Calculation formula and divisibility for relative class numbers of abelian function fields

Yusheng Zhao *, Lianrong Ma, Xianke Zhang

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history:
Received 15 September 2008
Revised 2 April 2009
Available online 3 July 2009
Communicated by David Goss

MSC:
11R29
11R60

Keywords:
Carlitz-module
Cyclotomic function field
Class number
Character

ABSTRACT

In this paper abelian function fields are restricted to the subfields of cyclotomic function fields. For any abelian function field K/k with conductor an irreducible polynomial over a finite field of odd characteristic, we give a calculating formula of the relative divisor class number h_K of K. And using the given calculating formula we obtain a criterion for checking whether or not the relative divisor class number is divisible by the characteristic of k.

Let \mathbb{F}_q be the finite field with q elements and q be a power of an odd prime number. Let $k = \mathbb{F}_q(T)$ be the rational function field of the indeterminate T over \mathbb{F}_q. Denote by $R = \mathbb{F}_q[T]$ the polynomials of T over \mathbb{F}_q, which is a ring called the integer ring of k. Fix an algebraic closure of k and denote it by k^{ac}. Note that k^{ac} has two special \mathbb{F}_q-automorphisms:

$$\tau, \sigma : k^{ac} \rightarrow k^{ac},$$

$$\tau(\alpha) = \alpha T \quad \text{(multiply by } T),$$

$$\sigma(\alpha) = \alpha^q \quad \text{(Frobenius)}$$

© 2009 Elsevier Inc. All rights reserved.
(here $\alpha \in k^{ac}$). Now define the action of any polynomial $f(T) \in R$ on $\alpha \in k^{ac}$ by

$$\alpha^{f(T)} = f(\tau + \sigma)(\alpha).$$

Via this action, k^{ac} becomes an R-module, named Carlitz-module.

For any monic polynomial $M = M(T) \in R$, put

$$\Lambda_M = \{\alpha \in k^{ac}; \alpha^M = 0\},$$

Then Λ_M is a submodule of k^{ac} and there is an R-module isomorphism:

$$\Lambda_M \cong R/(M), \quad \lambda^N \mapsto N \pmod{M},$$

where λ is a generator of the cyclic module Λ_M (i.e., a primitive M-torsion element).

Consider the function field generated by Λ_M (the M-torsion elements of the Carlitz-module k^{ac}) over the rational function field k, that is

$$L = k(\Lambda_M),$$

which is called a cyclotomic function field with conductor M. The Galois group of the cyclotomic function field L/k, denoted by $G = \text{Gal}(L/k)$, is naturally isomorphism to $(R/(M))^\times$:

$$\text{Gal}(L/k) \to (R/(M))^\times, \quad \sigma_N \mapsto N \pmod{M} \left(\text{where } \sigma_N(\lambda) = \lambda^N\right)$$

(for $N \in R$, $(N, M) = 1$, $\lambda \in L$). Thus usually we identify G and $(R/(M))^\times$ and write $G = \text{Gal}(L/k) = (R/(M))^\times$.

The fixed subfield of L by \mathbb{F}_q^\times, denoted by $L^+ = k(\lambda^{q-1})$, is called the maximal real subfield of L. The characters χ of $G = (R/(M))^\times$ are actually the Dirichlet-characters of R modulo M. If $\chi([\mathbb{F}_q^\times]) = 1$, then χ is said to be real; otherwise, χ is non-real. In this paper, we restrict an abelian function field to a subfield of a cyclotomic function field $L = k(\Lambda_M)$ (see Ref. [2]).

In [5], to calculate the relative divisor class numbers $h^{-}(k(\Lambda_P))$ of cyclotomic function fields with irreducible conductors, Rosen gave a formula using determinants. From the formula, he got an upper bound of the relative class number and obtained a criterion for determining whether or not the relative divisor class number is divisible by the characteristic. In [1], Bae and Kang obtained the upper bound via different method and established a determinant formula computing the relative class number of $h^{-}(k(\Lambda_P))$. In [4], Ma and Zhang gave an upper bound and a computing formula for any abelian function field with irreducible conductor. But, like in [1], the calculating formulae are quite complicated because it is needed to get the inverses of the polynomials modulo the conductor. In this paper, we give a simpler calculating formula for the relative divisor class numbers of abelian function fields and study their divisibilities using the calculating formula.

In this paper, we always assume $L = L(\Lambda_P)$, where $M = P \in R$ is an irreducible polynomial of degree $d \geq 1$. Thus the Galois group $G = \text{Gal}(L/k) = (R/(P))^\times$ is a cyclic group with order $q^d - 1$. Let ω be a generator of G.

For any integer $m|(q^d - 1)$, the cyclotomic function field $L = k(\Lambda_P)$ has a unique subfield $K = K_m$ with degree $[K:k] = m$. Obviously its Galois group is

$$G_K = \text{Gal}(K/k) = \left((R/(P))^\times\right)/\left((R/(P))^\times\right)^m.$$
The character group of \(G_K \), denoted by \(\hat{G}_K \) or \(\hat{K} \), consists of those Dirichlet-characters \(\chi \) modulo \(P \) satisfying \(\chi^m = 1 \). A character \(\chi \in \hat{G}_K \) is real if and only if
\[
\chi(\omega) \left(\frac{q^d - 1}{q - 1} \right) = 1.
\]
The function field \(K^+ = K \cap L^+ \) is said to be the maximal real subfield of \(K \). Denote the class numbers of zero-degree-divisors of \(K \) and \(K^+ \) respectively by \(h_m \) and \(h^+_m \). The ratio
\[
h^-_m = \frac{h_m}{h^+_m}
\]
is called the relative divisor class number of \(K \), which is an integer. The following result is well-known for the relative divisor class number (e.g. see [2]):

Lemma 1. Let \(\hat{G}_K^− \) be the non-real characters in \(\hat{G}_K \), then
\[
h^-_m = \prod_{\chi \in \hat{G}_K^−} \sum_{\text{monic } A \in \mathbb{R} \text{ deg } A < d} \chi(A).
\]

Denote \(r = \frac{q^d - 1}{q - 1} \). Furthermore, assume \(r \mid m \) and denote \(c = \frac{m}{r} \). For any polynomial \(A = a_1T^d + \cdots + a_1T + a_0 \), \(a_1 \neq 0 \), denote \(\text{sgn}(A) = a_5 \). And let \(\text{sgn}_P(A) = \text{sgn}(B) \), where polynomial \(B \equiv A \pmod{P} \), \(\text{deg}(B) < d \). Consider the set of polynomials
\[
\{A_1, A_2, \ldots, A_r\} = \{A \mid \text{deg}(A) < d, \text{sgn}(A) = 1\}.
\]

Define the \(r \times r \) matrix \(C \) as:
\[
C = (\text{sgn}_P(A_i A_j)).
\]
Fix a generator \(\psi \) of the character group \(\hat{F}_q^\times \). For \(t = 1, 2, \ldots, c - 1 \), define the matrix
\[
S^{(t)} = \psi^t \left(\frac{q^d - 1}{m} \right) C.
\]
Here, the action of a character on the matrix \(C \) is via acting on every elements of \(C \). We obtain the following formula for calculating the relative divisor class number.

Theorem 1. Suppose that \(K = K_m \) is an abelian function field of degree \(m \). Let \(r \), \(c \) and \(S^{(t)} \) be as in Lemma 1. Assume that \(r \mid m \). Then the relative divisor class number of \(K \) is the product of the determinants \(\det S^{(t)} \), that is
\[
h^-_m = \prod_{t=1}^{c-1} \det S^{(t)}.
\]

From this calculating formula, we can get the following result about the divisibility of the class number:

Theorem 2. Let \(K \) be the abelian function field defined in Theorem 1. Let
\[
C^{(t)} = \left((\text{sgn}_P(A_i A_j)) \frac{q^d - 1}{m} \right)^{t-1}.
\]
Then the relative divisor class number $h_m^- \mid$ is divisible by the characteristic p of K if and only if:

$$\exists t \in \{1, \ldots, c-1\} \text{ such that } \det C(t) = 0 \text{ (in the field } \mathbb{F}_q) .$$

Example 1. Let $q = 5, P = T^2 + 2$ is an irreducible polynomial in $\mathbb{F}_5[T]$. Consider the cyclotomic function field $K = k(\Lambda_P)$ with conductor P. Let $K_m = K_{12}$ be its subfield of degree $m = 12$. Then $r | m, (q^d - 1)/m = 2, c = m/r = 12/6 = 2$. Thus

$$\{A_1 = 1, A_2 = T, A_3 = T + 1, A_4 = T + 2, A_5 = T + 3, A_6 = T + 4\}$$

are all the monic polynomials of degree less than 2. Thus we obtain the matrices

$$(A_i A_j) = \begin{bmatrix}
1 & T & T + 1 & T + 2 & T + 3 & T + 4 \\
T & 3 & T + 3 & 2T + 3 & 3T + 3 & 4T + 3 \\
T + 1 & T + 3 & 2T + 4 & 3T + 1 & 2 \\
T + 2 & 2T + 3 & 3T + 1 & 4T + 2 & 4 \\
T + 3 & 3T + 3 & 4T + 1 & 4 & T + 2 \\
T + 4 & 4T + 3 & 2 & T + 1 & 2T & 3T + 4
\end{bmatrix} ,$$

$$C = \text{sgn}_P (A_i A_j) = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 1 & 2 & 3 & 4 \\
1 & 1 & 2 & 3 & 4 & 2 \\
1 & 2 & 3 & 4 & 4 & 1 \\
1 & 3 & 4 & 4 & 1 & 2 \\
1 & 4 & 2 & 1 & 2 & 3
\end{bmatrix} .$$

Note that 2 is a generator of the cyclic group \mathbb{F}_5^\times. Let $\psi(2) = i$, then ψ is a generator of \mathbb{F}_5^\times, and $\psi(4) = -1, \psi(3) = -i$. So we have $\psi^2(2) = -1, \psi^2(3) = -1, \psi^2(4) = 1$. Thus we obtain the matrix

$$S^{(1)} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 & -1 & -1
\end{bmatrix} .$$

Finally we get the relative divisor class number of K_{12}:

$$h_{12}^- = | \det S^{(1)} | = \begin{vmatrix}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 & -1 & -1
\end{vmatrix} = |160| = 2^5 \cdot 5 .$$

$$\det C^{(1)} = \begin{vmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 4 & 1 & 4 & 4 \\
1 & 1 & 4 & 1 & 4 \\
1 & 4 & 4 & 1 & 1 \\
1 & 4 & 1 & 1 & 4 \\
1 & 1 & 4 & 1 & 4
\end{vmatrix} = 1215 , \text{ thus } 5 | h_{12}^- .$$
Example 2. Let \(q = 7, \ P = T^2 + 1 \) is irreducible. \(d = 2, \ q^d - 1 = 48, \ q - 1 = 6, \ r = 8. \) Consider the cyclotomic function field \(L = k(A_2) \) with conductor \(P. \) Let \(K_m = K_{24} \) be its subfield of degree \(m = 24. \) Then \(r|m, \ \frac{q^d - 1}{m} = 2, \ c = m/r = 24/8 = 3. \) Thus \(A_1 = 1, \ A_2 = T, \ A_3 = T + 1, \ A_4 = T + 2, \ A_5 = T + 3, \ A_6 = T + 4, \ A_7 = T + 5, \ A_8 = T + 6 \) are all the monic polynomials of degree less than 2. Thus we obtain the matrices

\[
(A_iA_j) = \begin{bmatrix}
1 & T & T + 1 & T + 2 & T + 3 & T + 4 & T + 5 & T + 6 \\
T & 6 & T + 6 & 2T + 6 & 3T + 6 & 4T + 6 & 5T + 6 & 6T + 6 \\
T + 1 & T + 6 & 2T & 3T + 1 & 4T + 2 & 5T + 3 & 6T + 4 & 5 \\
T + 2 & 2T + 6 & 3T + 1 & 4T + 3 & 5T + 5 & 6T + 2 & T + 4 \\
T + 3 & 3T + 6 & 4T + 2 & 5T + 5 & 6T + 1 & 4 & T & 2T + 3 \\
T + 4 & 4T + 6 & 5T + 3 & 6T + 4 & T + 1 & 2T + 5 & 3T + 2 \\
T + 5 & 5T + 6 & 6T + 4 & 2 & T & 3T + 5 & 3T + 3 & 4T + 1 \\
T + 6 & 6T + 6 & 5 & T + 4 & 2T + 3 & 3T + 2 & 4T + 1 & 5T \\
\end{bmatrix}
\]

\[
C = \text{sgn}_P (A_iA_j) = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 6 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 & 5 \\
1 & 2 & 3 & 4 & 5 & 6 & 2 & 1 \\
1 & 3 & 4 & 5 & 6 & 4 & 1 & 2 \\
1 & 4 & 5 & 6 & 4 & 1 & 2 & 3 \\
1 & 5 & 6 & 2 & 1 & 2 & 3 & 4 \\
1 & 6 & 5 & 1 & 2 & 3 & 4 & 5 \\
\end{bmatrix}.
\]

Note that 3 is a generator of the cyclic group \(\mathbb{F}_7^*, \) Take \(\psi(3) = a = e^{\frac{2\pi i}{7}}, \) then \(\psi \) is a generator of \(\mathbb{F}_7^* \) and \(\psi(2) = a^2, \ \psi(4) = a^4, \ \psi(5) = a^5, \ \psi(6) = a^3. \) Thus we have

\[
\psi^2(2) = a^4, \quad \psi^2(3) = a^2, \quad \psi^2(4) = a^2, \quad \psi^2(5) = a^4, \quad \psi^2(6) = 1; \\
\psi^4(2) = a^2, \quad \psi^4(3) = a^4, \quad \psi^4(4) = a^4, \quad \psi^4(5) = a^2, \quad \psi^4(6) = 1.
\]

So we obtain the matrices

\[
S^{(1)} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & a^4 & a^2 & a^2 & a^4 & 1 & 1 \\
1 & a^4 & a^2 & a^2 & a^2 & a^4 & 1 & a^4 \\
1 & a^2 & a^2 & a^4 & 1 & a^2 & 1 & a^4 \\
1 & a^2 & a^4 & 1 & a^2 & 1 & a^4 & a^2 \\
1 & a^4 & 1 & a^4 & 1 & a^4 & 1 & a^4 \\
1 & 1 & a^4 & 1 & a^4 & a^2 & a^2 & a^4 \\
\end{bmatrix}, \quad S^{(2)} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & a^2 & a^4 & a^4 & a^2 & 1 & 1 \\
1 & a^2 & a^4 & a^4 & a^2 & 1 & a^2 & 1 \\
1 & a^4 & a^4 & a^4 & a^2 & 1 & a^2 & 1 \\
1 & a^4 & a^2 & 1 & a^2 & 1 & a^4 & a^4 \\
1 & a^4 & a^2 & 1 & a^2 & 1 & a^4 & a^4 \\
1 & a^4 & a^2 & 1 & a^2 & 1 & a^4 & a^4 \\
1 & a^4 & a^2 & 1 & a^2 & 1 & a^4 & a^4 \\
\end{bmatrix}.
\]

The relative divisor class number is then obtained.

\[
h_{24} = |\det S^{(1)} \det S^{(2)}| = \left| (-1728 + 1728e^{-\frac{2\pi i}{7}})(-1728 + 1728e^{\frac{2\pi i}{7}}) \right| = 8957952 = 2^{12}3^7.
\]
\[
C^{(1)} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 4 & 2 & 2 & 4 & 1 \\
1 & 1 & 4 & 2 & 2 & 4 & 1 \\
1 & 4 & 2 & 2 & 4 & 1 & 4 \\
1 & 2 & 2 & 4 & 1 & 2 & 1 \\
1 & 2 & 4 & 1 & 2 & 1 & 4 \\
1 & 4 & 1 & 4 & 1 & 4 & 2 \\
1 & 1 & 4 & 1 & 4 & 2 & 2
\end{bmatrix}, \quad
C^{(2)} = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 2 & 4 & 4 & 2 & 1 \\
1 & 1 & 2 & 4 & 4 & 2 & 1 \\
1 & 2 & 4 & 4 & 2 & 1 & 2 \\
1 & 4 & 4 & 2 & 1 & 4 & 1 \\
1 & 4 & 2 & 1 & 4 & 1 & 2 \\
1 & 2 & 1 & 2 & 1 & 2 & 4 \\
1 & 1 & 2 & 1 & 2 & 4 & 2
\end{bmatrix},
\]

\[\det C^{(1)} = -906, \quad \det C^{(2)} = -2542, \quad 7 \nmid 906, \quad 7 \nmid 2542, \quad \text{thus } 7 \nmid h^{-24}.\]

Proof of Theorem 1. Let \(\chi_0 \) be a generator of the cyclic group \(\hat{G} \), \(\lambda = \chi_0^{\frac{d-1}{m}} \). Then \(\hat{G}_K = \{ \lambda^0, \lambda^1, \ldots, \lambda^{m-1} \} \). \(\lambda^1 \) is a real character if and only if \((q - 1)^{\frac{d-1}{m}}t\), i.e., \((q - 1)^{\frac{d-1}{m}}rt\). It means that \(m \mid rt \), i.e., \(c \mid t \).

Assume, without loss of generality, \(\chi_0 \mid \mathbb{F}_q = \psi \). Then \(\lambda \mid \mathbb{F}_q = \psi^{\frac{d-1}{m}t} \). From Lemma 1 we know that

\[h_m^{-} = \prod_{t=1}^{c-1} h(t), \]

where

\[h(t) = \prod_{i=0}^{r-1} \sum_{A \in \mathbb{R} \text{monic} \deg A < d} \lambda^{ic+t} (A). \]

It is easy to see that for every \(i, \lambda^{ic+t} \mid \mathbb{F}_q = \lambda^t \mid \mathbb{F}_q = \psi^{\frac{d-1}{m}t} \). And, in addition, \(\lambda^{ic+t} \) \((0 \leq i \leq r - 1) \) are all the characters in \(\hat{G}_K^- \) whose restrictions on \(\mathbb{F}_q \) are \(\psi^{\frac{d-1}{m}t} \). Then we can calculate \(h(t) \). Denote \(\tilde{\psi}(A) = \psi((\text{sgn}_p(A))^{-1}) \).

\[h(t) = \prod_{i=0}^{r-1} \sum_{A \in \mathbb{R} \text{monic} \deg A < d} \lambda^{ic} (A) \lambda^t (A) = \prod_{i=0}^{r-1} \sum_{A \in \mathbb{R} \text{monic} \deg A < d} \lambda^{ic} (A) \lambda^t (A) \tilde{\psi}^{\frac{d-1}{m}t} (A). \]

The function \(\lambda^t (A) \tilde{\psi}^{\frac{d-1}{m}t} (A) \) is unchanged if we replace \(A \) with a multiple \(\alpha A \) \((\alpha \in \mathbb{F}_q^*) \) or with a polynomial \(A + BP \) congruent to \(A \). In addition, \(\lambda^{ic} \) \((i = 0, \ldots, r - 1) \) are exactly all the characters of the group \(\hat{G} = (\mathbb{R} / (P))^x / \mathbb{F}_q^x \). Thus we have

\[h(t) = \prod_{\chi \in \hat{G}} \sum_{A \in \hat{G}} \chi(A) (\lambda^t (A) \tilde{\psi}^{\frac{d-1}{m}t} (A)). \]

Applying the Dedekind determinant formula (see [3]) we obtain

\[h^{(t)} = \det(\lambda^t (B^{-1} A) \tilde{\psi}^{\frac{d-1}{m}t} (B^{-1} A)). \]
where \(A, B \) vary over the elements of the group \(\tilde{G} = (R/(P))^{\times} / \mathbb{F}_{q}^{\times} \). Replacing \(B^{-1} \) by \(B \) merely permutes the rows of the matrix, and so

\[
h(t) = \pm \det(\lambda^t(BA)\psi \frac{q^d-1}{m} t(AB)) = \pm \det(\lambda^t(B)\lambda^t(A) \psi \frac{q^d-1}{m} t(AB)).
\]

By the properties of determinants, it follows that

\[
h(t) = \pm \lambda^t \left(\prod_{A \in \tilde{G}} A \right)^2 \det(\psi \frac{q^d-1}{m} t(AB)) = \pm \det(\psi \frac{q^d-1}{m} t(AB)).
\]

It is known that if \(\psi \) is a generator of \(\hat{F}^{\times} \) then so is \(\psi^{-1} \). \(A, B \) run through \(\tilde{G} = (R/(P))^{\times} / \mathbb{F}_{q}^{\times} \) is the same as they vary over all the monic polynomials of degree less than \(d \). Thus Theorem 1 has been proved. \(\square \)

Proof of Theorem 2. Consider the elements of \(C^{(t)} \) in \(\mathbb{F}_q \). Let \(\zeta \) be a primitive \((q^d-1) \)-th root of unity. Denote \(E = \mathbb{Q}(\zeta) \). Let \(\mathcal{O} \) be the ring of integers of \(E \). \(E \) is unramified at all primes above \(p \) because \(p \nmid q^d-1 \). Denote a prime above \(p \) as \(\wp \). Since the minimal \(f \) such that \(p^f \equiv 1 \pmod{q^d-1} \) satisfies \(p^f = q^d \), the residue class field \(\mathcal{O}/\wp \) consists of \(q^d \) elements. So \(\mathcal{O}/\wp \) is isomorphic to the field \(R/(P) \). Let \(\rho : \mathcal{O}/\wp \to R/(P) \) be an isomorphism and \(\gamma : \mathcal{O} \to \mathcal{O}/\wp \) be the reduction modulo \(\wp \) on \(\mathcal{O} \). Acting the homomorphism \(\rho \circ \gamma \) to both sides of the formula obtained in Theorem 1 we find

\[
p | h_m \iff \exists t \in \{1, \ldots, c-1 \} \text{ such that } \rho \circ \gamma (\det S^{(t)}) = 0.
\]

For a primitive character \(\psi \) of \(\mathbb{F}_q^{\times} \), the homomorphism \(\rho \circ \gamma \circ \psi \) is a mapping of \(\mathbb{F}_q^{\times} \) to itself. And, we can choose a suitable \(\rho \) to make \(\rho \circ \gamma \circ \psi \) an identity map. Acting the homomorphism \(\rho \circ \gamma \) on \(S^{(t)} \) we obtain

\[
\rho \circ \gamma (\det S^{(t)}) = \rho \circ \gamma (\pm \det \psi^{t(q^d-1)/m} \text{sgn}_P(A_iA_j))
\]

\[
= \pm \det(\rho \circ \gamma \circ \psi^{t(q^d-1)/m} \text{sgn}_P(A_iA_j)) = \pm \det(\text{sgn}_P(A_iA_j)^{t(q^d-1)/m}).
\]

The proof of Theorem 2 is completed. \(\square \)

References