
Theoretical
Computer Science

Theoretical Computer Science 165 (1996) 75-95

A sequential reduction strategy’

Sergio Antoy, a,* Aart Middeldorp b

a Portland State University, Department of Computer Science, Portland, Oregon 97207, USA
b University of Tsukuba, College of Information Science, Tsukuba 305, Japan

Abstract

Kennaway proved the remarkable result that every (almost) orthogonal term rewriting sys-
tem admits a computable sequential normalizing reduction strategy. In this paper we present a
computable sequential reduction strategy similar in scope, but simpler and more general. Our
strategy can be thought of as an outermost-fair-like strategy that is allowed to be unfair to some
redex of a term when contracting the redex is useless for the normalization of the term. Unlike
the strategy of Kennaway, our strategy does not rely on syntactic restrictions that imply conflu-
ence. On the contrary, it can easily be applied to any term rewriting system, and we show that
the class of term rewriting systems for which our strategy is normalizing properly includes all
(almost) orthogonal systems. Our strategy is more versatile; in case of (almost) orthogonal term
rewriting systems, it can be used to detect certain cases of non-termination. Our normalization
proof is more accessible than Kennaway’s. We also show that our sequential strategy sometimes

succeeds where the parallel-outermost strategy fails.

1. Introduction

This paper is concerned with the fundamental question how to compute normal forms

with respect to a given term rewriting system (TRS). Consider the TRS

0+x +x

S(x) + Y + S(x + Y>
oxx +o

S(x) x y + x x y + y

specifying addition and multiplication on natural numbers. Suppose we want to normal-

ize the term (0 + (0 x S(0))) + (0 x 0). This term contains three instances of left-hand

* Corresponding author. E-mail:antoy@cs.pdx.edu.

’ This work has been supported in part by the National Science Foundation under grant CCR-9406751

0304-3975/96/$15.00 @ 1996-Elsevier Science B.V. All rights reserved
SSDI 0304-3975(96)00041-2

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82433657?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

76 S. Antony, A. Middeldorpl Theoretical Computer Science 165 (1996) 15-95

sides of rewrite rules (so-called redexes):

(If (3)
--
(0 + (0 x _sco,!, + (0 x 0)

(2)

Redexes (1) and (3) are not contained in larger redexes. We call them outermost re-
dexes. Redexes (2) and (3) are innermost redexes; they do not contain smaller redexes.
If we select the Z~ftmost-outermost redex (1) we obtain the term (0 x S(0)) + (0 x 0)
which contains two redexes. Selecting again the leftmost-outermost redex we obtain the
term 0 + (0 x 0). After two further contractions of the leftmost-outermost redex we ar-
rive at the normal form 0. Instead of selecting a single redex in each step, we can also
contract redexes in parallel. For instance, redexes (1) and (3) do not interfere, i.e., after
~on~action of redex (1), redex (3) is not affected, and vice versa. Also redexes (2) and
(3) can be contracted in parallel. If we contract all outermost redexes in parallel we
also obtain the normal form 0: (O+(OxS(O)))+(OxO) --+* (OxS(O))+O -+ 0+0 --f 0.

Does it matter which redexes we select for contraction? In the above example the
answer is no since the TRS does not admit infinite reduction sequences. Hence, no
matter which redexes we select for con~action, we are guaranteed to find a normal
form. In general, however, terms may have a normal form but also admit infinite
reduction sequences. Hence, it is important to adopt a good reduction strategy. Given
a TRS and a term, a reduction strategy tells you which redex(es) to contract. The
desirable property of reduction strategies is normalization: repeated contraction of the
redex(es) selected by the reduction strategy leads to a normal form, if the term under
consideration has a normal form. For the important subclass of (almost) orthogonal
TRSs several positive results are known. An orthogonal TRS is left-linear and non-
overlapping. If the non-overlapping restriction is relaxed by allowing trivial overlays
then we speak of almost orthogonal TRSs. A typical example of an almost orthogonal
TRS that is not orthogonal is the two-rule system {T Vx --+ T, x V T + T}. O’Donnell
[8] showed that the parallel-outermost strategy - which evaluates all outermost redexes
in parallel - is normalizing for all almost orthogonal TRSs.

The question whether there exists a computable normalizing sequential reduction
strategy for all (almost) orthogonal TRSs has received quite a bit of attention. A
sequential strategy must choose a single redex for contraction. The main results are
summarized below.

(1) Contrary to the situation for A-calculus, there are orthogonal TRSs for which the
leftmost-outermost strategy is not normalizing. Consider, for instance, the orthogonal
TRS (from [4])

a-b

c-c

Rx, b) -+ d

and the term t = f(c,a). The leftmost-outermost strategy will select redex c in t
and hence produce the infinite reduction sequence t -+ t --f t -+ Nevertheless,

S. Antony. A. Middeldorpl Theoretical Computer Science 165 (1996) 75-95 17

parallel-outermost succeeds in normalizing t: t +* f(c,b) 4 d. O’Donnell [8] showed

that the leftmost-outermost strategy is normalizing for every left-normal orthogonal

TRS. 2 Left-normality means that variables do not precede function symbols in the

left-hand sides of the rewrite rules. A typical example of a left-normal orthogonal TRS

is combinatory logic.
(2) Huet and Levy, in a landmark paper [4], formulated the strong sequentiality cri-

terion and showed that every strongly sequential orthogonal TRS admits a computable

normalizing sequential reduction strategy. Every left-normal orthogonal TRS is strongly

sequential, but there are many strongly sequential orthogonal TRSs that are not left-

normal, one example being the TRS of the preceding paragraph. The strategy of Huet

and Levy is based on the fact that for orthogonal TRSs

l every term not in normal form contains a needed redex, and

l repeated contraction of needed redexes leads to the normal form, if it exists.

Here a needed redex is a redex with the property that in every reduction sequence (from

the term in which the redex occurs) to normal form one of its descendants is contracted.

The second statement above can be strengthened to the hypernormalization of needed

reduction: there are no infinite reduction sequences starting from a term that has a

normal form in which infinitely many needed redexes are contracted. Since needed

redexes are in general not computable, this does not give a normalizing sequential

strategy for all orthogonal TRSs. Huet and Levy showed that for strongly sequential

orthogonal TRSs at least one of the needed redexes in a term not in normal form can be

(efficiently) computed. The orthogonality requirement cannot be weakened to almost

orthogonality, simply because needed redexes may not exist for almost orthogonal

TRSs, as observed by Sekar and Ramakrishnan [13].

(3) Kennaway [5] showed the remarkable fact that every almost orthogonal TRS

admits a computable normalizing sequential reduction strategy. Actually, Kennaway

does not restrict himself to TRSs but obtains his result in the very general setting of

combinatory reduction systems of Klop [6]. The result of Kennaway is remarkable

since it covers TRSs like combinatory logic extended with Berry’s TRS

f(a,b,x) + c

f(b,x,a) + c

f(x,a,b) + c

This TRS seems to require parallel evaluation of the arguments tl, t2, t3 when faced

with a term f(tl, t2, t3) since in this TRS it is undecidable whether a term reduces to

a or b. Berry’s TRS is an example of a TRS that is not strongly sequential.

(4) Toyama [14] showed that the sequential strategy of Huet and Levy is normalizing

for the larger class of strongly sequential left-linear root-balanced joinable TRSs. The

* Actually, O’Donnell showed that the leftmost-outermost strategy is normalizing for all left-normal almost
orthogonal TRSs. However, it is easy to see that if two rewrite rules in a left-normal almost orthogonal TRS

overlap, then one of the roles is an instance of the other. Hence, for every left-normal almost orthogonal

TRS there exists a left-normal orthogonal TRS with the same rewrite relation. Thus, nothing is really added

by allowing trivial overlays, rather, it would unnecessarily confuse Fig. 1 below.

78 S. Antony, A. Middeldorpi Theoretical Computer Science 16.5 (1996) 75-95

Fig. 1.

root-balanced joinability requirement is less restrictive than the trivial overlays allowed
by Kennaway, but because of the strong sequentiali~ requirement Toyama’s result does
not cover the result of Kennaway. For instance, the almost orthogonal TRS {TVx -+ T,
x V T --t T} is not strongly sequential.

(5) Oyamaguchi [lo] extended the work of Huet and Levy in a different direction.
Strong sequential&y is a property based on the left-hand sides of the rewrite rules.
Oyamaguchi showed that by inco~orating info~ation in the ~ght-hand sides of the
rewrite rules, a less restrictive notion of sequentiality can be obtained, while retain-
ing the good properties of strong sequentiality. The resulting class of NV-sequential

orthogonal TRSs properly contains all strongly sequential orthogonal TRSs. Although
Kennaway’s result applies to all systems covered by Oyamaguchi’s result, the result of
~ama~chi is of interest because his strategy can be computed in pol~omial time,
which is not the case for the strategy of Kennaway. 3
Fig. 1 shows the relationships between the above-mentioned results. The area enclosed
in the dotted rectangle denotes the class of TRSs for which the parallel-outermost
strategy is normalizing. Areas enclosed in numbered solid rectangles correspond to the
sequential strategies described above. Observe that p~llel-oute~ost encompasses all
known sequential reduction strategies. (The fact that p~allel-oute~ost is normalizing
for every strongly sequential left-linear root-balanced joinable TRS follows from the
work of Toyama [14].) All systems in area (3) are confluent. Systems in area (4) are
not necessarily confluent, but they do have unique normal forms. (Slightly stronger,
every term that has a normal form is confluent.)

Recently, Comon [Z] showed that strong and ~-sequentiality are decidable prop-
erties of left-linear, possible overlapping, TRSs, and van Raamsdonk [I21 showed that

3 Moreover, Oyamaguchi obtained his results in 1987, two years before Kennaway’s paper was published.

S. Antony. A. Middeldorp! Theoretical Computer Science 165 (1996) 75-95 79

outermost-fair rewriting is normalizing for weakly orthogonal higher-order rewriting

systems.

The starting point of the present paper is Kennaway’s result. The strategy of

Kennaway is complicated and relies on the confluence property. We define a sim-

pler and intuitive sequential strategy for every TRS and we show that the class of

TRSs for which our strategy is normalizing properly includes the class of TRSs for

which Kennaway’s strategy is defined. This class is indicated in Fig. 1 as the area

between the dashed lines. At present it is unclear whether the shaded area is inhabited.

All other areas are inhabited. In particular, we will see that there exist TRSs which

cannot be normalized by means of the parallel-outermost strategy but for which our

sequential strategy succeeds.

Our strategy is versatile. We will show that in case of almost orthogonal TRSs, it

can be used as a sufficient condition for the property of having no normal form. This

means that for certain terms our strategy will signal that it is useless to contract any

redex as the term under consideration has no normal form.

The remainder of the paper is organized as follows. In the next section we formally

define the notion of sequential reduction strategy. In Section 3 we describe an abstract

game of Klop which is closely related to our strategy. It is well-known that in general

it is undecidable whether a term cycles. In Section 4 we give a sufficient and decidable

criterion for cyclicity. Using this result, our computable sequential strategy is defined in

Section 5. In Section 6 we present our main theorem: if our strategy fails to normalize

a term then there exists an infinite so-called outermost-fair reduction sequence starting

from that term. This result does not rely on orthogonality, quite to the contrary, it holds

for every TRS. Our proof is non-trivial but considerably simpler than the normaliza-

tion proof of Kennaway. Since for almost orthogonal TRSs it is known [S] that terms

that admit infinite outermost-fair reduction sequences do not have a normal form, an

immediate consequence is the normalization of our strategy for all almost orthogonal

TRSs. In Section 7 we explain how, in case of almost orthogonal systems, our strat-

egy can be used to detect certain cases of non-termination. Furthermore, we exhibit a

non-left-linear TRS which can be normalized by our sequential strategy, but for which

parallel-outermost fails. We also mention some directions for further research. In par-

ticular, we address the question how to enhance our strategy in order to enlarge the

class of TRSs for which it is normalizing.

2. Preliminaries

A signature is a set 9 of function symbols. Associated with every f E 9 is a

natural number denoting its arity. Function symbols of arity 0 are called constants.

The set .Y(F,V”) of terms built from a signature ,V and a countably infinite set

of variables V is the smallest set containing V such that f(tl, . . . , t,) E F(F, V)

whenever f E F has arity n and tl,. , t,, E F-(8, V). We write c instead of c()

whenever c is a constant. Let q be a fresh constant symbol. A context C is a term in

80 S. Antony, A. Middeldorpl Theoretical Computer Science 165 (1996) 75.--95

%‘(F, V) containing precisely one hole. The designation term is restricted to members
of S(F, 9’“). If C is a context and t a term then C[t] denotes the result of replacing
the hole in C by t. We say that t is a subterm of C[t]. A substitution is a map c from
;Ir to S(F, V) with the property that the set {X E V 1 c(x) # x} is finite. If r~ is a
substitution and t a term then tcr denotes the result of applying C-J to t. We call to an
instance of t.

A rewrite rule I -+ Y is a pair of terms such that the left-hand side I is not a variable
and variables which occur on the right-hand side r occur also in t. A TRS is a pair
(F,.!%) consisting of a signature .F and a set 2% of rewrite rules between terms in
F(9, V). We often present a TRS as a set of rewrite rules, without making explicit
its signature, assuming that the signature consists of the function symbols occurring in
the rewrite rules. A TRS ~22 defines a rewrite relation -+9p on terms as follows: s -‘ye t
if there exists a rewrite rule I + r in W, a substi~tio~ ET, and a context C such that
s = C[Za] and t = C[rcr]. The subterm Zcr of s is called a redex and we say that s
rewrites to t by contracting the redex lo. The subterm rc of t is called a contracturn
of the redex lo. We call s +g t a rewrite step. We usually omit the subscript B. A
term without redexes is called a normal form. The set of all normal forms of 92 is
denoted by ~~(~~. We say that a term t has a normal form if there exists a reduction
sequence starting from t that ends in a normal form. A TRS is confluent if for all
terms tl, t2, t3 with tl -+* t2 and tl -+* t3 there exists a term t4 such that t:! +* t4 and
t3 -+* t4. In a confluent TRS every term has at most one normal form.

A position is a sequence of natural numbers identifying a subterm in a term. The
set .%x(t) of positions in a term t is inductively defined as follows: 9&s(t) = {E} if t

is a variable and Pm(t) = {E) U {i-p 1 1 Gidn and p E z?%s(t~)) if t = f(tl,.. ., t,).

We say that a position p is above a position q if there exists a position r such that
p ’ r = q. If p is above q we also say that q is below p and we write p G q. We write
p < q if p<q and p # q. Positions p, q are disjoint, denoted by p 11 q, if neither
pdq nor q< p. If p E Pas(t) then t/p denotes the subterm of t at position t and
t[slp denotes the term that is obtained from t by replacing the subterm at position p

by the term s. The size 1 t{ of a term t is the number of symbols occurring in it.
A TRS W is left-linear if the left-hand side 1 of every rewrite rule I + Y E W

does not contain multiple occurrences of the same variable. Let Ii + rl and 12 + rz
be renamed versions of rewrite rules of a TRS 93 such that they have no variables
in common. Suppose Ei /p, for some p E Rx(l~) such that fl jp is not a variable,
and E:! are unifiable with most general unifier 0. The pair of terms (Ei[~]~fl,~rcr) is
called a critical pair of 5%. If Ii + ri and 12 --+ r-2 are renamed versions of the same
rewrite rule, we do not consider the case p = E. A critical pair (ZI[~~]~(T,~ICT) with
p = E is an overlay, A critical pair (s, t) is trivial if s = t. A left-linear TRS without
critical pairs is called orthogonal. An almost o~hogonal TRS is a left-linear TRS with
the property that all its critical pairs are trivial overlays. Almost orthogonal TRSs are
called weakly orthogonal in [5], but nowadays weak orthogonality is used to denote
the larger class of left-linear TRSs with only trivial critical pairs. A typical example
of a weakly orthogonal TRS that is not (almost) orthogonal is the two-rule system

S. Antony, A. Middeldorpl Theoretical Computer Science 165 (1996) 75-95 81

MPG)) --+ x* P(@)) -+ x}. Almost all results obtained for orthogonal TRSs ([7]
contains a good overview) carry over to almost o~hogonal TRSs, with literally the
same proofs, the notable exception being the theory of Huet and Levy [4] on needed
reductions. Weakly orthogonal TRSs are more complicated. Much more information on
term rewriting can be found in [3,7]. The latter contains an introduction to the study
of reduction strategies.

What is a sequential reduction strategy? In the literature one often finds the following
definition:

A sequential reduction strategy is a mapping Y that assigns to every term
t not in normal form a redex position in t.

This definition serves if the contracturn of a redex is unique, which is the case for
any TRS that lacks non-trivial overlays, in particular for all weakly o~hogonal TRSs.
However, if the TRS under consideration does have non-trivial overlays, we are faced
with the problem that there are redexes with more than one contractum. Hence, we
must also supply the rewrite rule according to which the redex has to be contracted.
Given a redex and a rule, the contracturn is again uniquely determined. How to choose
the rewrite rule? There are two possibilities:
l The rewrite rule depends only on the redex. This means that we are given a mapping

that assigns to every redex a rewrite rule of whose left-hand side the redex is an
instance.

l The rewrite rule depends on the redex and the surrounding context.
Clearly, the latter option is more general. For instance, a (confluent) TRS like

a-+b
b-+a
a-+c
c--+a

f(kc) ---$ d

cannot be normalized if we opt for the former. For example, the term f(a,a) can only
be normalized if we contract the first occurrence of redex a by the rewrite rule a + b

and the second occurrence of the same redex by the rewrite rule a -+ c. (This example
also shows that both options lead to unfairness in the sense of Porat and France2 [1 I].)
The simplicity of the former option however makes it possible to reason effectively
about the strategy we will present later. Therefore, we arrive at the following formal
definition.

Definition 2.1. Let 92 be an arbitrary TRS. A sequential reduction strategy for 9
consists of the following two components:
l a mapping rule that assigns to every redex of 9 a rewrite rule of whose left-hand

side the redex is an instance, and
l a mapping Y that assigns to every term t not in normal form one of its redex

positions.

82 S. Antony, A. Middeldorp I Theoretical Computer Science I65 (1996) 75-95

We require that both rule and Y are computable. The mapping rule induces a
mapping contract from redexes to instances of right-hand sides of rewrite rules of W as
follows: if rule(t) = 1 --+ r then ~o~~r~c~(~) = YET where (i is any substitution satisfying
t = la. If t is not in normal form then t9’ denotes the term t[contruct(tl~(,))]v(l), i.e.
the result of applying the strategy to t. We write t -+y t’ if and only if t’ = tY.

In the remainder of this paper we identify a sequential reduction strategy with its
mapping Y, that is, we assume that the mapping rule is given but our main results
do not depend on its de~nition. This implies that we cannot prove that our sequential
reduction strategy is capable of normalizing the rather simple TRS 9 = {a + a, a +
b} since this depends on rule: a sequential reduction strategy normalizes $2 if and
only if rule(a) = a 4 b. For TRSs that do not admit non-trivial overlays, in particular
for almost and weakly orthogonal TRSs, the identification of a sequential reduction
strategy with its mapping Y entails no loss of generality since the contract of a
redex is independent of the mapping rule.

It should be stressed that a sequential reduction strategy has no memory. This means
that the decision concerning which redex to contract must be solely based on the term
at hand and the given TRS, but the reduction sequence leading from the starting term to
the present term may not be used. In particular, pa~llel-oute~ost cannot be simulated
by a sequential reduction strategy since after contracting one outermost redex there
is no way of telling which redexes in the resulting term coincide with the remaining
outermost redexes in the starting term.

Definition 2.2. A sequential reduction strategy Y for a TRS W is normalizing if for
every term t that has a normal form there exists a reduction sequence t = tl --+y

t2 -+y f.’ +y tn (with n 2 1) ending in a normal form tn.

Throughout the following we assume that we are dealing with TRSs that satisfy the
following two properties:
l it is decidable whether a term is a redex (and hence it is also decidable whether a

term is a normal form),
l in every infinite reduction sequence ti -+ t2 --+ * . * in which the size of all terms

is uniformly bounded, only finitely many different function symbols and variables
occur (and hence the reduction sequence contains a repetition).

These properties are in particular true for all finite TRSs.
We conclude this preliminary section by introducing some notation for manipulating

reduction sequences. Let 93: tl --+ tz --+ t3 + . . . be an arbitrary infinite reduction
sequence. We write 63[i,j] (1 <i < j) to denote the finite portion ti + ti+l - . * . + tj

and 9[i] (i& 1) to denote the term ti. The concatenation tl ++ t2 --++ t3 of two
finite reduction sequences 91: tl ++ tz and 53~: t2 --++ ts is denoted by 91; 2%. If
9: t -++ t is a cycle then &P denotes the infinite reduction sequence 9; 9; 29;. . . ,
Let 9 be an arbitrary (finite or infinite) reduction sequence. If C is a context then
C[9] denotes the reduction sequence obtained from 9 by replacing every term t in 28
with C[t]. Finally, if p is a position in 9[1] such that no redex at a position q < p

S. Antony, A. Middeldorp I Theoretical Computer Science 165 (1996) 75-95 83

is contracted in 9, then 91~ denotes the reduction sequence extracted from 9 by

replacing every term t in 9 with tip. In this case the resulting sequence may contain

fewer rewrite steps.

3. Klop’s game

The result of Kennaway [5] covers the TRS combinatory logic extended with the

parallel-or rules {T V x -_) T, x V T + T}, which is rather surprising since the term

tl v t2 seems to require parallel evaluation of its arguments tl and t2. In [5] (see

also [7]) the following abstract game is described which captures the essence of the

difficulty of evaluating a term like tl V t2 with a sequential strategy.

Suppose we are given two total functions f and g from N+, the set of positive

integers, to N. The objects of the game are pairs (x, y) of natural numbers. The search

space is defined as a relation between these pairs:

(X,Y) + (f(X),Y)>

(X,Y) + (4g(y)),

(x,0) -+ (O,O),

(0,Y) + (070)

for all x, y > 0. The goal of the game is to reach (0,O) from a given pair of natural

numbers by adopting a sequential strategy. Sequential means here that, given a pair of

positive integers, we must choose between applying function f to the first argument

and applying function g to the second argument. Moreover, the choice can only be

based on the pair of positive integers at hand (and the functions f and g of course).

In particular, the strategy of alternatively applying f and g until one of the numbers

become zero - which is guaranteed to produce (0,O) if this is at all possible - is not

allowed. Formally, a sequential strategy is a function Y from N+ x N+ to the set

{L, R}. Every sequential strategy Y defines a subset of the search space as follows:

6,~) +Y (f(x>,y) if ~P(x,Y) =L

CCY> +Y @,dy)) if Y&Y) = R,

(x,0) -‘y (O,O),

(O,Y) -+.4p (O,O)

for all x, y > 0. We say that a sequential strategy Y is good if (x, y) -.;P (0,O)

whenever (x, y) +* (O,O), for all natural numbers x and y.

In [5] it is shown that there exists a good strategy for this game. 4 The sequential

reduction strategy (for almost orthogonal TRSs) defined in [S] however is not related to

the solution of this abstract game. We present a slightly different solution. Our solution

is very close to the sequential reduction strategy that we define in Section 5.

4 The solution described in [5] is attributed to M. van Leeuwen and H. Mulder.

84 S. Antony, A. Middeldorp I Theoretical Computer Science I65 (1996) 75-95

We define a strategy Y by distinguishing two cases. If x < y then we compute the

sequence x, f(x), f2(x), . . until we reach an f”(x) with 12 2 1 such that

0 f”(x) = 0, or

0 f”(x) > x, or

0 f”(x) = fm(x) for some O<m < n.
Since there are only finitely many different natural numbers less than x, eventually one

of these alternatives is satisfied. We define 9(x, y) = R if the last alternative holds

with m = 0, and 9(x, y) = L in all other cases. If x > y then we compute the

sequence Y, s(Y), s2(Y>, . . . until we reach a g”(y) with 12 2 1 such that

0 g”(y) = 0, or

l s”(y) > Y, or
0 g”(y) = gm(y) for some O<m < n,

and we define 9(x, y) = L if the last alternative holds with m = 0, and 9(x, y) = R
in all other cases. Before showing that Y is a good strategy, we illustrate the strategy

by means of a simple example. Consider the functions

f(x) =
{

x+1 if x#7,
6

if x=7

and

1

2x if x < 5,

g(x) = 0 if x = 5,

x-l if x > 5.

Starting from the pair (1, 1), the strategy 9 produces the following sequence:

(1,l) +y (2,l) +y (2,2) +Y (3,2) 4Y (3,4) jY (4,4) +Y (54)

+Y (598) +Y (6, g) -+Y (7,g) -+Y (797) -+Y (7,o) -+Y (795)

+Y (790) +Y (090).

Theorem 3.1. The strategy 9’ just deJined is a good strategy.

Proof. Suppose the contrary. There exist some functions f,g: N+ -+ N and a pair

(x, y) E N x N such that the game terminates for (x, y), but the strategy 9’ computes an

infinite sequence from (x, y), rather than reaching (0,O). Thus, there exists a sequence

of moves (x, y) -+* (0,O) and without loss of generality we can assume that the last

step in this sequence is (0,j) + (O,O), for some positive integer y. Hence, there exists

an n > 0 such that f”(x) = 0. Since Y fails to reach (0,O) from (x, y), the sequence

of moves computed by Y must reach (with less than n L choices) a state (x’, y’)

after which only R choices are made and for all i 2 0, g’(y’) > 0. That is, the infinite

+s-sequence starting from (x, y) must have the following form:

(x, y) -> @‘,Y’) +Y (x’,g(y’)) -+Y (X’,S2(Y’>) --+Y @‘,S3(Y’H +Y

Suppose that for all i 20 g’(y’) is smaller than x’. This implies that the infinite se-

quence y’, g(y’), s2(y’), . . . contains a repetition, say gJ’(y’) = gq(y’) with 0 d p < q.

S. Antony, A. Middeldorp I Theoretical Computer Science 165 (1996) 75-95 85

Let g’(y’) be a maximal element in the cycle gJ’(y’), gJ’+‘(y’),. ..,gq(y’). Then,

P’(x’,g’(y’)) = L, since neither 0 nor a value greater than g’(y’) is found in the cycle

gP(y’), gJ’+‘(y’), . . , gq(y’). This contradicts that 9’ always chooses R after reaching

(x’, y’). Hence, there exists an i20 such that g’(y’) 3x’. From Y(x’,g’(y’)) = R we

infer that the sequence x’, f(x’), f2(x’), . . . contains a repetition and no term in it is

0. This contradicts that f”(x) = 0, since x’ = fk(x) for some k 20. We can only

conclude that Y is a good strategy. 0

This solution, which easily generalizes to games with n-tuples (n > 2) of natural

numbers, epitomizes the problems of a sequential strategy. A sequential strategy has

no past memory, it must look at a term and decide which of its redexes to contract -

contracting all redexes in turn, which requires past memory, since some redexes may

reduce to themselves, is against the rules. Sequential strategies are natural for strongly

sequential (NV-sequential) TRSs, since within this class every term t not in normal

has a computable redex that must eventually be contracted to compute the normal form

of t.

However, sequential strategies are much less natural for non-strongly sequential TRSs

and, in fact, they have been thought impossible for some time. The interest in a com-

putable sequential normalizing strategy for arbitrary (almost) orthogonal TRSs lies in

its nature and in its very existence. The strategy that we discuss next is not intended to

be efficient, though it is conceptually simple enough to be practical. To ensure normal-

ization, parallel strategies rely on past memory, whereas sequential strategies rely on

look ahead. An implementation of our strategy could be given past memory, in particu-

lar, it could record which redexes have been discovered to cycle, without destroying its

sequential essence. An implementation with this feature would in some cases be more

time efficient than a parallel strategy at the possible expense of some space efficiency.

4. Cycle detection

Let Y be a (sequential) reduction strategy for a TRS B. In general, it is undecidable

whether a term t cycles with respect to 9’. However, it is decidable whether there

exists a cycle t -+$ t in which all terms have size less than or equal to some positive

integer n.

Definition 4.1. Let Y be a sequential reduction strategy for a TRS 9. We say that a

term t Y-cycles within size n > 0, denoted by cyclic(t,n, Y), if there exists a cycle

t = t1 -‘y t:! -+y . . -‘y tnr = t

with m > 1 such that ltil <n for all i E { 1,. . ,m}.

Lemma 4.2. Let Y be a sequential reduction strategy for a TRS .9X Let t be a term

and suppose n > 0. It is decidable whether t Y-cycles within size n.

86 S. Antony. A. Middeldorp I Theoretical Computer Science 165 (1996) 75-95

cyclic(t, n, 9) =
false if ItI > n or t E AT(%),

4o(t, n, y,0, t’) if ItI bn and t dy t’,

cp(t, n, 9, T, t’> = 1
f

true if t’ = t,

false if It’/ >n, or t’ENF(W), or t/ET,

q(t,n,Y,T U {t’},t”) if It’1 <n, and t’ $! T U {t},

and t’ -+y t”.

Fig. 2.

Proof. Since there are no infinite reduction sequences consisting of pairwise different

terms whose size does not exceed n, there exists a finite reduction sequence t = tl +y

t2 +y . . . -‘y t,,, with m 2 1 such that tl, . . . , t,,,-1 are pairwise different terms whose

size does not exceed n, and one of the following alternatives holds:

l l&n > n,
l l&j <n and t,,, E AT(W), or

l Itml<n and tm = tk for some k E {l,...,m - 1).

The term t Y-cycles within size n if and only if the last alternative holds with k = 1.

Hence we can decide whether t Y-cycles within size n by simply applying the strategy

and check which of the above alternatives holds. 0

For deciding whether a term Y-cycles within size n, we only need to know what the

strategy Y does to terms whose size does not exceed n. This observation will be used

in the next section where we define our strategy by induction on the size of terms.

The proof of Lemma 4.2 suggests the ‘algorithm’ of Fig. 2 to compute the predicate

cyclic.

5. The strategy

In this section we define our sequential strategy which will be denoted by YU. The

strategy Y:, only needs to know whether a term t YW-cycles within its own size. From

now on we abbreviate cyclic(t, Itl,Yw) with o(t).

Definition 5.1. Let t be a reducible term. By induction on It(we define a redex position

Y&t) E Pm(t). If ItI = 1 then t is a reducible constant and we define Y”,(t) = E. Let

t = f(q,..., s,). If t is a redex then we define Y&t) = E. Suppose t is not a redex. Let

m be the number of reducible terms among si , . . . , s,. We have 1 Q m 6 n. The reducible

arguments of t are ordered according to their size. If two reducible arguments have

the same size, the one to the left is considered first. Formally, there exists an injective

map II from { 1,. . . ,m} to { 1,. . . ,n} such that

l sn(i) is reducible for all i E { 1,. . . , m},

S. Antony. A. MiddeldorpITheoretical Computer Science 165 (1996) 75-95 87

l l.~(l)l G bn~2)l G . ’ . G l~n(m)l, and

l if /&+)I = I%(j) 1 with 1 di < j <m then z(i) < z(j).

According to the induction hypothesis, Y&s) is already defined for all terms s with
1.~1 < ItI. Hence, we can determine the validity of @(s,(i)) for all i E { l,...,m}. If
there is an i E { 1,. . ,m} such that @(s,ci)) does not hold then we take the smallest
such i and define YU(t) = n(i). Y&s,(~,). If there is no such i then we let ,sPw(t) =

r@) * I&,.

It is easy to see that Sp, only selects outermost redexes. We find it convenient to

introduce some terminology relating to the selection of the arguments I,, . . . ,sncm)

of t in Definition 5.1. If 1 di < j <m then we call S=(i) a predecessor of ST(j) and
we call Sz(j) a SUCCESSOR of am. If 1 Qi < m and @(s,(j)) holds then we say that
s+) is useless in t. So if 9&(t)>n(k) then all predecessors of sx(b) are useless in t.
We conclude this section by illustrating the workings of our strategy Sp, on a small
example.

Example 5.2. Consider the (almost orthogonal) TRS

I Tvx +T

B=
xvT +T

LvJ -+I

and the term ti = (-L V co) V (cc V (T V I)). We have sP,(J_ V cm) = 2 and hence
I v co -+yaj _L v co. So the first argument of fi 9’m-cycles within its own size.

Therefore Y&tl) = 2.YU(c0V(TVl)). Because O(oo) we have ~~(~V(TVI)) =

2 . Yu(T V _L). The term T V _L is a redex, so Y&T V I) = E. We conclude that
Y&(Q) = 2.2 and consequently tl -+spo (iVm)V(ceVT) = t2. We already know that
@(i V co). Hence, Y&t*) = 2 s Lf’m(co V T) = 2 since 00 V T is a redex. Therefore
t2 +~z” (J_ V co) V T = $3. The term t3 is a redex and thus 4 --+g,, T. So our strategy
needs three steps to normalize the term tl.

6. No~~zation

In this section we establish a relationship between our strategy Z% and so-called
outermost-fair reductions. In [8] this concept - O’Donnell uses the terminology euen-
tualiy outermost - is defined for almost orthogonal TRSs. The definition we give below
applies to all TRSs. It is equivalent to the one in [7], except that we only consider
i~~~ite reduction sequences.

Definition 6.1. An infinite reduction sequence 9 is called outermost-fair if there do
not exist a position p and an index n 3 1 such that for all i 3 n, 9[i]lP is an outermost
redex in 9[i] which is not contracted in the reduction step 93[i, i + 11. If 9 is not

88 S. Antony, A. Middeldorp I Theoretical Computer Science 165 (1996) 75-95

outermost-fair then every position p satisfying the above condition is said to be unfairly

treated by 9. If a position is unfairly treated by 9 we also say that the corresponding

outermost redex is unfairly treated. These notions carry over to a cycle $2 via the

associated infinite reduction sequence 5P.

Let us illustrate the concept of outermost-fairness by means of two examples. The

infinite reduction sequence 91: f(a) + g(f(a)) --+ g(g(f(a))) + . . . with respect to

the TRS

a-+b

f(x) -+ g(f(x))

is outermost-fair since every term in 91 contains a single outermost redex which is

immediately contracted. The infinite reduction sequence 92: f(a,c) -+ f(a,d) -+

f(a, c) -+ S(a, d) + . . . with respect to the TRS

a-+b

c-+d

f(x,d) + f(x>c)

is also outermost-fair. Observe that redex a in 92 is only half of the time an outermost

redex, even though it is never contracted.

Next we show that if YU fails to normalize a term t then there exists an (infinite)

outermost-fair reduction sequence starting from t. The proof proceeds in three steps.

First we show that every outermost redex unfairly treated in an YU-reduction sequence

is a subterm of an YW-cyclic subterm (Lemma 6.3). This result is used to show that

if a term admits an YU-cycle then it has a cycle in which no position is unfairly

treated (Lemma 6.6). Finally, we transform a presupposed infinite YP,-reduction se-

quence into an outermost-fair reduction sequence by simply inserting enough cycles

(Theorem 6.7).

Definition 6.2. Let g be an infinite reduction sequence. We say that a property 9 of

terms eventuaZZy holds for 52 if 9 holds for all but a finite number of terms in 9.

Observe that a position p is unfairly treated by an infinite Ym-reduction sequence 9

if and only if the property “tl, is an outermost redex in t and Y&t) 11 p” eventually

holds for 9.

Lemma 6.3. Zf a position p is unfairly treated in an .Yw-reduction sequence 23 then
there exist a term t, an index N B 1, and a position E < q < p such that t is Y,-cyclic

and 9[i]Is = t for all i 2 N.

Proof. Suppose 59: tl -‘ya t2 +yw . . is an infinite reduction sequence in which

position p is unfairly treated. This implies the existence of an index A4 in 9 and a

S. Antony, A. Middeldorp I Theoretical Computer Science 165 (1996) 75-95 89

position p such that for all i>M p is the position of an outermost redex of ti which is

never chosen by YU. Since .Yw is an outermost strategy, it cannot be unfair to position

E, consequently p # E. Thus, 9, treats p unfairly only by continuously choosing from

A4 onwards some position disjoint from p, despite the fact that p is the position of an

outermost redex. In 93, infinitely many choices of Ya must fall under some position

q (possibly E) above p, but only finitely many can fall under some other position

(possibly p itself) below q. More precisely, there exist a position q and a positive

integer k such that

. qk<p,
l Ym(ti) > q for infinitely many values of i>M, and

a Ym(ti) > q.k for finitely many values of ia:M.

Hence, there exists an index N in 9, N aA4, such that no choice of 9, falls under

q.k from N onwards, i.e., there is no i>N such that sPa(ti) > q.k. The subterm of

tN at q is compound, since q is strictly above p. Let tNlq = f(q). . , s,). Since for all

i>M, p is the position of an outermost redex of ti which is never chosen by Yw, no

reduction ever takes place above p from M onwards. Thus, for all i 2N, tilq is of the

form f(sf,..., sb). Since for all i >N, no reduction takes place below q-k, si = Sk for

all i >N. We show that Sk is YU-cyclic. Since infinitely many reductions take place

below position q, according to the pigeon-hole principle there exists a j E { 1,. . . , n}

such that Ym(ti)aq.j for infinitely many values of i>N. Let I be the set of these

values. For any i E I, either Sk is a predecessor of .$, or Sk is a successor of si. First

suppose that Sk is a successor of sj for all i E I. This implies that the sequence

where I = {il,i2,i3 ,. ..} with il < i2 < i3 < . .., contains a cycle, for otherwise there

would be an I E I such that I.$[> ISk 1 and consequently Sk would be a predecessor of

sj. Let sy (with m E I) be a biggest term in such a cycle. Then, SF cycles within its

own size. Hence, sr is useless in t,+, which is impossible since m E I. We conclude

that there exists an i E I such that Sk is a predecessor of $. This implies that Sk is

useless in tiiq since a redex in sj is selected by YU. Therefore Sk is Yv,-cyclic, which

proves the lemma. Cl

The following technical result states that if YU selects a redex in subterm tl, of

t, then instead of applying 9, to t we can also replace its subterm tl, by the result

of applying YU to tip, without changing the final outcome. This does not hold if the

contractum of a redex depends on the term in which the redex occurs (cf. the remarks

in Section 2).

Lemma 6.4. Zf Y,(t)3p then tYw = t[tlpYulp.

Proof. We use induction on the position p. If p = E then the result trivially holds.

Suppose p = i.q. In the following we write ti instead of tli. From the definition of YU

90 S. Antony, A. Middeldorp I Theoretical Computer Science 165 (1996) 75-95

we infer that Y&t) = i. Yw(ti). Hence,

ty0J = t[contract(tl~“(,))l~~(f)

= t[ContraCt(tli.~,(t,))li,~~(~*,(t,)

= t[ti[contract(tli.~~(~,))l~~(~~)li

= ~[~i[c~~~~~ct(~i~~~(ri))1~~4P,(t,)li

= t[tisPa]i.

Since Yu(ti)aq, the induction hypothesis yields tiYw = ti[(tilq)cYm]q and therefore

tyf = t[ti[tilq~colqli

= t[hlq~coliq

= m&%1p. q

Lemma 6.5. Let 9 be any YP,-reduction sequence. If p is a position in 9[1] such
that no redex at a position q < p is contracted in 9, then ~2~ is an YW-reduction

sequence.

Proof. Let t + tYo be an arbitrary reduction step in 9. We have to show that tl, --+gw

tg0J Ip . If Y&t) I] p then t,4”+, = (t[contract(tl~~(~))l~~(t))lp = Q,. If ydO> P then

tzqp = (&%&J)~p = Ip t Yu by using Lemma 6.4, and hence tip +x,> tYUIP. 0

Lemma 6.6. Zf a term t ,4p,-cycles then there exists a cycle of t in which every
position is fairly treated

Proof. From an YU-cycle of t we construct a new cycle of t in which every position

of t is fairly treated. We prove the lemma by structural induction on t. Let 9 be an

9’U-cycle of t. If t is a constant then it is contracted in 9 and the only position of t,

E, is treated fairly. Suppose t = f(sl,. . . , n) and let P be the set of all positions that

are unfairly treated by 9. Observe that P c Pas(t). Let p E P. We show that there

exists a cycle gP of t in which position p is fairly treated. Since an outermost strategy

cannot treat unfairly position E, p # E. Hence, p = k . p’ for some k E { 1,. . . , n}. We

show that Sk YU-cycles. If a redex in Sk is contracted in 9 then Lemma 6.5 gives

us an y&cycle of Sk, namely glk : Sk -+gw Sk. If no redex in Sk is contracted in 9,

then p’ is a position unfairly treated in 2P, the Ym-reduction sequence of t. In this

situation, Lemma 6.3 proves the existence of an YU-cyclic term at or below position

k. Thus, Sk iS y,-CyCk alSO if no redex in Sk iS contracted in 9, SinCe Sk ~m-CyCkS

and is a proper subterm of t, according to the induction hypothesis there exists a cycle

of Sk, say gp’, in which position p’ is fairly treated. By adding context, we construct

a cycle of t in which position p is fairly treated. More precisely, let C be the context

t[o]k and define gP = C[9Pt]. Now 9YP is a cycle of t in which position p is fairly

treated. The concatenation of 9 and gP is a cycle of t that is fair to p. Thus, all that

S. Antony, A. MiddeldorplTheoretical Computer Science 165 (1996) 75-95 91

remains to be done is to extend 9 with a “corrective” cycle for each position unfairly

treated. Suppose P = ~1,. . . , pm. The reduction sequence 9; aP, ; . . . ; LBpm is a cycle

of t in which every position is fairly treated. 0

Our main theorem is easily derived from the preceding lemma.

Theorem 6.7. Zf 9, fails to normalize some term then there exists an outermost-fair

reduction sequence starting from that term.

Proof. Suppose 9 is an infinite YU-reduction sequence. For every i 2 1 we define a

reduction sequence 9i: 9[i] +* 9[i] as follows. Let Pi C .Yos(9[i]) be the set of all

positions p with the property that 93[i]Ip YU-cycles. From the preceding lemma we

learn that for every p E Pi there exists a cycle gP of 9[i] in which every position

is fairly treated. We define 9i as the concatenation of all those cycles. (If Pi = 0
then 9i is the empty reduction sequence from 9[i] to 9[i], otherwise 9i is a cycle of

g[i].) Now it is easy to see that the sequence gi; 9[1,2]; 9~; 9[2,3]; 9s; 9[3,4];. . .

is outermost-fair. q

O’Donnell [8] obtained the following result.

Theorem 6.8. Let 92 be an almost orthogonal TRS. Zf a term admits an outermost-
fair reduction sequence then it does not have a normal form. 0

The normalization of the parallel-outermost strategy for almost orthogonal TRSs is

an immediate consequence of Theorem 6.8. Actually, from Theorem 6.8 it follows that

parallel-outermost is hypernormalizing, i.e., we are able to find normal forms even

if we perform (finitely many) arbitrary reductions between successive applications of

the parallel-outermost strategy. This in turn implies the hypemormalization of the full-

substitution or Gross-Knuth strategy for almost orthogonal TRSs (cf. [8]).

Combining Theorem 6.8 with Theorem 6.7 yields the normalization of Ym for almost

orthogonal TRSs.

Corollary 6.9. The strategy 9, is normalizing for almost orthogonal TRSs.

It should be noted that, unlike parallel-outermost, 9, is not hypemormalizing. An

example is provided by the TRS

a + f(b)
f(b) + a

c--+d

gkd) + d

The term g(a,c) is normalized by Ym: g(a,c) + g(f (b),c) 4 g(f(b),d) -+ d. How-

ever, if we contract the leftmost-outermost redex f(b) after the first YU-step g(a, c) +
g(f (b), c), we obtain a cycle.

92 S. Antony. A. Middeldorp I Theoretical Computer Science 165 (1996) 75-95

7. Concluding remarks

The ingenious proof of Theorem 6.8 in [8] is not easily digested. In the appendix

of Bergstra and Klop [l], O’Donnell’s proof is presented in a more accessible setting

and is also generalized to combinatory reduction systems. (Although only orthogonal

systems are considered in [l], the presence of trivial overlays does not cause any

problems.) We would like to remark that for orthogonal TRSs, Theorem 6.8 is easily

derived from the work of Huet and Levy [4] on needed reduction: it is not difficult to

show that in every outermost-fair reduction sequence infinitely many needed redexes

are contracted. In Section 2 we already remarked that the restriction to orthogonal

TRSs is essential in the work of Huet and Levy. Sekar and Ramakrishnan [131 showed

that by generalizing the concept of needed redex to necessary set of redexes the main

results of [4] carry over to the almost orthogonal case. In particular, contraction of

necessary sets of redexes is hypemormalizing.

It is interesting to note that (in the case of almost orthogonal TRSs) the normalization

of both the parallel-outermost strategy and our sequential strategy ~7~ is based on

Theorem 6.8. So it is worthwhile to try to extend Theorem 6.8 to a more general class

of TRSs. Van Raamsdonk [12] recently obtained the following result.

Theorem 7.1. Let 6% be a weakly orthogonal TRS. If a term admits an outermost-fair

reduction sequence then it does not have a normal form.

Corollary 7.2. The strategy 9, is normalizing for weakly orthogonal TRSs.

As a matter of fact, van Raamsdonk proves her result for the much larger class

of (weakly orthogonal) Higher-Order Rewriting Systems of van Oostrom [9]. We be-

lieve that also the class of strongly sequential left-linear root-balanced joinable TRSs

considered by Toyama [14] should fall within the scope of Theorem 6.8.

Whereas all infinite reduction sequences produced by the parallel-outermost strategy

are outermost-fair, this is not the case for YU. The following example shows that P’,

ignores an outermost redex when it ‘believes’ that there is no reason to contract it.

Example 7.3. Consider the TRS

a+b

c+c

f (b,x) -+ f (a,x)

and the term t = h(f (a,b),ddc))). We have f (a,b) -)Y,” f C&b) +z,, f (a,b>, so
the first argument of t Ym-cycles within its own size. Hence, the second argument

of t is selected for reduction, which of course gives t -+y(,, t. Thus Y,, produces an

infinite reduction sequence in which position 1.1 (corresponding to outermost redex a)
is unfairly treated.

S. Antony, A. Middeldorp I Theoretical Computer Science 165 (1996) 75-95 93

In the above example both arguments of the term under consideration YU-cycle

within their own size. Since the TRS is (almost) orthogonal, we might as well stop

the evaluation since the term cannot have a normal form. This is justified by our next

result.

Theorem 7.4. Let 92 be an almost orthogonal TRS and t = f (sl,. . . ,s,) a term that

is neither a redex nor a normal form. If for all i E { 1,. . . , n} si is a normal form or

@(si) then o(t).

Proof. Since all reducible arguments oft are YU-cyclic within their own size, t itself is

YU-cyclic within its own size, unless after some contractions in its YU-cyclic arguments

a redex is created, say t +&<,, f (s/l,. . . ,sA) = t’ with t’ a redex. For all i E { 1,. , n}

we have si -$ s; +; si, hence redex t’ can be rewritten to t by internal (i.e.

at positions diffirent from a) contractions. Because W is almost orthogonal, redexes

cannot be destroyed by internal contractions. Therefore, t must be a redex, contrary to

the assumption. We conclude that t Yw-cycles within its own size. 0

According to Corollary 6.9, in the case of almost orthogonal TRSs, a(t) implies

that t has no normal form. Hence, Theorem 7.4 shows how our strategy can be used

to detect non-termination. If we are faced with a redex t, we can of course also

check whether a(t) holds in order to avoid unnecessary infinite computations. These

considerations do not generalize to arbitrary TRSs, as shown in the next example.

Example 7.5. Consider the TRS

a+b

b-+a
c-c

f(b,x) + d

and the term t = f (a,~). Both arguments of t YU-cycle within their own size. Never-

theless, t has a normal form which can be reached by means of the outermost reduction

sequence

f(a,c) -+ f(b,c) 4 d.

Observe that YU will select redex c in t and hence produce an infinite reduction

sequence that is not outermost-fair. It should be noted that the above TRS is not

root-balanced joinable (in the terminology of Toyama [14]).

One possibility to extend the class of systems for which our strategy is normalizing

is that in the case all reducible arguments of a term that is not a redex YU-cycle within

their own size, we may look for a combination of terms in these cycles that creates a

redex upwards. For instance, in the above example we see that the combination b and

c in the cycles a +,z,> b +~z,, a and c +Y”, c creates the redex f (b, c) which contracts

94 S. Antony, A. Middeldorpl Theoretical Computer Science I65 (1996) 75-95

to normal form d. Even if such a combination does not exist we can still test whether
it is possible to redefine the mapping rule - which assigns rewrite rules to redexes - in
such a way that the present deadlock situation disappears, at least temporarily. These
ideas should be investigated further.

In the final example of the paper we justify our earlier claim that our sequential
strategy YW sometimes succeeds where parallel-outermost fails.

Example 7.6. Consider the non-lee-linear TRS

of Klop [6]. This well-known TRS shows that non-lee-lineage destroys confluence,
even in the absence of critical pairs. The following reduction sequence shows that our
strategy YW normalizes the constant c:

whereas the p~allel-oute~ost strategy produces an infmite outermost-fair sequence:

c --+* g(c) ---)* f(G g(c)) -+* f(C?(c), f(G g(c))) -+* . *

Unfortunately, our strategy 9, does not normalize all terms of LB??. For instance, a
term like ~(g(c),g(g(c))) can only be normalized if we allow contraction of redexes
that are not outermost. Nevertheless, it can be shown that the set of terms which can
be normalized by YW properly includes those for which parallel-outermost succeeds.
Of course, if we drop the rewrite rule g(x) 4 S&g(x)) from W then we obtain a
confluent TRS for which our strategy Ym, unlike parallel-outermost, is normalizing.

This example shows in particular that Theorem 6.8 does not hold for non-lea-linear
TRSs (without critical pairs).

References

[l] J.A. Bergstra and J.W. Klop, Conditional rewrite rules: conffuence and termination, J. Comput. System
Sci. 32 (1986) 323-362.

[2] H. Comon, Sequential&y, second order monadic logic and tree automata, in: Proc. 10th IEEE Symp.
on Logic in Computer Science, San Diego (1995) 508-517.

[3] N. Dershowitz and J.-P. Jouannaud, Rewrite systems, in: J. van Leeuwen ed., Handbook of Theoretical

Computer Science, Vol. B (Noah-~oliand, Amsterdam, 1990) 243-320.

143 G. Huet and J.-J. Levy, Compu~tions in orthogonal rewriting systems, I and II, in: J.-L. Lassez and

G. Plotkin, eds., Cornp~tat~~na~ Logic, Essays in Honor of Alan Robinson (MIT Press, NewYork,

1991) 396-443. previous version: Call by need computations in non-ambiguous linear term rewriting

systems, Report 359, INRIA, 1979.

[5] J.R. Kennaway, Sequential evaluation strategies for parallel-or and related reduction systems, Ann. Pure
Appl. Logic 43 (1989) 31-56.

S. Antony, A. Mddeldorpl Theoretical Computer Science 165 (1996) 75-95 95

[6] J.W. Klop, Combinatory reduction systems, Ph.D. Thesis, Mathematical Centre Tracts, Vol. 127, Centre

for Mathematics and Computer Science, Amsterdam, 1980.

[7] J.W. Klop, Term rewriting systems, in: S. Abramsky, D. Gabbay and T. Maibaum, eds., Handbook of
Logic in Computer Science, Vol. II (Oxford Univ. Press, Oxford 1992) 1-116.

[S] M.J. O’Donnell, Computing in Systems Described by Equations, Lecture Notes in Computer Science,

Vol. 58, 1977.

[9] V. van Oostrom, Confluence for abstract and higher-order rewriting, Ph.D. Thesis, Vrije Universiteit,

Amsterdam, 1994.

[IO] M. Oyamaguchi, NV-sequentiality: a decidable condition for call-by-need computations in term rewriting

systems, SIAM J. Comput. 22 (1993) 114-135.

[ll] S. Porat and N. Francez, Fairness in term rewriting systems, Methods Logic Comput. Sci. 1 (1994)

141-181.

[12] F. van Raamsdonk, On normalising strategies, in: Proc. 2nd Internat. Workshop on Higher-Order
Algebra, Logic and Term Rewriting, Paderbom, Lecture Notes in Computer Science, 1995, to appear.

[13] R.C. Sekar and I.V. Ramakrishnan, Programming in equational logic: beyond strong sequentiality,

Inform. Comput. 104 (1993) 78-109.

[14] Y. Toyama, Strong Sequentiality of left-linear overlapping term rewriting systems, in: Proc. 7th IEEE
Symp. on Logic in Computer Science, Santa Cruz (1992) 274-284.

