
Theoretical Computer Science 410 (2009) 1054–1060

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Linear-size log-depth negation-limited inverter for k-tonic
binary sequences
Hiroki Morizumi a, Jun Tarui b,∗
a Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
b Department of Information and Communication Engineering, University of Electro-Communications, Chofu, Tokyo 182-8585, Japan

a r t i c l e i n f o

Keywords:
Circuit complexity
Negation-limited circuit
Inverter
k-tonic

a b s t r a c t

In negation-limited complexity, one considers circuits with a limited number of NOT gates,
being motivated by the gap in our understanding of monotone versus general circuit
complexity. In this context, the study of inverters, i.e., circuits with inputs x1, . . . , xn and
outputs¬x1, . . . ,¬xn, is fundamental since an inverter with r NOTs can be used to convert
a general circuit to one with only r NOTs. Beals, Nishino, and Tanaka [R. Beals, T. Nishino,
K. Tanaka, On the complexity of negation-limited Boolean networks, SIAM Journal on
Computing 27 (5) (1998) 1334–1347. A preliminary version appears in: Proceedings of
STOC95: The 27th Annual ACM Symposium on Theory of Computing, 1995, pp. 585–595]
gave a construction of an n-inverter with size O(n log n), depth O(log n), and dlog2(n+ 1)e
NOTs. A zero–one sequence x1, . . . , xn is k-tonic if the number of i’s such that xi 6= xi+1 is
at most k. The notion generalizes well-known bitonic sequences. We give a construction
of circuits inverting k-tonic sequences with size O((log k) n) and depth O(log k log log n+
log n) using log2 n+log2 log2 log2 n+O(1)NOTs. In particular, for the casewhere k = O(1),
our k-tonic inverter achieves asymptotically optimal linear size and logarithmic depth.
Our construction improves all the parameters of the k-tonic inverter by Sato, Amano, and
Maruoka [T. Sato, K. Amano, A. Maruoka, On the negation-limited circuit complexity of
sorting and inverting k-tonic sequences, in: Proceedings of COCOON06: The 12th Annual
International Computing and Combinatorics Conference, in: Lecture Notes in Computer
Science, vol. 4112, 2006, pp. 104–115]. We also give a construction of k-tonic sorters
achieving linear size and logarithmic depth with log2 log2 n+ log2 log2 log2 n+ O(1) NOT
gates for the case where k = O(1). The following question by Turán remains open: Is the
size of any depth-O(log n) inverter with O(log n) NOT gates superlinear?

© 2008 Elsevier B.V. All rights reserved.

1. Introduction and summary

Although exponential lower bounds are known for the monotone circuit size [12,8,5], at present we cannot prove a
superlinear lower bound for the size of circuits computing an explicit Boolean function. It is natural to ask: What happens if
we allow a limited number of NOT gates? The hope is that by the study of negation-limited complexity of Boolean functions
under various scenarios [6,7,4,3,2,13,9], we obtain a better understanding about the power of NOT gates. Asmentioned in the
abstract, the study of inverters is fundamental in this context since an inverter with r NOTs can be used to convert a general
circuit to one with only r NOTs. In particular, if linear-size log-depth inverter with r NOTs exists, we do not lose generality
by only considering circuits with at most r NOTs when we seek superlinear-size lower bounds or superlogarithmic-depth

∗ Corresponding author.
E-mail addresses:morizumi@kuis.kyoto-u.ac.jp (H. Morizumi), tarui@ice.uec.ac.jp (J. Tarui).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.10.030

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82433665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:morizumi@kuis.kyoto-u.ac.jp
mailto:tarui@ice.uec.ac.jp
http://dx.doi.org/10.1016/j.tcs.2008.10.030

H. Morizumi, J. Tarui / Theoretical Computer Science 410 (2009) 1054–1060 1055

Table 1
The parameters of the k-tonic inverters of Sato et al. [13] and
this paper.

Sato et al. [13] This paper

Size O(kn) O((log k)n)
Depth O(k log2 n) O(log k log log n+ log n)
of NOTs O(k log n) log2 n+ log2 log2 log2 n+ O(1)

lower bounds. Markov [11] showed that the minimum number of NOT gates necessary in an n-inverter is dlog2(n + 1)e.
We consider circuits consisting of AND/OR/NOT gates, and the size of a circuit is the number of gates in it. The best known
construction of an n-inverter is due to Beals, Nishino, and Tanaka [4]. Their inverter has size O(n log n) and depth O(log n)
and uses dlog2(n+ 1)e NOT gates.
In a recent paper [13], Sato, Amano, and Maruoka considered circuits that is guaranteed to invert a restricted class of

inputs, and gave a construction for a k-tonic inverter , i.e., a circuit that inverts all k-tonic 0/1 sequences,with sizeO(kn), depth
O(k log2 n), and O(k log n) NOTs. We give an entirely different construction of a k-tonic inverter achieving improvements
of all the three parameters; see Table 1. In particular, for k = O(1), we achieve asymptotically optimal linear size and
logarithmic depth using only slightly more than log2 n NOT gates:

Theorem 1. There is a k-tonic inverter that has size O((log k)n) and depth O(log k log log n + log n), and uses log2 n +
log2 log2 log2 n+ O(1) NOT gates.

Amano,Maruoka, and Tarui [3] considered theminimumsize of a circuit thatmerges two0/1 sequences using t NOTgates,
and they showed that it is Θ(n log n/2t), thus demonstrating a smooth trade-off of size versus the number of NOTs from
the monotone case ofΘ(n log n) to the general case ofΘ(n). Their merging circuit actually works for any bitonic sequence.
Sato, Amano, Maruoka [13] also considered a generalized scenario in terms of k-tonic sequences and, for t ≤ log2 n and
k = O(log n), they gave a construction of a k-tonic sorter , i.e., a circuit that sorts all k-tonic binary sequences, that has size
O(kn + (n log n)/2t) and uses O(tk2) NOT gates. The design principle and the analysis of our k-tonic inverter immediately
yields an improved k-tonic sorter:

Theorem 2. There is a k-tonic sorter that uses t NOT gates and has size O
(
(log k)n+ (n log n)(t/2t)

)
and depth O((log k) t +

log n).

2. Component circuits/networks

In this section we explain the components that we use in our circuits. The constructions in Sections 2.1 and 2.2 are due to
Beals, Nishino, and Tanaka [4]. The reader may choose to skip this section and come back to it after seeing how components
are assembled and used in our circuits.

2.1. Inverting the inputs of a comparator network

Let N1 be a comparator network (see, e.g., Knuth [10]) with inputs v1, . . . , vn and outputs w1, . . . , wn. Assume that N1
has depth d and contains s comparators. Consider the case where inputs are Boolean. In the Boolean case, each comparator
can be considered as a pair of one AND gate and one OR gate (Fig. 1), and thus N1 can be considered as a depth-d size-2s
monotone circuit.
Assume that the negations of the outputs of N1, i.e., ¬w1, . . . ,¬wn are computed by another circuit and are available.

Then, we can construct a circuit N2 that outputs the negations of the inputs ¬v1, . . . ,¬vn as follows. For each comparator
c with inputs x1 and x2 and outputs y1 and y2, we can compute ¬x1 and ¬x2 from x1, x2,¬y1,¬y2 as shown in Fig. 1.
Repeatedly apply this construction considering comparators one by one from the outputs of N1 towards the inputs, and
obtain the network N2. The circuit N2 has depth 2d and consists of 2s ANDs and 2s ORs.

2.2. The Beals–Nishino–Tanaka inverter

The inverter operates as follows. Sort x1, . . . , xn by the AKS n-sorting network [1] with depth O(log n) and size O(n), and
obtain y1 ≥ · · · ≥ yn. Apply Fischer’s network Mn [6,7,4], and obtain ¬y1, . . . ,¬yn. Finally, apply the network explained
in Section 2.1 that outputs ¬x1, . . . ,¬xn using ¬y1, . . . ,¬yn. Here Mn is a network that inverts a sorted 0/1-sequence
y1 ≥ · · · ≥ yn with size O(n) and depth O(log n) using dlog2(n+ 1)e NOT gates. (More precisely, for n = 2r − 1,Mn has size
4n− 3r; this is the minimum size [9] of circuits inverting n sorted inputs with r NOTS.) The inverter uses dlog2(n+ 1)e NOT
gates and has depth O(log n) and size O(n log n).

1056 H. Morizumi, J. Tarui / Theoretical Computer Science 410 (2009) 1054–1060

Fig. 1. Computing the negations of inputs using the negations of outputs.

2.3. Conditional shifter

Let p ∈ {0, 1}. Assume that δ ≤ α and let y1, . . . , yα+δ be a 0/1-sequence. Suppose that we want to let z1, . . . , zα
respectively be y1, . . . , yα if p = 1 and y1+δ, . . . , yα+δ if p = 0. In other words, we want to either (1) discard the last δ yj’s,
or (2) discard the first δ yj’s and then shift by δ. This can be easily be done using p and ¬p as follows: For j = 1, . . . , α,
compute

zj = (p ∧ yj) ∨ (¬p ∧ yj+δ).

Further assume that the following conditions hold:

p = 0 H⇒ y1 = · · · = yδ = 0;
p = 1 H⇒ yα+1 = · · · = yα+δ = 1.

Then, if we can use ¬z1, . . . ,¬zα , we can easily compute¬y1, . . . ,¬yα+δ as follows.

¬yj =

{
(p ∧ ¬zj) ∨ ¬p for j = 1, . . . , δ;
(p ∧ ¬zj) ∨ (¬p ∧ ¬zj−δ) for j = δ + 1, . . . , α;
¬p ∧ ¬zj−δ for j = α + 1, . . . , α + δ.

3. Negation-limited k-tonic inverter

Most of this section is devoted to an explanation of our k-tonic inverter claimed in Theorem 1. In Section 3.1 we explain
the overall structure of our k-tonic inverter. For the sake of exposition, we first consider computing pivot bits in a naive way,
and we provide rough analysis for the number of NOT gates needed for reducing the problem size. In Section 3.2 we explain
how we actually compute pivot bits in our circuit to achieve the claimed depth. It turns out that most of the work is giving
appropriate definitions and developing an appropriate framework for analysis. In Section 3.3 we explain howwe can achieve
the number of NOT gates as claimed in Theorem 1 by a simple finer analysis. In Section 3.4 we explain how we can obtain
our k-tonic sorter in a similar way.

3.1. Overall structure of the k-tonic inverter

We first explain using a general algorithmic language and then explain in terms of circuits. We consider a k-tonic binary
input sequence of length n and assume that n = k2r for some integer r ≥ 2. If n is not of this form, we can pad an
input sequence x = 〈x1, . . . , xn〉 with trailing 1’s and obtain the sequence x′ = 〈x1, . . . , xn, 1, . . . , 1〉 whose length is
the minimum N > n of this form, apply the inverter for the (k+ 1)-tonic sequence x′, and discard the last N − n outputs.
Let x = 〈x1, . . . , xn〉 be a k-tonic 0/1 sequence of length n = 4km. Think of xi’s as entries of a 4k×mmatrixM as follows.

(We will not be doing any linear algebra; we can equally speak in terms of a rectangular array or a two-dimensional grid.)

M =


x1 x2 · · · xm−1 xm
xm+1 xm+2 · · · x2m−1 x2m
...

...
. . .

...
...

x(4k−1)m+1 x(4k−1)m+2 · · · x4km−1 x4km

 .
A row is dirty if it contains both 0 and 1; otherwise it is clean; an all-0 row is 0-clean and an all-1 row is 1-clean.

H. Morizumi, J. Tarui / Theoretical Computer Science 410 (2009) 1054–1060 1057

Fig. 2. S1 contains multiple AKS sorting networks. A conditional shifter feeds the outputs of S1 into S2 after discarding the top half or the bottom half. The
outputs of T2 are the negations of the inputs of S2 . The inputs of T1 are the negations of the outputs of S1 . T1 unwinds S1 as explained in Section 2.1.

Table 2
The parameters of subcircuits 1, 2, 3.

Subcircuit 1 Subcircuit 2 Subcircuit 3

Size O((log k)n) O(n) O((log k)n)
Depth O(log n log log n) O(log n) O(log k log log n)
of NOTs 2 log2 log2 n+ O(1) log2 n− log2 log2 n+ O(1) 0

Since the sequence x is k-tonic, among the 4k rows of M , at most k rows are dirty. Sort each column of M with smaller
entries up, and obtain the matrix M0. The matrix M0 has at most k dirty rows, and all of them as middle rows. Thus either
the bottom (4k− k)/2 = 3k/2 rows are all 1-clean, or else the top 3k/2 rows are all 0-clean. For now, we use the following
weaker form: Either (1) all the bottom k rows are 1-clean or (2) all the top k rows are 0-clean.
Define pivot bit p as p = AND of the km entries in the bottom k rows ofM0. Use one NOT gate and obtain¬p. Using p and

¬p discard either the bottom k 1-clean rows or the top k 0-clean rows according to whether p = 1 or 0, i.e., whether (1)
holds or not. The remaining 3k-row matrix M1 has at most k dirty rows, and all of them as middle rows. Again discard the
bottom (3k− k)/2 = k rows or the top k rows using the pivot bit for the bottom k rows together with one NOT gate.
We are left with a 2k × m matrix M2. Split each row of M2 into the first half and the last half. Let L be a 4k × m

2 matrix
whose 4k rows are the 4k halves of the rows ofM2. At most k rows of L are dirty. Thus using two NOT gates we have halved
the problem size: We can apply the same operation and arguments for L, i.e., sort each column and discard 2k clean rows
using two NOT gates.
We now explain in terms of circuits. We start over with the 4k×mmatrixM above. To sort each column ofM , apply AKS

sorting networks each sorting 4k elements; use m separate networks for m columns in parallel. Now consider the column-
sorted matrixM0, and let y1, . . . , yn be the entries in its first row through its last row.
Consider, for now, computing the pivot bit pnaively as p = ∧4kmj=3km+1 yj. Using oneNOT gate compute¬p. Discard the top k

rows or the bottom k rows by the conditional shifter in Section 2.3: For j = 1, . . . , 3km, compute zj = (p∧ yj)∨ (¬p∧ yj+k).
The zj’s are the entries of the 3k × m matrix M1. Assume that ¬z1, . . . ,¬z3km are the outputs of our subcircuit inverting
z1, . . . , z3km. We can use the conditional shifter for negations in Section 2.3 and obtain ¬yj’s.
Continue halving the problem size ν = log2 log2 n times so that the size is n′ = n/ log2 n, and then use the Beals–Nishino–

Tanaka inverter for n′ inputs.
Our circuit consists of three parts (Fig. 2):

Subcircuit 1: computing pivot bits and reducing the problem size from n to n′.

Subcircuit 2: the Beals–Nishino–Tanaka inverter for n′ = n/ log2 n inputs.

Subcircuit 3: shifting the outputs using the pivot bits and obtaining the negations by ‘‘unwinding’’ the AKS soring networks
as explained in Section 2.1.
The inverter explained so far has the parameters shown in Table 2. We provide some explanation for the parameters of

subcircuit 1.

1058 H. Morizumi, J. Tarui / Theoretical Computer Science 410 (2009) 1054–1060

For n = 4km, consider the first parallel application of m separate AKS sorting networks each sorting 4k elements. This
first part has size O((log k)n). Since the value of n geometrically decreases by a constant factor, the size of subcircuit 1 is
dominated by the size of this first part. If we compute each pivot bit naively as taking the AND of some yj’s as above, this
takes depth O(log n); we repeat this ν times; thus the depth of subcircuit 1 will be O(log n · ν) = O(log n log log n). In the
consideration above we halve the problem size by two NOT gates; thus a total of 2ν = 2 log2 log2 n NOTs are used for the
problem size reduction.
In Sections 3.2 and 3.3 we explain how to reduce the depth of subcircuit 1 to O(log k log log n) and the number of NOTs

in subcircuit 1 to log2 log2 n + log2 log2 log2 n + O(1), and thus obtain a k-tonic inverter with the parameters claimed in
Theorem 1.

3.2. Reducing the depth

Let M be an l × m 0/1-matrix. Let t be a nonnegative integer such that 2t divides m, i.e., we can divide each row into 2t
consecutive parts of equal size. The parameter t represents the number of pivot bits in our circuit, which equals the number
of times that we shrink the problem size by a constant factor, which also equals the number of NOT gates that we use.
For s = 0, 1, . . . , t , we define an s-block ofM as follows. Each row itself forms a 0-block; there are l 0-blocks. Split each

0-block, i.e., split each row into the first half and the last half. These halves are the 2l 1-blocks. Similarly, splitting each
(s− 1)-block yields two s-blocks; there are 2sl s-blocks. Thus each row forms 2s s-blocks for s = 0, . . . , t , and hence forms
a total of u =

∑t
s=0 2

s
= 2t+1 − 1 blocks. For each row, order these u blocks as follows. The first block is the 0-block, i.e.,

the whole row. Then comes the two 1-blocks, i.e., the first half and the last half, in this order. Then comes the four 2-blocks,
i.e, the first quarter up to the last quarter; and so on.
Let F = (fij) be an l×u 0/1-matrix, where u is as above. Our intention will roughly be to let the equality fij = 1 represent

the fact that the jth block in the ith row ofM is 1-clean, i.e., all-1.
In our circuit, we call fij a flag bit . We compute flag bits fij’s just once as follows. For each t-block b, which is a smallest

block, compute the flag bit fb for block b as fb = ∧xi∈b xi. For s = t − 1, . . . , 0, each s-block b contains two (s+ 1)-blocks b1
and b2; compute fb as fb = fb1 ∧ fb2 . Thus all flag bits are initially computed using only ANDs in depth dlog2me. After initial
computation, we sort flag bits column-wise using AKS sorting networks and discard bottom or top rows of flag bits as we
discard top or bottom rows of input bits.
Right after the initial computation, the flag bit fb for a block b is 1 iff the block b is 1-clean. After sorting fb’s, this may not

hold: it is possible that a block b is 1-clean but fb = 0. But sorting maintains the property that if fb = 1, then b is 1-clean
(we later call this property 1-conservative), and we show how this suffices for our purposes. We discard the bottom k rows
of input bits if the kth largest flag bit is 1. In other words, the first pivot is computed in depth O(log n), but thereafter we use
one output of AKS sorting network as pivot bit. This is how we obtain the claimed depth.
We proceed to show the correctness of the method above. We give definitions of key properties; Lemma 1 says that the

properties hold after the initial computation of flag bits; Lemma 2 says that the properties are maintained by the operations
above.
For twomatricesM and F as above, the pair (M, F) is 1-conservative if the following holds: For 1 ≤ i ≤ l and 1 ≤ j ≤ u, if

fij = 1 then the jth block in the ith row ofM is 1-clean. The jth block b in the ith row ofM is good if either (1) b is 1-clean and
fij = 1 or (2) b is 0-clean; otherwise b is a bad block. Say that (M, F) is k-mixed if there are at most k bad s-blocks for each
s = 0, . . . , t . Note that the definitions of 1-conservative and k-mixed arewith respect to the parameter t . When appropriate,
we make this dependence explicit by saying, e.g., k-mixed with respect to t subdivisions.
Let (M, F) be as above:M is an l× mmatrix and F is an l× umatrix, where u =

∑t
s=0 2

s
= 2t+1 − 1 for a parameter t .

Stacking (M, F) yields the pair of matrices (M̂, F̂), where M̂ is an 2l × (m/2) matrix and F̂ is an 2l × ((u− 1)/2) matrix
obtained as follows. Split each row of M into the first half and the last half. Stack the 2l halves thus obtained and obtain a
2l × m/2 matrix M̂ . In other words, the first half and the last half of the ith row of M is respectively the ith row and the
(l+ i)th row of M̂ . As for F̂ : Throw away the first column of F , which corresponds to 0-blocks ofM; the 0-blocks have been
thrown away by stackingM into M̂ . Put the second column of F on top of the third column; put the 4th and 5th columns on
top of the 6th and 7th columns respectively; in general put the (2s + r)th column on top of the (2s + 2s−1 + r)th column
(0 ≤ r < 2s−1, 1 ≤ s ≤ t), and obtain F̂ .

Lemma 1. Let x1, . . . , xn be a k-tonic 0/1-sequence of length n = lm. Let M be the l×mmatrix having xi’s in a row-major form:
e.g., the first row is x1, . . . , xm. Consider s-blocks of M for 0 ≤ s ≤ t. Let F = (fij) be the l × m 0/1-matrix such that fij = AND
of all xr ’s in the jth block of the ith row. Then, (M, F) is 1-conservative and k-mixed with respect to t subdivisions.

Proof. By definition of fij’s, the pair (M, F) is 1-conservative; furthermore, clearly there is no 1-clean block with the
corresponding flag bit fij being 0: In the setting above a block b is bad iff it is dirty. A 0–1 change in the sequence x1, . . . , xn
produces at most one dirty s-block for each s = 0, . . . , t . The lemma follows. �

Lemma 2. Assume that (M, F) is 1-conservative and is k-mixed with respect to t subdivisions. Let M and F respectively denote
the matrix obtained by sorting columns of M and F . Furthermore, let M̂ and F̂ respectively denote the matrix obtained by stacking
M and F . Then, (M, F) is 1-conservative and k-mixed with respect to t subdivisions. Further, (M̂, F̂) is 1-conservative and k-mixed
with respect to t − 1 subdivisions.

H. Morizumi, J. Tarui / Theoretical Computer Science 410 (2009) 1054–1060 1059

Proof. For simplicity, first consider 0-blocks, i.e, rows ofM and the corresponding first column c = (ci1) of F . Assume that
c contains α 1’s, and that ci11 = ci21 = · · · = ciα1 = 1, where i1 < i2 < · · · < iα .
Since (M, F) is 1-conservative, the α rows ofM , rows i1, i2, . . . , iα , are 1-clean. After column-sorting, the first column ci1

of F contains α 1’s at the bottom, and the bottom α rows ofM are 1-clean. Thus the condition of being 1-conservative holds
with respect to the first column of F and the corresponding blocks, i.e., all the 0-blocks. Exactly the same argument applies
for any column and the corresponding blocks. Hence (M, F) is 1-conservative.
Assume thatM and F have l rows and that (M, F) is k-mixed. To see that (M, F) is k-mixed, again first consider 0-blocks,

i.e., rows of M and the corresponding first column c = (ci1) of F . Assume that M has α 1-clean good rows and β 0-clean
good rows. By definition of goodness, the column c contains α 1’s. After column-sorting, the bottom α rows are 1-clean and
the bottom α entries of c are 1’s; thus there are α 1-clean good blocks. The top β rows are 0-clean, and hence they are good.
Thus there are as many good 0-blocks in (M, F) as in (M, F).
Now consider the 1-blocks ofM , i.e., the first halves and the last halves of the rows. Assume that there are k1 bad 1-blocks

among the first halves and k2 bad 1-blocks among the last halves, where k1 + k2 ≤ k. We can apply the above argument
for 0-blocks separately for the first halves and for the last halves. In each of the two cases, after column-sorting there are
as many good 1-blocks as before. Hence the assertion holds for 1-blocks. For the s-blocks, we can argue similarly separately
considering 2s groups of s-blocks. This completes our proof that (M, F) is k-mixed.
Finally, stacking does not destroy being 1-conservative nor does it introduce any new bad block. �

In our circuit stacking simply corresponds to rearranging the ordering of the intermediate gates; it does not need any
gate. This completes our proof of the claimed depth reduction.

3.3. Reducing the number of NOTs

Consider, as in Section 3.1, a 4k-row matrixM consisting of a k-tonic 0/1-sequence, and the matrixM0 obtained fromM
by sorting each column. Discard k rows using one NOT gate. Now, instead of again discarding as explained in Section 3.1,
consider processing the remaining 6k 1-blocks; i.e., halve the 3k rows, stack the 6k halves, and consider the resulting 6k-row
matrix. At most k rows are bad. Discard 2k rows. (Actually we can discard (6k− k)/2 = (5/2)k rows; this does not yield an
asymptotic improvement.)
Further halve and stack to obtain 2(6k−2k) = 8k rows, discard 3k rows, obtain 2(8k−3k) = 10k rows, discard 4k rows,

and so on. In general, at iteration s, discard sk rows out of (2s+ 2)k rows; halve and stack to obtain ((2s+ 2)k− sk)× 2 =
2sk + 4k = (2(s+ 1)+ 2) k rows. Thus with t NOT gates we can reduce the problem by the following factor. We assume
that t ≥ 2.

3
4
·
4
6
·
5
8
·
6
10
· · · · ·

t + 2
2t + 2

=

t∏
s=1

s+ 2
2s+ 2

= (1/2)t−1
t + 2
4
≤ (1/2)t · t,

where we have the second equality since each denominator is twice the previous numerator. Thus we can reduce the size
to 1/ log2 n using t NOT gates with t satisfying 2t/t ≥ log2 n, and hence with t = log2 log2 n+ log2 log2 log2 n+ O(1).
In the scheme above, the column size in column-sorting increases, and we use AKS k′-sorting networks for increasing k′.

This increases the depth of subnetwork 1, but we can easily see that the asymptotic depth does not change. This completes
the description of our k-tonic inverter as claimed in Theorem 1, and thus the proof of Theorem 1.

3.4. Negation-limited k-tonic sorter

We can obtain a k-tonic sorter in Theorem 2 as follows. Use exactly the same design as above to reduce the problem size
to n′ = n (t/2t)with t NOT gates. Then, instead of the Beals–Nishino–Tanaka inverter use the AKS n′-sorting network. Use
shifters to obtain the output.

3.5. Open problems

The following question by Turán remains open: Is the size of any depth-O(log n) inverter with O(log n) NOT gates
superlinear?

Acknowledgements

We thank the referees for TAMC07 and TCS for their valuable comments and suggestions.

References

[1] M. Ajtai, J. Komlós, E. Szemerédi, AnO(n log n) sorting network, in: Proceedings of STOC83: The 15th Annual ACMSymposiumon Theory of Computing,
1983, pp. 1–9.

[2] K. Amano, A. Maruoka, A superpolynomial lower bound for a circuit computing the clique function with at most (1/6) log log n negation gates, SIAM
Journal on Computing 35 (1) (2005) 201–216.

1060 H. Morizumi, J. Tarui / Theoretical Computer Science 410 (2009) 1054–1060

[3] K. Amano, A. Maruoka, J. Tarui, On the negation-limited circuit complexity of merging, Discrete Applied Mathematics 126 (1) (2003) 3–8.
[4] R. Beals, T. Nishino, K. Tanaka, On the complexity of negation-limited Boolean networks, SIAM Journal on Computing 27 (5) (1998) 1334–1347. A
preliminary version appears in: Proceedings of STOC95: The 27th Annual ACM Symposium on Theory of Computing, 1995, pp. 585–595.

[5] R. Boppana, M. Sipser, The complexity of finite functions, in: J.V. Leeuwen (Ed.), Handbook of Theoretical Computer Science, Volume A: Algorithms
and Complexity, Elsevier/MIT Press, 1990, pp. 757–804.

[6] M. Fischer, The Complexity of Negation-Limited Networks — A Brief Survey, in: Lecture Notes in Computer Science, vol. 33, 1975, pp. 71–82.
[7] M. Fischer, Lectures on network complexity, Technical Report 1104, (1974, revised 1996) CS Department, Yale University (available on the web).
[8] D. Harnik, R. Raz, Higher lower bounds on monotone size, in: Proceedings of STOC00: The 32nd Annual ACM Symposium on Theory of Computing,
2000, pp. 378–387.

[9] K. Iwama, H. Morizumi, J. Tarui, Negation-limited complexity of parity and inverters, in: Proceedings of ISAAC06: The 17th International Symposium
on Algorithms and Computation, in: Lecture Notes in Computer Science, vol. 4280, 2006, pp. 223–232. a journal version is to appear in Algorithmica.

[10] D. Knuth, The Art of Computer Programming vol. 3: Sorting and Searching, 2nd edition, Addison-Wesley, 1998.
[11] A. Markov, On the inversion complexity of a system of functions, Journal of the ACM 5 (4) (1958) 331–334.
[12] A. Razborov, Lower bounds on the monotone complexity of some Boolean functions, Doklady Akademiya Nauk SSSR 281 (4) (1985) 798–801

(in Russian); English translation in: Soviet Math. Dokl. 31 (1985) 354–357.
[13] T. Sato, K. Amano, A. Maruoka, On the negation-limited circuit complexity of sorting and inverting k-tonic sequences, in: Proceedings of COCOON06:

The 12th Annual International Computing and Combinatorics Conference, in: Lecture Notes in Computer Science, vol. 4112, 2006, pp. 104–115.

	Linear-size log-depth negation-limited inverter for k-tonic binary sequences
	Introduction and summary
	Component circuits/networks
	Inverting the inputs of a comparator network
	The Beals--Nishino--Tanaka inverter
	Conditional shifter

	Negation-limited k-tonic inverter
	Overall structure of the k-tonic inverter
	Reducing the depth
	Reducing the number of NOTs
	Negation-limited k-tonic sorter
	Open problems

	Acknowledgements
	References

