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Recent studies have demonstrated that in anisotropic environments a coherent spin-flip term arises in 
the Quantum Kinetic Equations (QKEs) which govern the evolution of neutrino flavor and spin in hot and 
dense media. This term can mediate neutrino–antineutrino transformation for Majorana neutrinos and 
active-sterile transformation for Dirac neutrinos. We discuss the physical origin of the coherent spin-flip 
term and provide explicit expressions for the QKEs in a two-flavor model with spherical geometry. In this 
context, we demonstrate that coherent neutrino spin transformation depends on the absolute neutrino 
mass and Majorana phases.
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1. Introduction

The evolution of an ensemble of neutrinos in hot and dense media is described by an appropriate set of quantum kinetic equations 
(QKEs), accounting for kinetic, flavor, and the often neglected spin degrees of freedom [1–10]. QKEs are the essential tool to obtain a 
complete description of neutrino transport in the early universe, core collapse supernovae, and compact object mergers, valid before, 
during, and after the neutrino decoupling epoch (region). A self-consistent treatment of neutrino transport is highly relevant because in 
such environments neutrinos carry a significant fraction of the energy and entropy, and through their flavor- and energy-dependent weak 
interactions play a key role in setting the neutron-to-proton ratio [11], a critical input for the nucleosynthesis process.

Recent studies [8,10] have demonstrated that the QKEs acquire a coherent spin-flip in regions where the spatial (anti)neutrino fluxes are 
anisotropic or where there exist anisotropic matter currents. Such anisotropy can exist in a core-collapse supernovae or compact object 
merger environments. This spin-flip term can mediate neutrino–antineutrino transformation for Majorana neutrinos and active-sterile 
transformation for Dirac neutrinos. Moreover, it was shown in Ref. [7] that a general treatment of neutrino ensembles should include 
correlations that pair neutrinos and antineutrinos of opposite momenta. The coupling to these new densities to the standard density 
matrices has been worked out explicitly in Ref. [10]. In this work we neglect these terms as their effect primarily generates coherence of 
opposite-momentum neutrinos only for very long-wavelength modes, with λde Broglie ∼ λscale-height, where λscale-height is the length scale 
characterizing a given astrophysical environment. Significant feedback effects from the long-wavelength modes could alter the analysis 
presented below, and this deserves a separate study.

In this letter we further elaborate on the terms of the QKEs describing coherent neutrino evolution (i.e. neglecting inelastic collisions). 
The novel aspects of this work are:

• We discuss the physical origin of the coherent spin-flip term in the framework of an MSW-like effective Hamiltonian, in analogy to 
the spin-(flavor) oscillations induced by neutrino magnetic moments in a magnetic field.

• We provide explicit expressions for the coherent QKEs in a two-flavor model with spherical geometry, amenable for a computational 
implementation. This is the first step towards a realistic exploration of the impact of helicity oscillations in astrophysics environ-
ments.
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• We point out the dependence of the QKEs (through the neutrino–antineutrino conversion term) on the neutrino absolute mass scale 
and Majorana phases. We also compare and contrast neutrino-less double beta decay and neutrino spin transformation in astrophysical 
environments as probes of these parameters.

2. Spin-mixing term

Refs. [8,10] have pointed out that in anisotropic environments the QKEs entail a new term that drives coherent conversion between 
different helicity states (of any flavor). An important feature of the new term is that it induces qualitatively different effects for Dirac and 
Majorana neutrinos. In the Dirac case, the mixing term converts active left-handed neutrinos to sterile right-handed states. On the other 
hand, in the Majorana case the mixing term enables conversion of neutrinos into antineutrinos. Given the potentially high impact of the 
spin-flip term, here we discuss its physical origin in a framework that does not involve the intricacies of non-equilibrium quantum field 
theory. Indeed, as argued below, the basic physics of this term can be understood in the case of one-flavor Dirac neutrinos even at the 
first-quantized level.

Physically, spin oscillations are induced by the axial-vector potential generated by forward scattering of neutrinos on the background 
matter and background neutrinos themselves. To illustrate this point, let us first consider the evolution of neutrinos in external chiral four-
vector potentials �μ

L,R (we will give their explicit expressions later on). Since our discussion parallels the analysis of spin-flip transition 
induced by a neutrino magnetic moment in an external magnetic field [12,13], we also include in the interaction Lagrangian the familiar 
magnetic-moment term. Suppressing flavor indices (μν and �L,R are matrices in flavor space) the interaction Lagrangian is given by

Lint = −ν̄L/�RνL − ν̄R/�LνR +
(μν

2
ν̄Rσμν F μννL + h.c.

)
. (1)

The Majorana case is obtained by replacing νR → νc
L , �L → −�T

R , and setting to zero the diagonal elements μii
ν (for Majorana neutrinos 

μ
ji
ν = −μ

i j
ν ). Given this interaction, our goal is to obtain an effective Hamiltonian in spin(-flavor) space, with off-diagonal components 

giving the helicity mixing [13]. Since the essential physics of spin oscillations is already present in the one-flavor case, to keep the 
discussion as simple as possible we consider the case of one-flavor Dirac neutrinos, with real magnetic moment. In this case the interaction 
Lagrangian is

Lint = μν

2
ν̄σμν F μνν − 1

2
ν̄/�V ν − 1

2
ν̄/�A γ5ν , (2)

where we have defined the vector and axial-vector potentials as �μ
V ,A ≡ �

μ
L ± �

μ
R = (�0

V ,A, ��V ,A).
In a first-quantized approach [12], the Dirac Hamiltonian corresponding to the interaction (2) is

H = H0 + �H , H0 = p̂ · �α + βm , �H = μν β �� · �B +
(
�0

V − ��V · �α
)

+
(
γ5�

0
A − ��A · ��

)
, (3)

with β = γ 0, �α = γ 0 �γ , and �� = diag(�σ , �σ). Defining the helicity operator h ≡ p̂ · �, already at this level one sees that while [H0, h] = 0, 
in general [�H, h] �= 0, unless ��A and �B are parallel to the momentum �p. So the energy eigenstates are in general mixtures of helicity 
eigenstates, and we reach the conclusion that magnetic fields and/or axial-vector potentials transverse to the direction of motion induce 
helicity oscillations.

To quantify the helicity mixing effect, it is more convenient to work within the second-quantized quantum field theory approach [13]. 
One can define the 2 × 2 effective Hamiltonian in helicity space Hhh′ by computing transition amplitudes between massive neutrino states 
labeled by momentum �p and helicity h ∈ {L, R} namely

〈�p′,h′ | �p,h〉 ≡ −i(2π)4 2E �p δ(4)(p − p′) Hh′h(p). (4)

To first order in the interaction (2) and to all orders in m/|�p| (with the notation p ≡ |�p|, E = √
m2 + p2), following the steps outlined in 

Appendix A we find

HLL(p) = E + p

4E

{
− 4r(p)μν p̂ · �B − (1 − r(p)2)�0

A + (1 + r(p)2)p̂ · ��A + (1 + r(p)2)�0
V − (1 − r(p)2)p̂ · ��V

}
(5)

HR R(p) = E + p

4E

{
+ 4r(p)μν p̂ · �B + (1 − r(p)2)�0

A − (1 + r(p)2)p̂ · ��A + (1 + r(p)2)�0
V − (1 − r(p)2)p̂ · ��V

}
(6)

HLR(p) = E + p

2E

{
(1 + r(p)2)μν x̂+ · �B − r(p) x̂+ · ��A

}
(7)

HRL(p) = E + p

2E

{
(1 + r(p)2)μν x̂∗+ · �B − r(p) x̂∗+ · ��A

}
, (8)

where

r(p) = m

E + p
1 + r(p)2 = 2E

E + p
1 − r(p)2 = 2p

E + p
, (9)

and x̂+ ≡ eiφp (x̂1 + ix̂2) with x̂1,2 defined so that (x̂1, ̂x2, p̂) form a right-handed triad. The choice of x̂1,2 orthogonal to p̂ is arbitrary up to 
a rotation along the p̂ axis. We use here the “standard gauge” specified by choosing the same azimuthal angle for x̂1 and p̂ (φx1 = φp),1

with unit vectors Cartesian coordinates expressed in terms of the polar and azimuthal angles (θp , φp) by

1 In Ref. [8] a different “gauge” was used, in which a rotation by −φp was made in the x̂1–x̂2 plane. With this choice the phase factors e±iφp disappear from all formal 
expressions, but the algebra to obtain dot products of x̂1,2(p) with other vectors is more cumbersome.
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p̂ = (sin θp cosφp , sin θp sinφp , cos θp) (10)

x̂1 = (cos θp cosφp , cos θp sinφp , −sin θp) (11)

x̂2 = (−sin φp , cosφp , 0) . (12)

From the results in (5)–(8) one sees explicitly that helicity mixing occurs only due to components of �B and ��A transverse to the mo-
mentum. Note that factors of r(p) involving one power of mass appear whenever needed to provide the appropriate helicity flip: in 
absence of mass, axial-vector couplings are helicity conserving while magnetic dipole couplings are helicity-flipping. Note that r(p) pro-
vides a suppression factor for axial-induced spin flip amplitude at |�p| � m, while it is O (1) at |�p| ≤ m. Besides displaying helicity-flip 
transitions, the results in (5)–(8) also encode the known medium birefringence effect [14]: from parity-violating interactions (�A �= 0) 
left-handed and right-handed states of momentum �p acquire different energy shifts, with energy splitting proportional to �0

A − ��A · p̂. 
Finally, taking the limit m/|�p| � 1, these results reproduce the findings of Refs. [8,10], where the more general multi-flavor case was 
considered.

While so far we have treated the potentials �μ
V ,A as external fields, in a complete calculation these are induced by forward scattering 

on a background of matter and (anti)neutrinos. The only difference with respect to the standard MSW [15–17] analyses is that here we 
keep non-zero space-like components of the matter- and neutrino-induced potentials ( ��V ,A �= 0), as done for example in Ref. [18]. The 
explicit expressions (given below) are not crucial to understand the physical origin of the helicity mixing effect, the key point being 
the spin-dependent axial coupling. So in summary, neutrino interactions in a non-isotropic medium induce a coupling of the neutrino 
axial current to an axial-vector potential �μ

A ≡ �
μ
L − �

μ
R = (�0

A, ��A) (see Eq. (2)). The time-like component �0
A induces the well known 

birefringence effect. The space-like potential ��A has a twofold effect: (i) its component ��A · p̂ parallel to the neutrino propagation gives 
an additional contribution to the energy splitting of L and R states; (ii) its component transverse to �p induces mixing of the L and R
states. In general these effects are flavor dependent, as �μ

A carries flavor indices.

3. QKE’s for coherent neutrino evolution

Having established the existence of the helicity-mixing term in the effective Hamiltonian through simple quantum-mechanical consid-
erations, we next summarize how this new term appears in the QKEs [8,10]. In Ref. [8] the QKEs describing the evolution of Majorana 
neutrinos were derived using field-theoretic methods. These QKEs generalize earlier work [1–6] in two respects: (i) They include spin 
degrees of freedom; (ii) They include effects up to second order in small ratios of scales characterizing the neutrino environments we 
are interested in. Specifically, we treat neutrino masses, mass-splitting, and matter potentials induced by forward scattering, as well 
as external gradients as much smaller than the typical neutrino energy scale E , set by the temperature or chemical potential: namely 
mν/E ∼ �mν/E ∼ �forward/E ∼ ∂X/E ∼ O (ε).2 The inelastic scattering can also be characterized by a potential �inelastic ∼ �forward × G F E2

which we therefore power-count as �inelastic/E ∼ O (ε2). This power-counting is tantamount to the statement that physical quantities vary 
slowly on the scale of the neutrino de Broglie wavelength.

3.1. Neutrino density matrices

QKEs are the evolution equations for suitably defined dynamical quantities that characterize a neutrino ensemble, which we will re-
fer to (with slight abuse of language) as neutrino density matrices. In the most general terms a neutrino ensemble is described by the 
set of all 2n-field Green’s functions, encoding n-particle correlations. These obey coupled integro-differential equations, equivalent to the 
BBGKY equations [19]. As discussed in Refs. [1,8], for weakly interacting neutrinos (�/E ∼ O (ε, ε2)) the set of coupled equations can be 
truncated by using perturbation theory to express all higher order Green’s functions in terms of the two-point functions. In this case the 
neutrino ensemble is characterized by the full set of one-particle correlations.3 One-particle states of massive neutrinos and antineutrinos 
are specified by the three-momentum �p, the helicity h ∈ {L, R}, and the family label i (for eigenstates of mass mi ), with corresponding an-
nihilation operators ai,�p,h and b j,�p,h satisfying the canonical anti-commutation relations {ai,�p,h, a†

j,�p′,h′ } = (2π)3 2 ωi(�p) δhh′ δi j δ
(3)(�p − �p′), 

etc., where ωi(�p) =
√

�p2 + m2
i . Then, the ensemble is specified by the matrices f i j

hh′(�p) and f̄ i j
hh′(�p) defined by

〈a†
j,�p′,h′ ai,�p,h〉 = (2π)3 2nij(�p) δ(3)(�p − �p′) f i j

hh′(�p) , (13)

〈b†
i,�p′,h′ b j,�p,h〉 = (2π)3 2nij(�p) δ(3)(�p − �p′) f̄ i j

hh′(�p) , (14)

where 〈. . .〉 denotes the ensemble average and the normalization factor can be chosen as nij = 2ωiω j/(ωi + ω j).4 For inhomogeneous 
backgrounds, the density matrices depend also on the space–time label, denoted by x in what follows.

Despite the intimidating index structure, the physical meaning of the generalized density matrices f i j
hh′ (�p) and f̄ i j

hh′(�p) is dictated 
by simple quantum mechanical considerations: the diagonal entries f ii

hh(�p) represent the occupation numbers of neutrinos of mass mi , 
momentum �p, and helicity h; the off diagonal elements f i j

hh(�p) represent quantum coherence of states of the same helicity and different 
mass (familiar in the context of neutrino oscillations); f ii

hh′(�p) represent coherence of states of different helicity and the same mass, and 
finally f i j

hh′ (�p) represent coherence between states of different helicity and mass.

2 In the early universe, the small lepton number implies �forward ∼ G F ne � mν ∼ �mν . This is not the case in supernovae.
3 As discussed in the introduction, we neglect here correlations that pair particles and antiparticles of opposite momenta [7,10].
4 The interchange i ↔ j in the definition of antiparticle distribution matrices is chosen so that under unitary transformations ν ′ = Uν , f and f̄ transform in the same 

way, i.e. f ′ = U f U † .
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Fig. 1. Feynman graphs contributing to �(x). External lines represent neutrinos. Internal lines represent ν , e, n, p propagators.

Fig. 2. Tree-level Feynman graphs whose forward-scattering contributions generate the 4-vector potential �μ(x).

In summary, the basic dynamical objects describing ensembles of neutrinos and anti-neutrinos are the 2n f × 2n f matrices,

F (�p, x) =
(

f LL f LR

f RL f R R

)
; F̄ (�p, x) =

(
f̄ R R f̄ RL

f̄ LR f̄ LL

)
, (15)

where we have suppressed the generation indices (each block fhh′ is a square n f × n f matrix). For Dirac neutrinos, one needs both 
F and F̄ , with f LL and f̄ R R describing active states. For Majorana neutrinos, one can choose the phases so that ai(�p, h) = bi(�p, h) and 
therefore fhh′ = f̄ T

hh′ (transposition acts on flavor indices). Therefore the dynamics is specified by f ≡ f LL , f̄ ≡ f̄ R R = f T
R R , and φ ≡ f LR , 

and one needs evolution equations only for the matrix F [8]:

F → F =
(

f φ

φ† f̄ T

)
. (16)

Strictly speaking, the above discussion in terms of creation and annihilation operators makes sense only within the mass eigenstate 
basis [20]. One can still define “flavor basis” density matrices fαβ in terms of the mass-basis f i j as fαβ = Uαi f i j U∗

β j , where U is the 
unitary transformation να = Uαiνi that puts the inverse neutrino propagator in diagonal form. While the QKEs can be written in any 
basis, we give our results below in the “flavor” basis.

3.2. Anatomy of the QKEs

A detailed derivation of the QKEs using field-theoretic methods is given in Ref. [8]. Keeping terms up to O (ε2) in the power counting 
discussed earlier on, the QKEs take the compact 2n f × 2n f form:

D �p,x F (�p, x) = −i
[

H(�p, x) , F (�p, x)
] + C(�p, x) ;

D̄ �p,x F̄ (�p, x) = −i
[

H̄(�p, x) , F̄ (�p, x)
] + C̄(�p, x) . (17)

The differential operator on the left-hand side generalizes the usual “Vlasov” term of transport equations. The first term on the right-hand 
side controls coherent evolution due to mass and forward scattering, generalizing the standard MSW [15–17]. Finally, the second term 
on the right-hand side encodes inelastic collisions and generalizes the standard Boltzmann collision term used in supernova neutrino 
analyses [21–29]. Here we focus on the “Vlasov”-type differential operators (D , D̄) and the Hamiltonian-like operators (H , H̄), describ-
ing coherent neutrino evolution. The analysis of inelastic collisions (C , C̄ ) was outlined in Ref. [8], where only a small subset of the 
contributions to C and C̄ was explicitly calculated. Full details on the collision terms will be presented elsewhere [30].

In order to provide the explicit form of the various operators appearing in (17), it is extremely useful to introduce the following 
notation. Given an ultra-relativistic neutrino of momentum �p , one can naturally introduce a basis formed by two light-like four-vectors 
nμ(p) = (1, p̂) and n̄μ(p) = (1, −p̂) (satisfying n · n = n̄ · n̄ = 0, n · n̄ = 2) and two transverse four vectors xμ

1,2(p) = (0, ̂x1,2) so that 
n · xi = n̄ · xi = 0 and xi · x j = −δi j . As discussed below Eq. (9), p̂ and the space-like components x̂1,2 of xμ

1,2 form a right-handed triad.
The key ingredients controlling coherent neutrino evolution are the neutrino mass matrix m and the 4-potential induced by forward 

scattering on matter and other neutrinos. In the non-equilibrium field-theory approach, forward scattering is encoded in the one-loop 
self-energy diagrams of Fig. 1. In the more familiar amplitude-based approach this physics is described by the diagrams in Fig. 2. The 
chiral 4-potentials can be arranged in the 2n f × 2n f structure

�μ(x) =
(

�
μ
R (x) 0
0 �

μ
(x)

)
. (18)
L
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�R and �L are the potentials for left-handed and right-handed neutrinos, respectively. For Dirac neutrinos �R �= 0 while �L ∝ G F m2 ∼
O (ε3) (massless right-handed neutrinos do not interact). On the other hand, in the Majorana case one has �L = −�T

R , with transposition 
acting on flavor indices. The potential induced by a background of electrons and positrons is given for any geometry by the following 
expressions:

[
�

μ
R

∣∣∣
e

]
I J

= 2
√

2G F

[(
δeIδe J + δI J

(
sin2 θW − 1

2

))
Jμ
(eL)

+ δI J sin2 θW Jμ
(eR )

]
(19)

Jμ(eL)
(x) =

∫
d3q

(2π)3
vμ

(e)(q)
(

feL (�q, x) − f̄eR (�q, x)
)

, (20)

Jμ(eR )(x) =
∫

d3q

(2π)3
vμ

(e)(q)
(

feR (�q, x) − f̄eL (�q, x)
)

, (21)

where vμ
(e) = (1, �q/

√
m2

e + q2 ), and we use the notation feL (�q, x) ( f̄eL (�q, x)) for the distribution function of L-handed electrons (positrons), 
etc. The nucleon-induced potentials have similar expressions, with appropriate replacements of the L- and R-handed couplings to the Z
and the distribution functions feL → f NL , etc. For unpolarized electron and nucleon backgrounds of course one has feL = feR = (1/2) fe , 
etc., and the nucleon contribution to the potential is

[
�

μ
R

∣∣∣
N

]
I J

= √
2G F C (N)

V Jμ(N) δI J , C (n)
V = −1

2
, C (p)

V = 1

2
− 2 sin2 θW . (22)

On the other hand, the neutrino-induced potentials are given by

[
�

μ
R

∣∣∣
ν

]
I J

= √
2G F

([
Jμ(ν)

]
I J

+ δI J Tr Jμ(ν)

)
(23)

Jμ(ν)(x) =
∫

d3q

(2π)3
nμ(q)

(
f LL(�q, x) − f̄ R R(�q, x)

)
, (24)

with nμ(q) = (1, ̂q). For a test-neutrino of three-momentum �p, these potentials can be further projected along the basis vectors: with light-
like component �κ ≡ n(p) · � along the neutrino trajectory (in the massless limit); and space-like component �i ≡ xi(p) · �, transverse 
to the neutrino trajectory. In particular, for the neutrino-induced contribution we find �κ(x) ∝ ∫

d3q (1 − cos θpq) · ( f LL(�q, x) − f̄ R R(�q, x)), 
consistently with the familiar results in the literature ([31] and references therein).

In terms of the mass matrix m and the potentials �μ
L,R , the Hamiltonian-like operators controlling the coherent evolution are given 

by

H =
(

H R H LR

H†
LR H L

)
H̄ =

(
H̄ R H LR

H†
LR H̄ L

)
, (25)

with

H R = �κ
R + 1

2|�p|
(

m†m − ε i j∂ i�
j
R + 4�+

R �−
R

)
(26)

H L = �κ
L + 1

2|�p|
(

mm† + ε i j∂ i�
j
L + 4�−

L �+
L

)
(27)

H LR = − 1

|�p|
(
�+

R m† − m† �+
L

)
, (28)

where �±
L,R ≡ (1/2) e±iφ (x1 ± ix2)μ �

μ
L,R . The antineutrino operators H̄ L,R can be obtained from H L,R by flipping the sign of the entire 

term multiplying 1/(2|�p|). The first two terms in H L,R are included in all analyses of neutrino oscillations in medium. �κ
L,R include 

the usual forward scattering of matter and neutrinos, and are functions of F , F̄ thereby introducing non-linear effects in the coherent 
evolution. The m†m/|�p| term encodes vacuum oscillations. The additional terms in H L,R and the spin-flip term H LR complete the set of
O (ε2) terms, and can be as important as m2/|�p| in supernova environments. The spin-flip term H LR is given in compact matrix form 
in (28), and its physical origin has been discussed in Section 2. Note that the spin-flip term H LR depends linearly on the mass matrix m, 
while the vacuum Hamiltonian depends on m†m. Therefore, as we will show explicitly later, the spin-flip term is sensitive to the absolute 
mass scale of the neutrino spectrum and (for Majorana neutrinos) to the Majorana phases.

Finally, using the compact notation ∂κ ≡ n(p) · ∂ = ∂t + p̂ · ∂�x , ∂ i ≡ xi(p) · ∂ = x̂i · ∂�x , the generalized Vlasov operators are (recall that 
the 2n f × 2n f potential �μ is defined in (18))

D �p,x F (�p, x) = ∂κ F + 1

2|�p|
{
�i, ∂ i F

}
− 1

2

{
∂�κ

∂�x ,
∂ F

∂ �p
}

(29)

D̄ �p,x F̄ (�p, x) = ∂κ F̄ − 1

2|�p|
{
�i, ∂ i F̄

}
+ 1

2

{
∂�κ

∂�x ,
∂ F̄

∂ �p
}

. (30)

The physical meaning of D and D̄ becomes more transparent by noting that they can be re-written as

∂t + 1 {∂�pω±, ∂�x } − 1 {∂�xω±, ∂�p }, (31)

2 2
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Fig. 3. Bulb model geometry.

with ω+ = |�p| + �κ in D and ω− = |�p| − �κ in D̄ . Recalling that ω±(�p) = |�p| ± �κ are the O (ε) neutrino (+) and anti-neutrino (−) 
Hamiltonian operators, one sees that D and D̄ generalize the total time-derivative operator dt = ∂t + �̇x ∂�x + �̇p ∂�p , with �̇p = −∂�x ω and 
�̇x = ∂�p ω, thus encoding the familiar drift and force terms.

4. The bulb model

The simplest realistic setup to explore the impact of helicity oscillations in supernovae is provided by the so-called bulb model. 
In this model one assumes spherical symmetry and further assumes that neutrinos are emitted isotropically, with a given spectrum and 
luminosity, from a sharply defined neutrino-sphere of radius r0 (see Fig. 3). In this section we provide explicit expressions for the coherent 
QKEs describing two-flavor Majorana neutrinos in the bulb model. These expressions are amenable to computational implementation and 
allow us to explicitly point out the dependence of QKEs on the absolute neutrino mass scale and the Majorana phase characterizing the 
two-flavor problem. Throughout the discussion, it is useful to keep in mind that the �μ

R potential in this geometry only has time-like and 
radial space-like components (the transverse components cancel).

To make contact with the existing literature on the subject [1,10,32,33], we introduce the following notation for the 2 × 2 blocks of the 
Majorana density matrix

f =
(

ρee ρex

ρ∗
ex ρxx

)
f̄ =

(
ρēē ρēx̄
ρ ∗̄

ex̄ ρx̄x̄

)
φ =

(
ρeē ρex̄
ρxē ρxx̄

)
, (32)

so that the flavor × spin density matrix for two flavors (νe , νx) is given by

F =
(

f φ

φ† f̄ T

)
=

⎛
⎜⎜⎝

ρee ρex ρeē ρex̄

ρ�
ex ρxx ρxē ρxx̄

ρ�
eē ρ�

xē ρēē ρ�
ēx̄

ρ�
ex̄ ρ�

xx̄ ρēx̄ ρx̄x̄

⎞
⎟⎟⎠ . (33)

The coherent QKEs for the density matrix are

D �p,x F(�p, x) = −i [H,F] , (34)

and the assumption of spherical symmetry implies that the density matrix depends only on p ≡ |�p| � E , u ≡ cos θp , and r, so that 
F(�p, x) →F(E, u, r).

Both the Vlasov differential operator D �p,x and the Hamiltonian H depend on the 4-potential �μ (18), that in spherical symmetry has 
a time-like and a space-like radial component

�μ =
(
�0

matter + �0
ν,

(
�r

matter + �r
ν

)
r̂
)

. (35)

Assuming the absence of muons, and neglecting corrections of order G2
F , the matter contribution is given by

�0
matter = G F nB√

2

⎛
⎜⎝

3Ye − 1 0 0 0
0 Ye − 1 0 0
0 0 − (3Ye − 1) 0
0 0 0 − (Ye − 1)

⎞
⎟⎠ �r

matter = V out �0
matter , (36)

where nB is the baryon number density, Ye = (ne − nē) /nB is the electron lepton number fraction, and V out is the (radial) matter outflow 
speed as a fraction of the speed of light. Similarly, the neutrino-induced potential is

�0
ν = √

2G F

⎛
⎜⎜⎝

2 J 0
ee + J 0

xx J 0
ex 0 0

J 0�
ex 2 J 0

xx + J 0
ee 0 0

0 0 −2 J 0
ee − J 0

xx − J 0�
ex

0 0 0

⎞
⎟⎟⎠ �r

ν = �0
ν

∣∣∣
J 0

I J → J r
I J

, (37)
0 0 − Jex −2 J xx − Jee
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with time-like and radial components of the neutrino current J 0
I J and J r

I J given by5

J 0
I J =

∫
E ′ 2dE ′

(2π)2

1∫
umin

du′ [ f I J
(

E ′, u′) − f̄ J I
(

E ′, u′)] (38)

J r
I J =

∫
E ′ 2dE ′

(2π)2

1∫
umin

du′ u′ [ f I J
(

E ′, u′) − f̄ J I
(

E ′, u′)] . (39)

In terms of the potentials explicitly given above, the Vlasov operator is

D �p,x F = u
∂F
∂r

+ 1 − u2

r

∂F
∂u

− 1 − u2

2E

{
�r ,

∂F
∂r

}
− 1

2

{
∂�0

∂r
− u

∂�r

∂r
, u

∂F
∂ E

+ 1 − u2

E

∂F
∂u

}
. (40)

Within current “multi-angle” simulations of the bulb model the terms proportional to �r and �0 are usually dropped, retaining only the 
first two terms of the above Vlasov operator. In a consistent analysis to second order in gradients and interactions all terms in the above 
expression should be kept.

The Hamiltonian contains vacuum, matter and neutrino contributions. In the presence of spacelike currents, the matter and neutrino 
contributions give a spin flip term. We break up the terms in the Hamiltonian as follows:

H = Hvac +Hmatter +Hν +Hsf . (41)

The traceless part of the vacuum Hamiltonian is (�m2 ≡ m2
2 − m2

1 > 0)

Hvac = �m2

4E

⎛
⎜⎝

−c2θ s2θ 0 0
s2θ c2θ 0 0
0 0 −c2θ s2θ

0 0 s2θ c2θ

⎞
⎟⎠ , (42)

where s2θ = sin 2θ , c2θ = cos 2θ and θ is the two-flavor mixing angle. The matter and neutrino Hamiltonians are

Hmatter = �0
matter − u �r

matter (43)

Hν = �0
ν − u �r

ν . (44)

The spin-flip Hamiltonian includes a matter term (in the presence of bulk motion of matter) and a neutrino term. In 2 × 2 block form, the 
spin-flip Hamiltonian is

Hsf =
⎛
⎝ 0 eiφp

[(
Hmatter

sf + Hν
sf

) m�

E + m�

E

(
Hmatter

sf + Hν
sf

)T
]

e−iφp

[(
Hmatter

sf + Hν
sf

) m�

E + m�

E

(
Hmatter

sf + Hν
sf

)T
]†

0

⎞
⎠ , (45)

where the phase factor can be set to eiφp = 1 in spherical symmetry and the 2 × 2 matrices Hmatter
sf and Hν

sf are

Hmatter
sf = − G F nB

2
√

2
V out

√
1 − u2

(
3Ye − 1 0

0 Ye − 1

)
(46)

Hν
sf = −√

2G F

√
1 − u2

(
2 J r

ee + J r
xx J r

ex

J r�
ex 2 J r

xx + J r
ee

)
. (47)

As observed in the previous sections, the spin-mixing Hamiltonian depends linearly on the neutrino mass matrix. In the two-flavor 
case, the Majorana mass matrix can be written as

m = U∗ md U † ; with md =
(

m1 0
0 m2

)
, U =

(
cθ sθ

−sθ cθ

)
×

(
1 0
0 eiα/2

)
. (48)

In terms of the observable parameters �m2 ≡ m2
2 − m2

1 > 0 and m0 ≡ (1/2)(m1 + m2) (so that m1,2 = m0 ∓ �m2/(4m0)) we find

m = m0

(
c2
θ + e−iαs2

θ (e−iα − 1)sθ cθ

(e−iα − 1)sθ cθ s2
θ + e−iαc2

θ

)
+ �m2

4m0

(−(c2
θ − e−iαs2

θ ) (e−iα + 1)sθ cθ

(e−iα + 1)sθ cθ c2
θ e−iα − s2

θ

)
. (49)

Eq. (49) shows explicitly the dependence of the mass matrix on the absolute mass scale of the neutrino mass spectrum, m0, the mixing 
angle θ , and the Majorana phase α. The phase α can significantly alter the spin-flavor mixing structure compared to the Dirac case (α = 0), 

5 In general the radial component of the current receives an additional contribution [10]

δ J r
I J =

2π∫
0

dφ′

2π

∫
E ′dE ′

2 (2π)2

1∫
umin

du′√1 − u′ 2
[
m†

(
φ† − φ�

)
eiφ′ + e−iφ′ (

φ − φT
)

m
]

I J
.

This term, while suppressed by m/E , might be important near neutrino–antineutrino resonance. In spherical symmetry, however, δ J r
I J = 0 as the dynamical functions 

φ(E ′, u′, r) do not depend on the azimuthal angle φ′ .
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for any value of m0/
√

�m2. For example, in the degenerate limit m0 � √
�m2 (in which we expect Hsf to have the largest impact) the 

first term in (49) dominates, and a non-zero Majorana phase α can induce O (1) off-diagonal terms compared to the vanishing ones in the 
Dirac case (α = 0).

In absence of a full-fledged calculation no conclusion can be drawn on the impact of Majorana phases on supernova neutrinos. How-
ever, we find it very interesting that at least in principle astrophysical processes are sensitive to these parameters. In fact, until now 
neutrino-less double beta decay experiments offer the only way to probe a subset of these quantities [34], namely the element mee of the 
mass matrix given in (49). The detection of large scale neutrino–antineutrino transformation in a supernova neutrino burst could provide 
information complementary to that obtained from neutrino-less double beta decay searches.

5. Conclusions

In this letter we have discussed he physical origin of the coherent spin-flip term in the neutrino QKEs in the framework of an MSW-like 
effective Hamiltonian. The key point is that in anisotropic environments, neutrino forward scattering on matter and other neutrinos 
induces not only a time-like but also a space-like axial-vector potential: the latter couples to neutrino spin and generates helicity mixing. 
We have also provided explicit expressions for the coherent QKEs in a two-flavor model with spherical geometry: this exercise is a 
necessary step towards a computational analysis of the QKEs in astrophysical environments, and gives us the opportunity to illustrate an 
under-appreciated point: through the spin-flip term, neutrino evolution is sensitive to the absolute scale of the neutrino mass spectrum 
and to the Majorana phases.

While the spin-mixing effect is in general small, O (G F × mν/E), it may become dominant if a resonance occurs. In fact, an exploration 
within a simplified setup [35] indicates that non-linearities can keep the system near resonance thus leading to large scale neutrino–
antineutrino conversion. In a different context, it has been shown [32,33] that magnetic-induced spin-flavor oscillations can significantly 
impact supernova neutrinos. In fact, assuming typical magnetic fields in a supernova envelope (B ∼ 1010–12G) and Majorana transition 
magnetic moments a factor of 100 larger than the SM values, so that μi j

ν B(r) ∼ 10−18 eV (50 km/r)2, Refs. [32,33] find that magnetic spin-
flip transitions lead to significant effects on collective neutrino oscillations in supernovae. A naive estimate based on � ∼ √

2G F (nν − nν̄ ), 
with net neutrino density nν −nν̄ , suggests that H LR ≥ 10−18 eV at r ≤ 100 km (for mν = 0.01 eV and |�p| = 10 MeV), in the same ballpark 
as the magnetic term. While these estimates are rough since they ignore the flavor structure and the effects of geometry, combined with 
the results of Refs. [32,33], they nevertheless suggest potential implications for supernova neutrinos.

The conditions for significant neutrino–antineutrino conversion require large ν luminosities and the presence of level-crossings (res-
onances) [35]. These conditions are likely to be realized during the supernova neutronization burst, where there is a large dominance 
of νe over the ν̄e fluxes and the overall neutrino luminosities are large. Additionally, by influencing the competition between the charged 
current neutrino capture processes νen ↔ pe− and ν̄e p ↔ ne+ [11], νe–ν̄e transformation can directly affect the neutron-to-proton ratio, 
which is a key determinant of nucleosynthesis in core-collapse supernova ejecta and compact object ejecta.

To assess the impact of our findings on neutrino evolution in supernovae, additional studies are called for. First, one needs to have 
a full-fledged (i.e. multi-angle) numerical implementation of the coherent QKEs in a spherically symmetric model [36]. Moreover, one 
eventually needs to work out analytically [30] and implement numerically inelastic collision terms in the QKEs, including the dependence 
on the full density matrix in flavor and spin space.
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Appendix A

In what follows we outline the steps needed to obtain the amplitudes (5)–(8) starting from the interaction Lagrangian (2), for the case 
of one massive Dirac neutrino. In order to compute the amplitude (4) in perturbation theory, we first express the Lagrangian density Lint
in terms of free fields, written as linear combinations of creation and annihilation operators for the helicity states introduced in Section 3:

ν(x) =
∫

d3 p

(2π)22E

∑
h=±

[
a�p,h u(p,h) e−ip·x + b†

�p,h v(p,h) eip·x] . (50)

Here p = |�p|, E = √
p2 + m2, and the helicity spinors u(p, ±) are given by

u(p,+) = √
E + p

(
r(p) ξ+(p̂)

ξ+(p̂)

)
u(p,−) = √

E + p

(
ξ−(p̂)

r(p) ξ−(p̂)

)
r(p) = m

E + p
, (51)

with (denoting by θp , φp the polar and azimuthal angles of p̂)

ξ+(p̂) =
(

cos θp
2

eiφp sin θp
2

)
ξ−(p̂) =

(−e−iφp sin θp
2

cos θp
2

)
(�σ · p̂) ξ±(p̂) = ± ξ±(p̂) . (52)

Using the above results and observing that the interaction Lagrangian density has the bilinear structure Lint(x) = ν̄(x) � ν(x) (� can be 
identified from Eq. (2)), we write the interaction Hamiltonian H int = −∫

d3xLint(x) as

H int = −
∑

′

∫
d3 p

(2π)3

1

4E2
a†

�p,h′ a�p,h Th′ h(p) + . . . , Th′ h(p) ≡ ū(p,h′) � u(p,h) , (53)

h,h
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where the dots indicate the corresponding anti-neutrino operators. Using this interaction Hamiltonian we compute the amplitudes (4) in 
terms of Th′ h(p). The final results (5)–(8) follow after explicit calculation of Th′ h(p), requiring some straightforward Dirac algebra and use 
of the relations

ξ
†
±(p̂) �σ ξ±(p̂) = ±p̂ ξ

†
±(p̂) �σ ξ∓(p̂) = e∓iφp

(
x̂1(p̂) ∓ ix̂2(p̂)

)
, (54)

with p̂, x̂1,2(p̂) defined in (10)–(12).

References

[1] G. Sigl, G. Raffelt, Nucl. Phys. B 406 (1993) 423.
[2] G. Raffelt, G. Sigl, L. Stodolsky, Phys. Rev. Lett. 70 (1993) 2363, arXiv:hep-ph/9209276.
[3] B.H.J. McKellar, M.J. Thomson, Phys. Rev. D 49 (1994) 2710.
[4] R. Barbieri, A. Dolgov, Nucl. Phys. B 349 (1991) 743.
[5] K. Enqvist, K. Kainulainen, J. Maalampi, Nucl. Phys. B 349 (1991) 754.
[6] P. Strack, A. Burrows, Phys. Rev. D 71 (2005) 093004, arXiv:hep-ph/0504035.
[7] C. Volpe, D. Väänänen, C. Espinoza, arXiv e-prints, arXiv:1302.2374, 2013.
[8] A. Vlasenko, G.M. Fuller, V. Cirigliano, Phys. Rev. D 89 (2014) 105004, arXiv:1309.2628.
[9] Y. Zhang, A. Burrows, Phys. Rev. D 88 (2013) 105009, arXiv:1310.2164.

[10] J. Serreau, C. Volpe, arXiv:1409.3591, 2014.
[11] Y. Qian, et al., Phys. Rev. Lett. 71 (1993) 1965.
[12] K. Fujikawa, R. Shrock, Phys. Rev. Lett. 45 (1980) 963.
[13] J. Schechter, J. Valle, Phys. Rev. D 24 (1981) 1883.
[14] M. Fukugita, D. Notzold, G. Raffelt, J. Silk, Phys. Rev. Lett. 60 (1988) 879.
[15] L. Wolfenstein, Phys. Rev. D 17 (1978) 2369.
[16] S.P. Mikheyev, A.Y. Smirnov, Yad. Fiz. 42 (1985).
[17] A.B. Balantekin, Y. Pehlivan, J. Phys. G, Nucl. Part. Phys. 34 (2007) 47, arXiv:astro-ph/0607527.
[18] G.M. Fuller, R.W. Mayle, J.R. Wilson, D.N. Schramm, Astrophys. J. 322 (1987) 795.
[19] E. Calzetta, B.L. Hu, Phys. Rev. D 37 (1988) 2878.
[20] C. Giunti, C. Kim, U. Lee, Phys. Rev. D 45 (1992) 2414.
[21] M.T. Keil, G.G. Raffelt, H.-T. Janka, Astrophys. J. 590 (2003) 971, arXiv:astro-ph/0208035.
[22] A. Mezzacappa, Annu. Rev. Nucl. Part. Sci. 55 (2005) 467.
[23] K. Kotake, K. Sato, K. Takahashi, Rep. Prog. Phys. 69 (2006) 971, arXiv:astro-ph/0509456.
[24] T.D. Brandt, A. Burrows, C.D. Ott, E. Livne, Astrophys. J. 728 (2011) 8, arXiv:1009.4654.
[25] C.I. Ellinger, G. Rockefeller, C.L. Fryer, P.A. Young, S. Park, arXiv e-prints, arXiv:1305.4137, 2013.
[26] J.F. Cherry, et al., Phys. Rev. D 85 (2012) 125010, arXiv:1109.5195.
[27] S. Sarikas, I. Tamborra, G. Raffelt, L. Hüdepohl, H.-T. Janka, Phys. Rev. D 85 (2012) 113007, arXiv:1204.0971.
[28] A. Mirizzi, P.D. Serpico, Phys. Rev. D 86 (2012) 085010, arXiv:1208.0157.
[29] J.F. Cherry, J. Carlson, A. Friedland, G.M. Fuller, A. Vlasenko, Phys. Rev. D 87 (2013) 085037, arXiv:1302.1159.
[30] D. Blaschke, V. Cirigliano, G. Fuller, A. Vlasenko, 2015, in preparation.
[31] H. Duan, G.M. Fuller, Y.-Z. Qian, Annu. Rev. Nucl. Part. Sci. 60 (2010) 569, arXiv:1001.2799.
[32] A. de Gouvea, S. Shalgar, J. Cosmol. Astropart. Phys. 1210 (2012) 027, arXiv:1207.0516.
[33] A. de Gouvea, S. Shalgar, J. Cosmol. Astropart. Phys. 1304 (2013) 018, arXiv:1301.5637.
[34] A. de Gouvea, P. Vogel, Prog. Part. Nucl. Phys. 71 (2013) 75, arXiv:1303.4097.
[35] A. Vlasenko, G.M. Fuller, V. Cirigliano, arXiv:1406.6724, 2014.
[36] S. Shalgar, V. Cirigliano, G. Fuller, A. Vlasenko, 2015, in preparation.

http://refhub.elsevier.com/S0370-2693(15)00332-9/bib5369676C3A313939336672s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib52616666656C743A313939336B78s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4D634B656C6C61723A313939347571s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib42617262696572693A31393931666As1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib456E71766973743A313939306164s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib53747261636B3A32303035666Bs1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib566F6C70653A323031336C72s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib566C6173656E6B6F3A32303133666A61s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib5A68616E673A323031336C6B61s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib536572726561753A32303134636661s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib5169616E3933s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib46756A696B6177613A313938307978s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib5363686563687465723A313938316877s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib46756B75676974613A313938376167s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib576F6C66656E737465696E3738s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4D696B68657965763835s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib42616C616E74656B696E3A323030376B78s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib46756C6C65723837s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib43616C7A657474613A313938387179s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4769756E74693A313939316362s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4B65696C3A323030337179s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4D657A7A6163617070613A323030356C72s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4B6F74616B653A32303036666Bs1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4272616E64743A323031316D7As1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib456C6C696E6765723A323031336766s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4368657272793A323031326C75s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib536172696B61733A32303132666Bs1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4D6972697A7A693A323031327179s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4368657272793A323031336C72s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib4475616E3A323031306672s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib6465476F757665613A323031326867s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib6465476F757665613A323031337A70s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib6465476F757665613A323031337A6261s1
http://refhub.elsevier.com/S0370-2693(15)00332-9/bib566C6173656E6B6F3A32303134627661s1

	A new spin on neutrino quantum kinetics
	1 Introduction
	2 Spin-mixing term
	3 QKE's for coherent neutrino evolution
	3.1 Neutrino density matrices
	3.2 Anatomy of the QKEs

	4 The bulb model
	5 Conclusions
	Acknowledgements
	References


