring (an isolated Wang–Yu monopole should have
no contribution to the component of the field strength, F̂ xt , stud-
ied here [35]). The structures found in the electric field are cer-
tainly not isolated monopoles. More work is needed to compare
our results with various models of the vacuum and see whether
these objects are caused by monopole condensation or some other
mechanism.
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Another important open question is how much the structures
we have found in the restricted field will also be present in the
restricted fields constructed from a different choice of θ (for ex-
ample, by using a different set of nested Wilson loops). If the
structures are unique to this choice of θ , then their use in identify-
ing topological structures in the QCD vacuum causing confinement
will be limited. However, since the gauge field strength Fμν [A] can
be decomposed as Fμν = F̂μν + F [X]μν − ig([ Âμ, Xμ] − [ Âν, Xν ]),
where Xμ does not contribute to confinement, we hypothesise that
many structures found in F̂ will be present in F ; and that many
structures leading to confinement contained within F might be
present in the F̂ constructed from diverse choices of θ . However,
this hypothesis should be either confirmed or falsified in a future
numerical study.

Furthermore, we should also study the directional dependence
of the field strength (and the Wilson loop). In subsequent stud-
ies [28,35], we will consider the other components of the field
strength tensor, finding that here the structures manifest them-
selves as one dimensional strings as well as points. In view of
these later results, it is likely that the string tension will be larger
if measured off the xt plane. This discrepancy is only an artefact
of our approximation, using the same θ for each Wilson loop, and
will be absent in a calculation without this simplification.

Our work is ongoing, and a full description of our theory and
methods, and expanded numerical results, will be given in due
course [35].
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