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1. INTRODUCTION

In this paper, we shall employ the method of upper and lower solutions
to study the existence of solutions of a boundary value problem (BVP) for
a fourth order ordinary differential equation (ODE) with some quite
general nonlinear boundary conditions. In order to emphasize the general
nature of the boundary conditions, we shall follow the lead of Thompson
[28, 29] and refer to the problem we consider as a fully nonlinear BVP.



The method of upper and lower solutions is extensively developed for
lower order equations; see Ako [2, 3, 4], Gaines [14], Jackson [18, 19],
Mawhin [23], and Nagumo [25]. More recently, Thompson [28, 29] has
continued the development of these methods with applications to fully
nonlinear BVPs. Recently, Henderson and Thompson [17] have initiated
the application of these methods to discrete problems that have been
obtained by discretizing continuous problems. They go on to show that the
solutions of the discrete problems provide accurate estimates of the
solutions of the continuous problems.
Although the methods have been particularly fruitful for low order
ordinary differential equations, Kelly [21] and Klaasen [22] did obtain
early applications to higher order ODEs. Recently, Ehme et al. [9]
employed truncations analogous to those of Kelly [21] or Klaasen [22]
and extended the application of the method of upper and lower solutions
to 2mth order ODEs where there is no dependence on odd order deriva-
tives. This paper then provides a generalization of the results obtained by
Ehme et al., [9]. The results are valid for a 2mth order problem. For the
sake of exposition, we shall develop the results for a fourth order problem
and then indicate the extension of the results and methods to a 2mth order
problem.
We point out that the method of upper and lower solutions, coupled
with monotone methods, has been very useful in the study of BVPs for
higher order functional equations. We refer the reader to [8, Chap. III] for
an elegant exposition of the method and [27] and [10] for applications to
nth order problems. There have been numerous applications of the mono-
tone method to a problem similar to the fourth order problem we consider;
the recent work by Ma et al. [13] provides an excellent account of the
method with a good set of references; in a closely related work, Bai [5]
first applies a new form of a maximum principle and then relaxes some
monotonicity hypotheses. Eloe and Islam [12] have applied the monotone
method to a very closely related impulse problem and Pao [26] has
recently applied the monotone method to a related BVP for a fourth order
elliptic partial differential equation. In each of these works [5, 12, 13, 26],
there is no dependence on odd order derivatives.
The methods we use in this paper differ from monotone methods in two
fundamental ways. First, we do not seek iterative improvement. Second,
the Schauder fixed point theorem is typically employed to obtain the exis-
tence of solutions when monotone methods are employed. In the methods
we employ, the Schauder fixed point theorem is applied to truncated
problems, but the Kamke existence of solutions of the initial value
problems theorem is then employed to obtain that a limit point of the
solutions of the family of truncated problems is a solution of the original
problem.
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The paper is organized as follows. In Section 2 we define precisely the
fourth order problem we consider. The concept of a strong upper solu-
tion–lower solution pair is defined. And for the sake of completeness, we
state a version of the Kamke existence of solutions of initial value problems
theorem. In Section 3, we state and prove the main theorem for the fourth
order problem. In Section 4, we define a general 2mth order problem and
indicate how the results in Section 3 carry over.

2. PRELIMINARIES

In this section, we shall first define the general BVP we consider. We
shall then impose Lidstone boundary conditions [1] on the BVP. Once the
imposed boundary conditions are in place, we shall define a strong upper
solution–lower solution pair for a Lidstone BVP. Finally, so that this work
is self-contained, we shall state a version of the Kamke convergence
theorem for solutions of initial value problems (IVPs) for ODEs.
Let f: [0, 1]×R4Q R be continuous, and let kj: R6Q R, lj: R6Q R,
j=1, 2, be continuous. We consider the fully nonlinear BVP

x (iv)(t)=f(t, x(t), xŒ(t), xœ(t), xŒŒŒ(t)), 0 < t < 1, (1)

k1(x̄)=0, l1(x̄)=0

k2(x̄)=0, l2(x̄)=0,
(2)

where x̄=(x(0), x(1), xŒ(0), xŒ(1), xœ(0), xœ(1)).
We remark that far more general boundary conditions can be con-
sidered. For example, one might consider multipoint boundary conditions
analogous to those considered by Gupta et al. ([15], for example) and let

x̄=(x(0), x(1/2), x(1), xŒ(0), xŒ(1/2), xŒ(1), xœ(0), xœ(1/2), xœ(1)).

We consider the specific conditions (2) for the sake of exposition.
In order to analyze the BVP (1), (2), we shall construct an equivalent set
of boundary conditions. In particular, we shall force Lidstone boundary
conditions (see [1]). So, consider the equivalent set of boundary conditions

x(0)=h1(x̄)=k1(x̄)+x(0), x(1)=i1(x̄)=l1(x̄)+x(1),

xœ(0)=h2(x̄)=k2(x̄)+xœ(0), xœ(1)=i2(x̄)=l2(x̄)+xœ(1).
(3)

Clearly, the BVPs (1), (2) and (1), (3) are equivalent; we shall address the
BVP (1), (3).
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Definition 2.1. Let a, b ¥ C4[0, 1]. Set

A=max{||aŒ||, ||bŒ||}, B=max{|b(0)−a(1)|, |b(1)−a(0)|},

where || · || denotes the supremum norm on C[0, 1]. Set C=2A+B and set

ā=(a(0), a(1), −C, −C, aœ(0), aœ(1)),

b̄=(b(0), b(1), C, C, bœ(0), bœ(1)).

Then a, b are said to be a strong upper solution–lower solution pair for the
BVP (1), (3) if

(−1) j a (2j)(t) [ (−1) j b (2j)(t), 0 [ t [ 1, j=0, 1, (4)

a (iv)(t) [ f(t, a(t), −C, aœ(t), aŒŒŒ(t)),

b (iv)(t) \ f(t, b(t), C, bœ(t), bŒŒŒ(t)), 0 < t < 1,
(5)

a(0) [ h1(ā), a(1) [ i1(ā),

b(0) \ h1(b̄), b(1) \ i1(b̄),

aœ(0) \ h2(ā), aœ(1) \ i2(ā),

bœ(0) [ h2(b̄), bœ(1) [ i2(b̄).

(6)

We close this section with a version of the Kamke convergence theorem
for solutions of IVPs for ODEs. We state the theorem for a general nth
order equation. We refer the reader to [18] for the particular version we
state, and we refer the reader to [16, p. 14] for a general discussion.

Theorem 2.1. Assume for k=0, 1, ..., the functions gk are continuous on
I×Rn where I is an interval of the real line. Assume

lim
kQ.
gk(t, x, xŒ, ..., x (n−1))=g(t, x, xŒ, ..., x (n−1))

uniformly on each compact subset of I×Rn. Assume that {tk} … I and
limkQ. tk=t0 and that for each k, xk is a solution of

x (n)=gk(t, x, xŒ, ..., x (n−1)),

which is defined on a maximal interval, Ik … I with tk ¥ Ik. Further, assume
that

lim
kQ.
x (j−1)k (tk)=aj, j=1, ..., n,
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for aj ¥ R, j=1, ..., n. Then there is a subsequence, {xkj}, of {xk}, and there
is a solution, x, of

x (n)=g(t, x, xŒ, ..., x (n−1)),

defined on a maximal interval I0 … I such that t0 ¥ I0, x (j−1)(t0)=aj,
j=1, ..., n, and such that for any compact interval contained in I0 it follows
that the compact interval is contained in Ikj for sufficiently large j and

lim x (i−1)kj =x
(i−1)

uniformly on that compact interval, for each i=1, ..., n.

3. EXISTENCE OF SOLUTIONS

We first introduce a fixed point operator upon which we apply the
Schauder fixed point theorem. Since we forced Lidstone boundary condi-
tions in (3), we consider a fixed point operator associated with a Lidstone
BVP. In particular, let

G(t, s)=3 t(s−1), 0 [ t < s [ 1,
s(t−1), 0 [ s < t [ 1.

(7)

Further, define

H(t, s)=F
1

0
G(t, r) G(r, s) dr,

where G is given by (7). Define

K1x(t)=i1(x̄) t+h1(x̄)(1−t)+F
1

0
G(t, s)(i2(x̄) s+h2(x̄)(1−s)) ds,

and define

K2x(t)=F
1

0
H(t, s) f(s, x(s), xŒ(s), xœ(s), xŒŒŒ(s)) ds.

Lemma 3.1. x is a solution of the BVP (1), (3) if, and only if,
x ¥ C3[0, 1] and

x(t)=K1x(t)+K2x(t), 0 [ t [ 1.

FULLY NONLINEAR BOUNDARY VALUE PROBLEMS 55



We refer the reader to [11] for a proof of this lemma for 2mth order
Lidstone problems; for 2m=4, the proof employs a straightforward
calculation.
We now proceed as motivated by Kelly [21] or Klaasen [22] and define
truncations with respect to a strong upper solution–lower solution pair,
a, b. For x ¥ C3[0, 1], define

T0x(t)=max{a(t),min{x(t), b(t)}}.

Note a(t) [ T0x(t) [ b(t), 0 [ t [ 1. Define

T1xŒ(t)=max{−C, min{xŒ(t), C}}.

Note |T1xŒ(t)| [ C, 0 [ t [ 1. Define

T2xœ(t)=max{bœ(t),min{xœ(t), aœ(t)}}.

Note bœ(t) [ T2xœ(t) [ aœ(t), 0 [ t [ 1. Now define a truncation, F, by

F(t, x, xŒ, xœ, xŒŒŒ)=f(t, T0x, T1(xŒ), T2(xœ), xŒŒŒ)

+(xœ−T2(xœ(t)))/(1+|xœ−T2(xœ(t))|)

and truncations Hj, Ij, j=1, 2, by

H1(x̄)=h1(T̄x), I1(x̄)=i1(T̄x),

H2(x̄)=h2(T̄x), I2(x̄)=i2(T̄x),

where T̄x=(T0x(0), T0x(1), T1xŒ(0), T1xŒ(1), T2xœ(0), T2xœ(1)). Define further
truncations, Fn, by

Fn(t, x, xŒ, xœ, xŒŒŒ)=˛
F(t, x, xŒ, xœ, N+n), if xŒŒŒ >N+n,
F(t, x, xŒ, xœ, xŒŒŒ), if |xŒŒŒ| [N+n,
F(t, x, xŒ, xœ, −(N+n)), if xŒŒŒ < −(N+n),

(8)

where N=max{||aŒŒŒ||, ||bŒŒŒ||}.
Now consider the sequence of truncated BVPs,

x (iv)(t)=Fn(t, x(t), xŒ(t), xœ(t), xŒŒŒ(t)), 0 < t < 1, (9)

x(0)=H1(x̄), x(1)=I1(x̄),

xœ(0)=H2(x̄), xœ(1)=I2(x̄).
(10)

Theorem 3.1. Assume that each solution of (1) either extends to [0, 1]
or one of the solution, derivative, or second derivative of that solution

56 EHME, ELOE, AND HENDERSON



becomes unbounded on its maximal interval of existence. In addition to
assuming the f, hj, ij, j=1, 2 are continuous, assume that f(t, x1, x2, x3, x4)
is increasing in each of x1 and x2. Moreover, assume that (−1) j−1

hj(x1, ..., x6) is increasing in each xl, l=1, ..., 4 and is decreasing in each of
x5 and x6, j=1, 2. Assume (−1) j−1 ij satisfies the same monotonicity condi-
tions as the corresponding (−1) j−1 hj. Assume there exists a strong upper
solution–lower solution pair, a, b, for the BVP (1), (3). Then, there exists a
solution, x, of the BVP, (1), (3) such that

bœ(t) [ xœ(t) [ aœ(t), 0 [ t [ 1, (11)

|xŒ(t)| [ C, 0 [ t [ 1, (12)

a(t) [ x(t) [ b(t), 0 [ t [ 1. (13)

Proof. For each n consider the truncated BVP (9), (10). Since each
Fn, H1, H2, I1, I2 is bounded and continuous, it follows from Lemma 3.1
and the Schauder fixed point theorem that there exists a solution, xn, of the
BVP (9), (10) for each n=1, 2, ... . We first show that each xn satisfies (11),
(12), and (13).
We begin with (11). First, note that

x'n (0)=H2(x̄n)=h2(T̄xn) [ h2(ā) [ aœ(0).

The first inequality follows from the monotonicity assumptions on h2 and
the second inequality follows from the definition of a strong lower solution.
The inequality x'n (1) [ aœ(1) follows similarly. Assume for the sake of
contradiction that x'n (t) [ aœ(t), 0 < t < 1, is not true. Suppose x

'

n −aœ
attainsapositivemaximumat t0 ¥ (0, 1).Then(x

(iv)
n −a

(iv))(t0) [ 0,T2x
'

n (t0)=
aœ(t0), and x

−−−

n (t0)=aŒŒŒ(t0). However,

(x (iv)n −a
(iv))(t0) \ f(t0, T0xn(t0), T1x

−

n(t0), T2x
'

n (t0), aŒŒŒ(t0))

−f(t0, a(t0), −C, aœ(t0), aŒŒŒ(t0))

+(x'n (t0)−T2x
'

n (t0))/(1+|x
'

n (t0)−T2x
'

n (t0)|)

\ (x'n (t0)−T2x
'

n (t0))/(1+|x
'

n (t0)−T2x
'

n (t0)|) > 0.

The first inequality follows from the definition of a strong lower solution.
The second inequality follows from the monotonicity assumptions on f.
This contradiction completes the argument that

x'n (t) [ aœ(t), 0 [ t [ 1.

The argument that

x'n (t) \ bœ(t), 0 [ t [ 1,

is similar and the argument that xn satisfies (11) is complete.
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We now obtain (13) for each xn. Note that

xn(0)=H1(x̄n)=h1(T̄x) \ h1(ā) \ a(0).

Similarly, xn(1) \ a(1). We now employ a Green’s function representation
to argue that xn(t) \ a(t), 0 [ t [ 1. Let G(t, s) be given by (7). Then

xn(t)−a(t)=(xn(1)−a(1)) t+(xn(0)−a(0))(1−t)

+F
1

0
G(t, s)(x'n (s)−aœ(s)) ds.

Since, G(t, s) < 0 on (0, 1)×(0, 1) and we have already argued that
x'n (t) [ aœ(t), 0 [ t [ 1, it readily follows that xn(t) \ a(t), 0 [ t [ 1. The
argument that xn(t) [ b(t), 0 [ t [ 1, is analogous and the argument that
xn satisfies (13) is complete.
Next, we obtain (12) for each xn. By the mean value theorem, there exists
tn ¥ (0, 1) such that

|x −n(tn)|=|xn(1)−xn(0)| [max{|b(0)−a(1)|, |b(1)−a(0)|}=B.

Employ (11) to obtain (for the sake of exposition, assume t > tn)

F
t

tn
bœ(s) ds [ x −n(t)−x

−

n(tn) [ F
t

tn
aœ(s) ds.

A similar inequality follows for t < tn and so xn satisfies (12).
To complete the proof we will apply Kamke’s theorem. Again by the
mean value theorem, there exists tn ¥ (0, 1) such that

|x −−−n (tn)|=|x
'

n (1)−x
'

n (0)| [max{|bœ(0)−aœ(1)|, |bœ(1)−aœ(0)|}.

Thus, each of the sequences,

{x (j)n (tn)}, j=0, 1, 2, 3,

is bounded. Choose a subsequence of {tn} which we relabel as {tn} such
that

lim tn=t0, lim x (j)n (tn)=x
(j)
0 , j=0, 1, 2, 3.

Apply Kamke’s theorem and there exists a solution x of

x (iv)=F(t, x, xŒ, xœ, xŒŒŒ)

on a maximal subinterval J … [0, 1] and a subsequence of {xn} that
converges to x in C3(D) for any compact subinterval D of J. Thus, x

58 EHME, ELOE, AND HENDERSON



satisfies (11), (12), (13) on J. Since, x extends to all of [0, 1] or one of
x, xŒ, or xœ become unbounded, J=[0, 1] and the proof of the theorem is
complete. L

Remark 3.1. We will say that f(t, x1, x2, x3, x4) satisfies a Nagumo
condition on [0, 1]×R4 if f is continuous and given any M> 0 there is a
positive continuous function hM(s) on [0,.) such that

|f(t, x1, x2, x3, x4)| [ hM(|x4 |)

for all (t, x1, x2, x3, x4) ¥ [0, 1]×[−M, M]2×R and such that

F
.

0
(s/hM(s)) ds=..

Theorem 3.2. If f satisfies a Nagumo condition on [0, 1]×R4, then (1)
has the property that each solution either extends to all of [0, 1] or one of the
solution, derivative, or second derivative of that solution becomes unbounded
on its maximal interval of existence.

We refer the reader to [16, p. 428] for the technical details. Intuitively, if
x (4)=f then

|x (4)/hM(|xŒŒŒ|) [ 1.

One integrates with the appropriate change of variable, applies the
Nagumo condition, notes that [0, 1] is bounded, and obtains that |xŒŒŒ| is
bounded.

Remark 3.2. Jackson [20] obtains a more general Nagumo type con-
dition for nth order ordinary differential equations. In Jackson’s setting, all
solutions extend or the solution becomes unbounded. Jackson’s condition
places a more strict growth condition on f as a function of xŒŒŒ. As we have
already established that solutions we seek satisfy (11), (12), and (13), the
Nagumo condition given in Remark 3.1 is sufficient.

Remark 3.3. In the proof of Theorem 3.1, (11) implies (13) by the sign
property of G(t, s). Hence, the monotonicity of f with respect to x is
determined. The monotonicity of f with respect to xŒ is less determined. In
Theorem 3.1, we assume that f, (−1) j−1 hj, and (−1) j−1 ij are all increasing
in xŒ. Assume instead, for example, that f, (−1) j−1 hj, and (−1) j−1 ij are all
decreasing in xŒ. Modify the definition of a strong upper solution–lower
solution pair for the BVP (1), (3) as follows. Set

ā=(a(0), a(1), C, C, aœ(0), aœ(1)),

b̄=(b(0), b(1), −C, −C, bœ(0), bœ(1)).
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Then a, b are said to be a strong upper solution–lower solution pair for the
BVP (1), (3) if (4) and (6) hold and

a (iv)(t) [ f(t, a(t), C, aœ(t), aŒŒŒ(t)),

b (iv)(t) \ f(t, b(t), −C, bœ(t), bŒŒŒ(t)), 0 < t < 1.

An analogue of Theorem 3.1 can be stated and proved in this context.

Example 3.1. We now exhibit an example to show that a strong upper
solution–lower solution pair can exist naturally. We consider linear,
homogeneous, Lidstone boundary conditions and point out that even in
this context, the results in this paper are new.
Consider a problem of the form

x (iv)(t)=c1(t)(16x(t)/5)3+c2(t) xŒ(t)3+c3(t)(xœ(t)/3)k

+c4(t)(xŒŒŒ(t)/12)2+c5(t), 0 < t < 1, (14)

x (2j)(0)=x (2j)(1)=0, j=0, 1. (15)

If cj ¥ C[0, 1], j=1, ..., 5, c1, c2 > 0, k > 0, and ||c1 ||+||c2 ||+||c3 ||+||c4 ||+
||c5 || [ 24, then there exists a solution x of the BVP (14), (15) satisfying

|x(t)| [ t4−2t3+t, 0 [ t [ 1,

|xŒ(t)| [ 1, 0 [ t [ 1,

|xœ(t)| [ 12t−12t2, 0 [ t [ 1.

To see this, it is not difficult to show that if

b(t)=t4−2t3+t, 0 [ t [ 1,

then −b, b form a strong upper solution–lower solution pair for the BVP
(14), (15). To verify the details, note that

||b||=5/16, ||bŒ||=1, ||bœ||=3, ||bŒŒŒ||=12.

Example 3.2. If

b(t)=t4−2t3+t, 0 [ t [ 1,

then −b, b also form a strong upper solution–lower solution pair for the
BVP

x (iv)(t)=(k1(t)(16x(t)/5)c1+k2(t)(xŒ(t))c2+k3(t))(|xœ(t)|/3)c3 (xŒŒŒ(t)/12)2,

0 < t < 1,
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along with the boundary conditions (15) if k1, k2, k3 ¥ C[0, 1], k1(t),
k2(t) \ 0, 0 [ t [ 1, ||k1 ||+||k2 ||+||k3 || [ 24, c3 \ 0 cj=0 or cj is an odd
integer, j=1, 2.

Example 3.3. The solution of the BVP

x (iv)(t)=−Pxœ(t)+p(x, t), 0 [ t [ 1,

with boundary conditions (15) represents the deflection of a hinged beam
column. P represents the axial loading and p represents the nonconserva-
tive force. We refer the reader to monographs [6, 7, 24] for discussions. If
P > 0 then the axial load is said to be applying compression. The methods
developed in [13] apply here since the right-hand side is monotone
decreasing as a function of xœ (and assuming p satisfies appropriate prop-
erties). If P < 0, then the axial force is said to be applying tension. Now the
methods developed in [13] do not apply. In terms of Example 3.1, −b, b
form a strong upper solution–lower solution pair if p(x, t)=c1x3+sin pt,
c1 > 0, and c1+|P| [ 23.
Moreover, nonlinear terms can be introduced in P in the following way.
The differential equation governing deflection has the more general form

x (iv)(t)=−(PxŒ)Œ (t)+p(x, t), 0 [ t [ 1.

In the case of small deflections or for simplicity, P is considered constant.
In the case of large deflections, P can depend on x. See [6] for further
discussion.

4. THE 2mTH ORDER PROBLEM

In this section, we shall define a general 2mth order problem and define
the appropriate strong upper solution–lower solution pair. We will then
state an analogous theorem to Theorem 3.1. We do not exhibit the proof as
one only adds inductive features to the proof of Theorem 3.1. The induc-
tive features are developed in [9] and [11].
Let m \ 1 denote an integer. Let f: [0, 1]×R2mQ R be continuous,
and let kj : R4m−2Q R, lj : R4m−2Q R, j=1, 2, ..., 2m−2, be continuous.
Consider the fully nonlinear BVP

x (2m)(t)=f(t, x(t), xŒ(t), ..., x (2m−1)), 0 < t < 1, (16)

kj(x̄)=0, lj(x̄)=0, (17)

j=1, ..., m, where x̄=(x(0), x(1), xŒ(0), xŒ(1), ..., x (2m−2)(0), x (2m−2)(1)).
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Force Lidstone boundary conditions and consider the equivalent set of
boundary conditions

x (2(j−1))(0)=hj(x̄)=kj(x̄)+x(2(j−1))(0),

x (2(j−1))(1)=ij(x̄)=lj(x̄)+x(2(j−1))(1),
(18)

j=1, ..., m.

Definition 4.1. Let a, b ¥ C2m[0, 1]. Set

Aj=max{||a (2j−1)||, ||b (2j−1)||},

Bj=max{|b (2j−2)(0)−a (2j−2)(1)|, |b (2j−2)(1)−a (2j−2)(0)|},

and set Cj=2Aj+Bj, j=1, ..., m−1. Set

ā=(a(0), a(1), −C1, −C1, ..., a (2(j−1)(0), a (2(j−1)(1),

(−1) j Cj, (−1) j Cj, ..., a (2(m−1))(0), a (2(m−1))(1)),

and

b̄=(b(0), b(1), C1, C1, ..., b (2(j−1))(0), b (2(j−1))(1), (−1) j−1 Cj,

(−1) j−1 Cj, ..., b (2(m−1))(0), b (2(m−1))(1)).

Then a, b are said to be a strong upper solution–lower solution pair for the
BVP, (16), (18) if

(−1) j a (2j)(t) [ (−1) j b (2j)(t), 0 [ t [ 1, j=0, 1, ..., m−1,

(−1)m a (2m)(t) [ (−1)m f(t, a(t), −C, aœ(t), C, ..., (−1)m−1 C,

a (2(m−1))(t), a (2m−1)(t)),

(−1)m b (2m)(t) \ (−1)m f(t, b(t), C, bœ(t), −C, ..., (−1)m C,

b (2(m−1))(t), b (2m−1)(t)),

and

(−1) j a (2j)(0) [ (−1) j hj+1(ā),

(−1) j a (2j)(1) [ (−1) j ij+1(ā), j=0, ..., (m−1),

(−1) j b (2j)(0) \ (−1) j hj+1(b̄),

(−1) j b (2j)(1) \ (−1) j ij+1(b̄), j=0, ..., (m−1).

Definitions in the literature of lower solutions and upper solutions are
not uniform with respect to determining which function is actually the
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larger of the two. We have provided a definition such that b(t) \ a(t),
0 < t < 1.

Theorem 4.1. Assume that each solution of (16) either extends to [0, 1]
or that one of the jth derivatives of the solution, j=0, ..., 2(m−1), becomes
unbounded on its maximal interval of existence. In addition to assuming the
f, hj, ij, j=0, ..., m−1 are continuous, assume

(−1)m+k−1 f(t, x11, x12, x21, x22, ..., xm1, xm2)

is increasing in each xkl, k=1, ..., m−1, l=1, 2. Moreover, assume that

(−1)k+j hj(x11, ..., x14, x21, ..., x24, ..., xm−1, 1, ...xm−1, 4, xm1, xm2)

is increasing in xkl, k=1, ..., m−1, l=1, ..., 4, or k=m, l=1, 2. Assume ij
satisfies the same monotonicity conditions as the corresponding hj. Assume
there exists a strong upper solution–lower solution pair, a, b, for the BVP,
(16), (18). Then, there exists a solution, x, of the BVP (16), (18) such that

(−1) j a (2j)(t) [ (−1) j x (2j)(t) [ (−1) j b (2j)(t), 0 [ t [ 1,

j=0, 1, ..., m−1, (19)

and

|x (2j−1)(t)| [ Cj, 0 [ t [ 1, j=1, ..., m−1. (20)

Since each solution satisfies (19) and (20), a Nagumo condition that
applies to Theorem 4.1 and that is analogous to that given in Remark 3.1 is
readily obtained.
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