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Molecular diagnostic tools are increasingly being used in an attempt to classify primary human brain
tumors more accurately. While methods that are based on the analysis of individual gene expression
prove to be useful for diagnostic purposes, they are devoid of biological significance since tumorgenesis
is a concerted deregulation of multiple pathways rather than single genes. In a proof of concept, we uti-
lize two large clinical data sets and show that the elucidation of enriched pathways and small differen-
tially expressed sub-networks of protein interactions allow a reliable classification of glioblastomas and
oligodendrogliomas. Applying a feature selection method, we observe that an optimized subset of path-
ways and subnetworks significantly improves the prediction accuracy. By determining the enrichment of
altered genes in pathways and subnetworks we show that optimized subsets of genes rarely seem to be a
target of genomic alteration. Our results suggest that groups of genes play a decisive role for the pheno-
type of the underlying tumor samples that can be utilized to reliably distinguish tumor types. In the
absence of enrichment of genes that are genomically altered we assume that genetic changes largely
exert an indirect rather than direct regulatory influence on a number of tumor-defining regulatory
networks.

Published by Elsevier Inc.
1. Introduction

Gliomas represent a heterogeneous family of primary brain tu-
mors and are a significant cause of cancer mortality in the United
States [1]. While the glioma cell of origin is currently unknown,
it has been proposed that it may be different from one tumor to an-
other, ranging from a dedifferentiated astrocyte or oligodendrocyte
to a fully undifferentiated neural stem cell. The potential different
cells of origin compounded by the genetic and epigenetic heteroge-
neity within gliomas undoubtedly contribute to the heterogeneous
biologic behavior and variable clinical course seen in patients with
these tumors. As a consequence of this glioma heterogeneity, the
standard glioma classification systems which are based on histopa-
thological criteria suffer from significant intra-observer variability
and are poor predictors of treatment response and patient progno-
sis. Furthermore, traditional classification schemas give little in-
sight into the biological basis of the underlying neoplastic
process, a particular disadvantage given the advent of molecularly
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targeted anti-tumor therapeutic agents. Without an understanding
of the underlying biology that drives the neoplastic phenotype
within a given tumor, devising appropriate clinical trials as well
as treating patients will be impossible. Thus, there is a significant
need for tumor classification systems that reflect and elucidate tu-
mor biology.

With the availability of high-throughput microarray technology
[2,3] gene expression profiles of genes in tumors provide a glimpse
into the inner workings of a cell, suggesting the opportunity for a
quantitative characterization of individual tumor biology and tu-
mor classification [3–7]. Recently, several groups have identified
certain gene-based features that are associated with a particular
glioma type. Although important steps forward, the findings of
these studies have been limited by the use of expression values
that were derived from single gene analysis. Even when classifica-
tions are constructed in such a fashion, the derived classifiers are
often devoid of biological significance. In fact, the genes of interest
are selected through extreme expression patterns and tend to be
derivatives of distant primary events, not fully evident in the anno-
tation of the selected biomarkers. Moreover, most complex biolog-
ical processes, such as tumorigenesis, are a product of concerted
deregulation of complex pathways rather than of any single gene.
Thus, disease classifications that are based on the analysis of the
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aggregated effects of expression regulation along functional units
or functional protein pathways will theoretically be more informa-
tive and useful. Such a classification schema should allow a better
understanding of the biological differences between the different
subgroups of tumors by the functional nature of the discovered
classifiers. As proof of principle, we have utilized the expression
profiles of glioblastomas and oligodendrogliomas and have identi-
fied protein pathways that are enriched or depleted in these differ-
ent, yet common glioma subtypes. We also utilized a large network
of pairwise human protein–protein interactions, protein–DNA
interactions and phosphorylation events in order to identify differ-
entially expressed subnetworks that allow the largest possible dis-
crimination between the underlying tumor types. Both approaches
hold promise that functionally related gene sets may act as reliable
classifiers as well as suggest functional networks that may be un-
iquely operative in these different types of gliomas.
2. Methods

2.1. Patient selection, tissue acquisition and sample description

All tumor specimens used in this study were obtained from pa-
tients undergoing medically indicated surgical resection of a pre-
sumed or known glioma. Following written consent in
accordance with the National Cancer Institute and the collaborat-
ing center’s Institutional Review Boards surgical procedures were
performed at a number of institutions and hospitals around the
country. Specifically, we utilized 134 patient samples collected
from a retrospective database at Henry-Ford hospital (HF) and
136 samples from the prospective NCI-sponsored Glioma Molecu-
lar Diagnostic Initiative (GMDI) which were provided as snap
frozen sections and profiled using HG-U133 Plus 2.0 arrays. In
the HF data set, 77 are Glioblastoma Multiforms (GBM) and 57
Oligodendrogliomas (Oligo), while the GMDI data set consists of
81 GBMs and 55 Oligos. Pathological diagnosis was determined
by the home instructional neuropathologist and reviewed by two
neuropathologist at the NIH who were blinded to the original diag-
nosis from the home institution. Only tumors that met the criteria
of having a consensus pathological diagnosis from the NIH neuro-
pathologists were utilized for our analyses.

2.2. RNA extraction and array hybridization

We used approximately 50–80 mg of tissue from each tumor to
determine RNA with the Trizol reagent (Invitrogen, Carlsbad, CA)
and verify the RNA’s quality with the Bioanalyzer System [8] (Agi-
lent Technologies, Palo Alto, CA) using the RNA Pico Chips. Utilizing
T7-linked Oligo (dT) primer, we converted 6 lg of total RNA to
cDNA with Superscript reverse transcriptase (Invitrogen) and
in vitro transcribe complementary DNA with the T7 Bioarray High
Yield RNA Transcript Labeling Kit (ENZO Diagnostics) to generate
biotinylated cRNA. We fragmented and hybridized 20 lg of puri-
fied cRNA to the Genechip� Human Genome U133 Plus 2.0 Expres-
sion arrays [9] (Affymetrix, Inc., Santa Clara, CA) and processed the
arrays following the manufacturer’s recommendations using the
fluidics station 450 and high-resolution microarray scanner 3000.
Finally, we generated initial gene expression analysis data files
using Affymetrix GeneChip Operating Software (GCOS) version 1.3.

2.3. Microarray data preprocessing

Utilizing parameters in .rpt files generated by GCOS, we
confirmed that all arrays complied with minimal quality control
standards. Specifically, we tested if a scaling factor is <5 when
the expression values are scaled to a target mean signal intensity
of 500. Similarly, we controlled for a signal intensity ratios of the
30 to 50 end of the internal control genes of b-actin and GAPDH
being <3. Finally, we required that Affymetrix spike control (BioC,
BioDN and CreX) were always present with present call rates of
>35% for brain tissue. Arrays that passed the minimal quality con-
trol were normalized using dChip [10] at the PM and MM probe le-
vel. Using the average difference model to compute expression
values, we calculated the model-based expression levels with nor-
malized probe level data. Log-transforming expression values, neg-
ative average differences which were deemed biologically
irrelevant (MM > PM) were set to 0. Gene expression data sets
are available through the Rembrandt database (http://rem-
brandt.nci.nih.gov/).

2.4. Data treatment

We demanded that the normal specimen section came form
non-tumor bearing patients and had no signs of tumor cells on
microscopic examination. Furthermore, the behavior of the global
gene expression profiles must resemble the normal tissue in
exploratory data analysis of microarrays using principle compo-
nent analysis (PCA) and hierarchical clustering (HC). Accounting
for weak signal intensities, we removed all probesets with more
than 10% of zero log-transformed expression values. Representing
each gene, we chose the corresponding probeset with the highest
mean intensity in GBMs and Oligodendrogliomas, separately.

2.5. Genomic alterations

We collected 1979 genes with experimental evidence of at least
one genomic alteration. In particular, we utilized a large-scale
genomic study of 178 gliomas, allowing the identification of geno-
mic regions affected by copy number alterations (amplifications,
homozygous and heterozygous deletions) and allelic imbalances
(loss of heterozygosity and gene conversions) [11]. As indicated,
mRNA expression and genomic alterations showed strong correla-
tions in many cases, suggesting that a gene’s expression is evi-
dently affected by a genomic change. Such candidate genes have
been verified using real-time PCR and methylation sequencing as-
says [12]. As a reliable sequence resource, we utilized the results of
a recent re-sequencing effort to identify types of somatic muta-
tions in protein kinase genes in gliomas [13].

2.6. Protein interactions and pathways

We utilized interaction data from large-scale high-throughput
screens [14–16] and several curated interaction databases [17–
20], totaling 93,178 interactions among 11,691 genes. As a reliable
source of experimentally confirmed protein–DNA interactions, we
used 6669 interactions between 2822 transcription factors and
structural genes from the TRED database [21]. As for phosphoryla-
tion events between kinases and other proteins we found 5462
interactions between 1707 human proteins utilizing networKIN
[22,23] and phosphoELM database [24]. Pooling all these interac-
tions we obtained a total network of 11,969 human proteins that
are embedded in 103,966 links.

As a comprehensive collection of human gene pathways we uti-
lized pathway information from the NCI/NIH/Nature Pathway
Interaction Database [25]. Combining data from various sources
PID provided information about 1004 different human pathways.

2.7. Detection of significant subnetworks

Utilizing a large network, composed of protein–protein, pro-
tein–DNA interactions and phosphorylation events, we applied a
greedy algorithm to identify subnetworks that were differentially
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expressed in two classes of gene expression profiles [26] as imple-
mented in the PinnacleZ-plugin of the cytoscape package [27]. Spe-
cifically, gene expression profiles of samples of two different types
(i.e. Glioblastoma Multiforms and Oligodendrogliomas) were
transformed into a subnetwork activity matrix. For a given subnet-
work Mk, its activity score in sample j, Akj was defined as
Akj ¼

P
iZij=

ffiffiffi
n
p

. While n is the number of genes in Mk, Zij is the Z-
transformed expression score of gene i in sample j that has been
normalized over all samples. A greedy search algorithm identified
differentially expressed subnetworks if their t-test score maxi-
mizes the association between the subnetworks activity score
and the two sample classes. Significant subnetworks (P < 0.05)
were picked according to null distributions obtained by randomiz-
ing the topology of the underlying interaction network.

2.8. Gene set enrichment analysis (GSEA)

Utilizing gene sets from the PID database, GSEA [28] allowed us to
determine the degree to which genes in a pathway or gene set were
largely found at the extreme ends of a ranked list of gene expression,
comparing two different tumor samples. Ranking genes according to
their t-test scores an enrichment score (ES) was calculated by walk-
ing down this ranked list where a running-sum statistic is increased
when we found a gene in the underlying gene set and vice versa. The
enrichment score is defined as the maximum deviation from zero,
corresponding to a Kolmogorov–Smirnov-like statistic. The statisti-
cal significance of the enrichment score was assessed by a genotype-
based permutation test, and we considered a pathway or gene set as
significantly enriched if the nominal P < 0.05.

2.9. Support-vector machine algorithm (SVM)

SVMs are machine-learning approaches that are widely used for
data classification. Each SVM was trained with a set of instance la-
bel pairs (Xi, ci), i = 1,. . .,l where vector X holds activity coefficients
Akj of enriched pathways or differentially expressed subnetworks k
in a given sample j that either was assigned to Glioblastoma Mul-
tiforms (ci = 1) or Oligodendrogliomas (ci = �1). In our case, train-
ing vectors Xi were mapped into a higher dimensional space by a
radial kernel function, k(Xi, Xj) = exp(�g|Xi � Xj|2), where g = 1.
The SVM algorithm finds a separating hyperplane with the maxi-
mal margin in this higher dimensional space, where we set the
penalty parameter of the error term C = 1. As a fast implementation
of SVMs, we used the libsvm 2.8 package [29].

2.10. Significance of links between pathways

Determining the significance of links between pathways if they
share proteins that have evidence of genomic alterations, we
formed a 2 � 2 contingency table for each pair of pathways. In par-
ticular, we defined a as the number of shared, altered proteins,
while b was the number of remaining proteins in a pair of overlap-
ping pathways. Analogously, we defined c as the number of altered
proteins, and d as the number of remaining proteins in all other
pathways. The probability of obtaining any such set of values ran-
domly is given by the hypergeometric distribution

p� ¼
aþ b

a

� � cþ d

c

� ��
N

aþ c

� �

where N = a + b + c + d. In order to investigate the two tails of the
underlying distribution we constructed all possible contingency ta-
bles by keeping the sum of rows and columns constant. The P-value
to reject the null hypothesis which is the independence of rows and
columns in the contingency table was defined as the sum of the
probabilities pi, of all contingency tables, P ¼

P
pi�p�pi [30].
2.11. Feature selection

For each of N tumor samples that are represented by a vector of
subnetwork or pathway scores X, the I-Relief algorithm [31,32] de-
fines sets of nearest hits Hn (samples of the same tumor type) and
nearest misses Mn (samples of the other type). The objective func-
tion of the algorithm is to scale each feature such that the average
margin in a weighted feature space is maximized. Briefly, the
I-Relief algorithm estimates probability distributions of the unob-
served data as exponential functions f(d) = e�d/s where we set
s = 2. Iteratively, I-Relief adopts a quasi Expectation–Maximization
strategy to assess the weights of the underlying features until con-
vergence is reached. For details of the theoretical and technical
aspects of I-Relief please see [31]. As a reliable implementation of
I-Relief we used the mlpy package (http://mlpy.fbk.eu).

In order to determine an optimal subset of features that allows
the best possible discrimination between classes, we ranked all
features according to their weights. Running through this ranked
list, we added a feature to a list of best features and determined
their prediction performance. We defined the subset of ranked
features with the highest prediction accuracy as our optimized
features list.
3. Results

3.1. Classification with enriched pathways and differentially expressed
subnetworks

In order to provide proof of principle that a gene set or network-
based tumor classification is feasible, we chose to compare two gli-
oma subtypes, Glioblastoma Multiforms (GBM) and Oligodendro-
gliomas, that are deemed biologically different based on both
standard pathologic criteria and clinical course. Utilizing gene
expression data from 134 patient samples from Henry-Ford hospi-
tal (HF) and 136 samples from the Glioma Molecular Diagnostic
Initiative (GMDI) we were interested in finding groups of genes
that allow a reliable discrimination between the underlying tumor
types. Although traditional gene expression-based classification
approaches have evaluated individual genes, one could potentially
use groups of genes to identify pathways that are over- or under-
expressed in one tumor type compared to the other (Fig. 1a). Uti-
lizing 1004 fully annotated pathways from the Pathway
Interaction Database (PID), we applied Gene Set Enrichment Anal-
ysis (GSEA) [28] to determine pathway enrichment in GBMs com-
pared to Oligodendrogliomas and identified 196 pathways in the
HF data set and 122 in the GMDI data set (P < 0.05, Supplementary
Tables 1 and 2). Specifically, we found 100 pathways that were en-
riched in both tumor types. Although GSEA alone is a powerful tool
to identify pathways of genes that potentially play a role in differ-
ent tumor types, we were also interested in alternative methods.
For the identification of differentially expressed gene sets without
resorting to any precompiled pathway or gene set information we
assembled a network of experimentally obtained pairwise molecu-
lar phosphorylation events, protein–protein and protein–DNA
interactions. Applying PinnacleZ [26], a Cytoscape plugin [27], to
a network of 103,966 interactions between 11,969 human proteins
we found 89 differentially expressed subnetworks in the HF data
and 32 in the GMDI data (P < 0.05, Supplementary Tables 3 and
4) (Fig. 1b). To test the validity of our hypothesis that both en-
riched pathways and differentially expressed subnetworks can
reliably distinguish between different tumor types, we applied a
Support-Vector Machine approach [29], utilizing gene sets as clas-
sifiers. Specifically, we transformed our gene expression profiles of
GBMs and oligodendrogliomas into a matrix of Z-scores [26]. For
each set of genes Mk we calculated an activity score in sample j,
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Fig. 1. We utilized gene expression samples of Glioblastoma Multiforms (GBM) and
Oligodendrogliomas (Oligo) from two totally disparate data sets (HF and GMDI). (a)
Using Gene Set Enrichment Analysis (GSEA), we found 196 and 122 pathways that
are enriched in one glioma type in HF and GMDI data, respectively. (b) Applying the
PinnacleZ algorithm we found 89 differentially expressed subnetworks in the HF
samples and 32 networks in the GMDI data. (c) In order to score each subnetwork/
pathway, we determined a sample-specific Z-score for each gene by averaging over
all samples and defined the activity of each pathway/network as an average of all
involved genes.
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Akj (Fig. 1c). Utilizing enriched pathways, each sample was repre-
sented by an x-dimensional vector, holding the activity scores of
all x pathways in the underlying sample. Running a 3-fold cross-
validation 1000 times, we observed that using 196 enriched path-
ways as classifiers allowed us to obtain a high percentage of correct
predictions in the HF data set (Fig. 2a). Determining the prediction
rates for oligodendrogliomas and GBMs separately, however, we
observed that the high overall rate of correct predictions was
mainly secondary to the correct prediction of the GBM group. By
contrast, the ability of the classifiers to correctly predict oligoden-
drogliomas dropped significantly. Since the activity of each en-
riched pathway was defined as the average of each genes
expression, we reason that the presence of genes that do not
Fig. 2. Repeating 3-fold cross-validation 1000 times with a support-vector machine
approach, we found in (a) that enriched pathways in HF data allow a high overall
rate of correct predictions. However, the performance dropped if we predicted
Oligodendrocytes separately. Accounting for genes that drive the pathways
enrichment (i.e. leading edges) we observed a significant performance improve-
ment. Compared to pathway specific results, differentially expressed subnetworks
significantly outscored enriched pathways as classifiers. (b) Utilizing GMDI data, we
found similar results, indicating the superior performance of differentially subnet-
works as classifiers.
contribute significantly to the enrichment of its pathway might
be responsible for the observed diminished performance. To test
this hypothesis, we determined the activity of each pathway based
only on the genes that significantly enhanced the enrichment of its
pathways (i.e. ‘leading edges’). As demonstrated in Fig. 2a, we
found that the use of leading edges significantly improved the per-
formance of our pathway-based classifiers. Analogously, we
checked the performance of classifiers composed of 89 differen-
tially expressed subnetworks. By contrast, we observe that such
differentially expressed subnetworks significantly outscored en-
riched pathways, allowing for correct prediction rates up to 99%
in the HF data set (Fig. 2a). While the performance of enriched
pathways dropped considerably in predicting the oligodendrogli-
oma group, subnetworks appeared to predict both tumor types
equally well, a result we found with the GMDI data set as well
(Fig. 2b).

3.2. Genomic alterations

The presence of many enriched pathways in GBMs and Oligo-
dendrogliomas and numerous genomic alterations in most gliomas
suggested the possibility that many of these pathways are prime
targets of genomic alterations. In order to test this hypothesis,
we collected a list of 1979 genes associated with chromosomal
abnormalities in at least 15% of gliomas. Applying a Fisher’s exact
test (nominal P < 0.05), we found that 19.9% and 16.4% of all en-
riched pathways in the HF and GMDI data set, respectively, are sig-
nificantly populated with genes that have at least one indication of
a genomic alteration. These numbers increase to 23.0% and 25.5%
when utilizing the leading-edge genes for the HF and GMDI data
sets, respectively. Genes that appear in many different enriched
pathways might play an important role in aberrant cell signaling
and may be enriched for targets of genomic alterations that sup-
port the emergence of the malignant phenotype. To test this
hypothesis, we connected enriched pathways that share such
genes. Applying a threshold of a nominal P < 0.05 obtained from
an adapted two-tailed Fisher’s exact test, we found such genes in
an assembly of degradation pathways that are involved in cell-cy-
cle regulation and in prominent signaling pathways (Fig. 3). While
genomically altered proteasome subunits drive the enrichment
signal in degradation pathways we also found that the tightly con-
nected toll-like receptor, BCR signaling and IL1r signal transduction
pathways were strongly affected by genomically altered genes. Ta-
ken together, the mentioned pathways pool an array of important
signaling proteins such as MAP-kinases, TNF receptor associated
factor TRAF6, the transcription factor NF-kB and its inhibitor I-kB
kinase as well as FOS and JUN, genes that form the AP-1 early re-
sponse transcription factor. In the GMDI data set, we found 5 out
of 32 (15.6%) strongly overexpressed subnetworks in GBMs that
are significantly enriched (two-tailed Fisher’s test, P < 0.05) with
genomically altered genes. Analogously, 8 out of 89 subnetworks
(9.0%) were found enriched with genomically altered genes in
the HF data (Supplementary Fig. 1). Such webs largely revolve
around the epidermal growth factor receptor (EGFR) and BCL3,
both of which can have genomic alterations in gliomas (Fig. 4).
The latter proto-oncogene functions as a transcriptional coactiva-
tor through its association with NF-kappa B homodimers, an activ-
ity that is reflected by the strong presence of protein interactions
between these genes in Fig. 4 and enriched pathways in Fig. 3.

Another important step that would support the applicability of
enriched pathways and differentially subnetworks as classifiers
would be the ability to predict correct classes if the procedure were
trained on the HF data set, tested on the GMDI data set and vice
versa. In Fig. 5a, we generally found that the leading edges and sub-
networks based classifiers provided the best classification accu-
racy, while training on GMDI and testing on HF data largely



Fig. 3. Focusing on enriched gene sets, we connected pathways if they significantly share genes with evidence of a genomic alteration (nominal P < 0.05). We mostly found
degradation pathways involved in cell-cycle regulation activities. In addition, we observed numerous prominent signaling pathways that were strongly composed of genes
with genomic alterations in gliomas.
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outperformed training on the HF data and testing on the GMDI
data set. Focusing on oligodendroglioma specific results, we ob-
served that all classification procedures dropped in accuracy quite
dramatically, while the GBM specific performance remained strong
(Fig. 5b).

3.3. Selection of optimized pathways and subnetworks

Up to this point we had utilized all enriched pathways and dif-
ferentially expressed subnetworks to determine the classifiers.
Since the identified subnetworks had been determined indepen-
dently from each other, however, we wondered if certain feature
combinations would improve the general performance of the clas-
sifiers, and specifically the prediction accuracy of the Oligodendro-
glioma samples. The iterative relief algorithm (I-Relief) offers a
computational framework to identify such combinations by
weighting the underlying features in an iterative manner [31,32].
Running through a ranking of all enriched pathways or subnet-
works according to their weight, we iteratively added a new fea-
ture. Checking the prediction accuracy of each subset of features,
we defined the group of features with the highest prediction accu-
racy as the optimal subset of pathways or subnetworks that allow
the best discrimination between GBMs and Oligodendrogliomas
(Supplementary Fig. 2). With HF data as the training and GMDI
data as the testing set, we found that the prediction accuracy of
the 11 top-ranked pathways clearly outscored all 196 enriched
pathways (Fig. 5a). Analogously, 21 leading edge sets performed
significantly better than all their counterparts, and 7 subnetworks
reached equivalent levels of accuracy to all 89 differentially ex-
pressed sub-webs. In the opposite case, training on GMDI and test-
ing on the HF data set also led to an increase in the overall
prediction accuracy with relatively low numbers of selected
pathways and subnetworks (Fig. 5a). More importantly, however,
the Oligodendroglioma specific prediction accuracy strongly in-
creased in both cases as well, favouring GMDI over HF data as
training rather than a testing set (Fig. 5b).

Utilizing 3-fold cross-validation in each data set separately, we
also tested the prediction accuracy of the corresponding optimal
pathways and subnetworks sets. In Supplementary Fig. 3a, we
found that the general and type specific prediction accuracy was
generally high with optimized subnetworks and pathways using
the HF data set. Using the GMDI data set, optimized pathways clas-
sified GBMs well while we observed a slight drop in the accuracy of
predicting the group of oligodendrogliomas. While subnetworks
seemed to work equally well with both glioma types, our result
suggested that the low performance in the prediction of oligoden-
drogliomas is largely a question of the optimized subsets of path-
ways and subnetworks, yet are slightly influenced by the
intrinsic characteristics of the underlying expression data sets.

The identification of optimized subsets of pathways and net-
works suggested potential biological significance. Pooling of the 6
optimal subnetworks obtained with the GMDI data set resulted
in a network that revolves around prominent tumor related genes
such as NFKB1, VEGF and BCL3 (Fig. 5b), genes that appeared in the
unified web of the 7 most discriminative networks in the HF data
as well (Supplementary Fig. 4). In Supplementary Fig. 5, we also
show connections between the corresponding 21 optimal leading
edge sets in HF and GMDI data, respectively. Roughly, both net-
works revolved around prominent signaling and apoptotic path-
ways, indicating that SHC1, ITGB1 and CASP3 provide crosstalk
between these enriched and highly discriminative pathways.

As a corollary to our initial hypothesis that enriched pathways
and subnetworks are prime-targets of genomic alterations, we
hypothesized that the tendency of such gene sets to be primarily



Fig. 4. Considering 89 differentially expressed subnetworks in the HF data set, we found 5 subnetworks that were significantly enriched with genes that showed a genomic
alteration (Fisher exact test, P < 0.05). Specifically, such subnetworks strongly revolved around NFKB1 and EGFR.

Fig. 5. (a) Training a SVM-based classification procedure on enriched pathways in HF data and testing the classifier on GMDI data, we found the best performance with 11
pathways, that clearly outscore the classification results using all enriched pathways (dashed line). Specifically, we ranked each pathway according to its contribution to the
discrimination between GBM and Oligodendrogliomas and chose those that obtained the highest prediction accuracy. Analogously, we found similar results with 21 sets of
leading edges and 7 subnetworks. In the opposite case, training in GMDI data and testing on the HF set increased the overall accuracy of the prediction with comparable
numbers of pathways/subnetworks. In (b), we found that the glioma specific prediction accuracy depends on the quality of the underlying training set. While Oligo-specific
predictions based on the HF set showed an advantage in predicting GBMs, training on the GMDI sets clearly eradicated this bias. In (c) we pooled the 6 subnetworks obtained
with the GMDI data set and found that such a network revolved around prominent tumor related genes. In particular, this network was strongly governed by NFKB1, VEGF
and BCL3, although only the latter two genes were strongly overexpressed in GBMs.
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enriched with altered genes will increase. Out of 11 optimized
pathways, we found one pathway (9.1%) to be significantly en-
riched with genomically altered genes (P < 0.05) utilizing HF data.
Similarly, we found 4 out of 21 leading edge sets that have signif-
icant enrichment levels (19.0%), while we found no such enriched
subnetworks. Analogously, we found 2 out of 11 pathways (18.2%),
one out of 19 (5.3%) and one out of 6 subnetworks (16.7%) to be sig-
nificantly enriched with genomically altered genes. Compared to
the enrichment rates of all pathways and subnetworks, genomic
alterations alone cannot convincingly explain the biological basis
for the discriminative power of optimized sets of pathways and
subnetworks.
4. Conclusions

Current clinical glioma classification schemes are based on his-
topathological observations and suffer from intra-observer subjec-
tivity, poor prognostic or therapeutic predictive potential and offer
little biological insights. Newer classification schemas based on
gene expression are more objective and offer hints of biology,
but many of the individual genes identified as classifiers exist as
isolated markers with questionable relevance to tumor biology.
The determination of enriched pathways and differentially ex-
pressed subnetworks in GBMs compared to oligodendrogliomas al-
lowed us to find gene sets that can be used to reliably distinguish
between underlying tumor types. Such a strategy may in fact have
more biological meaning than using single probesets/genes in iso-
lation since genes mostly mediate their biological functions as
large assemblies rather than as single entities. Therefore, the ge-
netic/protein associations found within differentially expressed
pathways and subnetworks may help identify genes/proteins with
important biological relevance to the pathogenesis of those tu-
mors. Merely focusing on single genes alone would have otherwise
missed such pathways and subnetworks.

Although we found that precompiled gene sets, such as path-
ways, have value in distinguishing classes of expression profiles,
they are outperformed by a more local search. This strategy in-
volved discovering differentially expressed subnetworks, where
we scanned the vicinity of an individual gene in an interaction net-
work for the purpose of finding interaction partners that add to the
discriminative power of a single subnetwork. While each pathway
carries genes that do not significantly contribute to its enrichment
in one tumor class, this disadvantage can be partially compensated
for by focusing on leading edges, genes that indeed are responsible
for the observed overrepresentation of the underlying pathway.
Such simple steps allowed us to identify an array of discriminative
features providing high prediction accuracy by mutually training
and testing on data sets of different origin. While we initially based
the classification procedure on all individually enriched pathways
and differentially expressed subnetworks, we refined our proce-
dure by choosing optimal subsets of such features, allowing better
classification performance as an ensemble. Specifically, we found
that a relatively low number of pathways and subnetworks does
not only drastically improve the classifiers performance but also
allows us to compensate for the seemingly lower prediction accu-
racy of oligodendroglioma samples.

The major power of this approach over the single gene classifier
approach is that identified enriched pathways may carry valuable
biological information. We observed that a number of the highly
discriminatory signaling and regulation pathways were signifi-
cantly enriched with genomically altered genes in GBMs, suggest-
ing their potential role in the biology of the underlying tumor type.
In addition, we found subnetworks that were significantly popu-
lated with genomically altered genes largely revolving around
hubs that play important roles in signal transduction and
transcriptional regulation. The central location of such genes with-
in these networks, compounded by their occurrence within fre-
quently altered areas of the glioma genome, may hint to their
potential importance in glioma pathogenesis. Since pathways carry
many genes that are not significantly enriched in one tumor type,
the determination of subnetworks works in a more selective way
by accounting for only those genes that strongly help to discrimi-
nate the two classes. Indeed, we found major subnetworks revol-
ving around prominent glioma related genes such as NFKB1,
VEGF and BCL3.

Based on these observations, one might therefore assume that
the strategy of finding subnetworks would more likely identify
genes that are genomically altered in gliomas. Curiously, however,
we did not find any evidence that differentially expressed subnet-
works accumulate more genomically altered genes than enriched
pathways. In fact, the enrichment of genomically altered genes in
optimized subsets did not differ compared to all pathways and
subnetworks, suggesting that the presence of altered genes is lar-
gely not a criterion for the discriminative power of optimized path-
ways and subnetworks. In turn, one might speculate that the
paucity of genomically altered genes in our subnetworks points
to the possibility that genes in the subnetworks, albeit discrimina-
tive, are the result of genomically altered regulators that exert
their influence in a way that is not detectable by focusing on local
interaction networks alone. Another explanation might be that we
possibly underestimated the number of genomically altered genes
in our analysis. Specifically, we determined altered genes using fre-
quent chromosomal number alterations in gliomas. However, sin-
gle nucleotide polymorphism (SNP) generated genomic arrays only
identify rather large genomic alterations. Therefore, some of the
enriched genes that were not designated as ‘‘genomically altered”
might have undergone smaller (i.e. single base pair) mutations in
their coding or upstream promoter sequences. Such small changes
result in altered mRNA stability and/or altered transcriptional
activity potentially influencing our results.

Since the level of expression of genes can be explained by geno-
mic alterations in many (although not all) cases, a refinement of
our methodology would be the identification of biologically impor-
tant genes that are regulated by genomically altered genes.
Although our approach of identifying enriched gene sets and differ-
entially expressed subnetworks moves us in that direction, such an
approach is still dependent on well-annotated precompiled gene
sets and/or local gene–gene and protein–protein interactions that
are largely left to be uncovered. Furthermore, difficulties in distin-
guishing passenger from driver genetic mutations and alterations
would complicate such an approach. The true value of this ap-
proach, ultimately awaits vigorous cross-validation using desper-
ately needed outside data sets and experimental validation of the
importance of the identified pathways, subnetworks and the spe-
cific genes and proteins.

Our approach offers a proof of principle that pathway and sub-
networks reliably allow classification and potential insights into
the underlying biology of those tumors. In addition, such subnet-
works and pathways might help to determine distinct subsets of
glioblastomas and oligodendrogliomas and/or help to distinguish
clinical outcomes.

Such insights are important for both understanding tumor biol-
ogy and for the selection of appropriate molecularly targeted ther-
apy for individual tumors as we head into an age of personalized
medicine.
Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jbi.2010.08.011.
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