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Patterning of Muscle Acetylcholine
Receptor Gene Expression
in the Absence of Motor Innervation

constitute the best-studied class of proteins that be-
come localized to this small patch of the muscle fiber
membrane, and their restriction to synaptic sites during
development is a hallmark of the inductive events of
synapse formation. The spatial patterning of AChRs on
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skeletal muscle cells has classically been thought toNew York University Medical School
depend on focal signals provided by motor axon termi-New York, New York 10011
nals (Burden, 1998; McMahan, 1990; Sanes and Licht-2 Howard Hughes Medical Institute
man, 1999).Department of Biochemistry and

Three different nerve-dependent signaling pathwaysMolecular Biophysics
have been proposed to regulate postsynaptic muscleColumbia University
differentiation. One signaling pathway uses Agrin, a syn-New York, New York 10032
aptic basal lamina protein that triggers a redistribution3 Max Delbrück Center for Molecular Medicine
of AChRs to synaptic sites. Agrin is critical for clustering13125 Berlin
AChRs and for promoting other aspects of postsynapticGermany
differentiation during synapse formation (Sanes and
Lichtman, 1999). Agrin-mediated signaling depends
upon the activity of a receptor tyrosine kinase, MuSK,Summary
a critical component of the Agrin receptor complex (Bur-
den, 1998; Glass and Yancopoulos, 1997). Thus, miceThe patterning of skeletal muscle is thought to depend
lacking Agrin or MuSK fail to form neuromuscular syn-upon signals provided by motor neurons. We show
apses, and muscle-derived proteins, including AChRs,that AChR gene expression and AChR clusters are
are uniformly distributed on the surface of myofibersconcentrated in the central region of embryonic skele-
(DeChiara et al., 1996; Gautam et al., 1996). A secondtal muscle in the absence of innervation. Neurally de-
neural signaling pathway stimulates the transcription ofrived Agrin is dispensable for this early phase of AChR
AChR subunit genes in myofiber nuclei close to synapticexpression, but MuSK, a receptor tyrosine kinase acti-
sites. A strong candidate for the signal that activatesvated by Agrin, is required to establish this AChR pre-
synapse-specific transcription is Neuregulin-1 (NRG-1),pattern. The zone of AChR expression in muscle lack-
a group of polypeptides produced by alternative splicinging motor axons is wider than normal, indicating that
of the nrg-1 gene (Falls et al., 1993; Carraway and Bur-

neural signals refine this muscle-autonomous prepat-
den, 1995; Fischbach and Rosen, 1997). A third signaling

tern. Neuronal Neuregulin-1, however, is not involved in pathway, mediated by propagated electrical activity in
this refinement process, nor indeed in synapse-specific muscle fibers, represses expression of AChRs and other
AChR gene expression. Our results demonstrate that muscle genes in myofiber nuclei (Laufer and Changeux,
AChR expression is patterned in the absence of innerva- 1989).
tion, raising the possibility that similarly prepatterned The ability of motor axons to induce synaptic differen-
muscle-derived cues restrict axon growth and initiate tiation following brief and transient contact with muscle
synapse formation. (Cohen et al., 1994; Ferns et al., 1993; Wallace, 1991) has

made it difficult to evaluate whether the initial regional
Introduction expression of AChRs occurs independently of neurally

derived signals. Indeed, evidence for a possible contri-
During the development of the vertebrate neuromuscu- bution of muscle prepatterning (Braithwaite and Harris,
lar junction, a precise register emerges between motor 1979; Harris, 1981) has not been incorporated into pre-
nerve terminals and the specialized transduction ma- vailing views of neuromuscular synapse formation (Bur-

den, 1998; Dennis, 1981; Sanes and Lichtman, 1999). Inchinery present on the surface of the postsynaptic mus-
studies of mice lacking topoisomerase 2b (top 2b), wecle cell, an alignment that is critical to efficient synaptic
observed that motor axons fail to invade or branch withintransmission (Hall and Sanes, 1993). Multinucleated
diaphragm and limb muscles, yet AChRs are clusteredskeletal muscle fibers form by fusion of precursor my-
in the central region of these muscles (Yang et al., 2000).oblasts and are innervated shortly after by the axons of
One interpretation of these findings is that the patternmotor neurons. Subsequent inductive interactions be-
of AChR clusters in skeletal muscles is determined, attween nerve and muscle cells lead to the formation of
least in part, by mechanisms that are independent ofa focal, and highly specialized, synaptic site on the de-
motor innervation. The proximity of motor axons andveloping myofiber (Burden, 1998; Dennis, 1981; Sanes
muscle in top 2b mutant mice, however, left open theand Lichtman, 1999). Acetylcholine receptors (AChRs)
alternative possibility that motor axons had transiently
contacted muscle, or supplied diffusible signals respon-
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Figure 1. AChRs Are Clustered in the Central
Region of Muscle Lacking Motor Axons

Whole mounts of diaphragm muscle from
E18.5 wild-type (A and B) or HB9 mutant (C
and D) embryos were stained with Texas red-
a-BGT and antibodies to NF and Syn. The
insets in (A) and (C) show higher power views
of AChR clusters in wild-type and mutant em-
bryos. The NF-stained axons at the edge of
wild-type and HB9 mutant muscle (arrow-
heads) are likely to be sensory and/or auto-
nomic axons, since these axons are absent
from muscles prior to E16. The bar is 100 mm
for the low magnification images and 7 mm
for the insets in (A) and (C).

nals to examine more definitively whether AChR gene and synaptophysin (Syn), respectively, and AChRs were
visualized by a-bungarotoxin (a-BGT) labeling. In wild-expression in muscle is spatially restricted in a manner

independent of innervation. We show that AChR gene type mice, the main intramuscular nerve is located in
the central region of the muscle and is oriented perpen-transcription and AChR clusters are patterned in devel-

oping skeletal muscle in the absence of motor neurons dicular to the long axis of the muscle fibers. Motor axons
branch and terminate adjacent to the main intramuscularand their axons. We also find that AChR transcription

and clustering occurs in the absence of neurally sup- nerve, resulting in a narrow, distinct endplate zone in
the middle of the muscle, marked by presynaptic nerveplied Agrin but is dependent upon MuSK expression.

The nerve, however, does have a role in refining the terminals and a high density of AChR clusters (Figure
1). In HB9 mutant embryos, no motor axons were de-AChR prepattern by further restricting the domain of

AChR gene expression. But neuronal NRG-1 is not re- tected in or near the diaphragm muscle (E12.5–E18.5)
(Figure 1; data not shown), yet AChRs were still clusteredquired to promote the mature pattern of AChR transcrip-

tion in skeletal muscle, nor to induce synapse-specific in the central region of the muscle (Figure 1).
We also examined muscle AChR distribution in micetranscription. Taken together, these results demonstrate

that muscle is patterned in the absence of innervation lacking motor neurons themselves, from early develop-
and raise the possibility that spatial cues that restrict mental stages. To eliminate motor neurons early in de-
axon growth and promote synapse formation might be velopment, we crossed an HB9cre mouse line, which ex-
provided by molecules that are also prepatterned in presses Cre recombinase selectively in motor neurons,
muscle. with an Isl2DTA mouse line in which a diphtheria toxin

(DTA) gene, preceded by an IRES-loxP-stop-loxP se-
quence (Lee et al., 2000), had been introduced into theResults
39 UTR of the Isl2 gene (Brown et al., 2000). In mice
carrying both transgenes, the translational stop se-Skeletal Muscle Patterning Is Independent
quence is deleted selectively in motor neurons, leadingof Motor Neuron-Derived Signals
to expression of DTA at the time that motor neuronsTo determine whether skeletal muscle is patterned in
exit the cell cycle (E9.5–E11) (S.A. et al., unpublishedthe absence of motor axons, we first studied mice in
data). Examination of these mice from E12 to E18.5 re-which the homeodomain transcription factor HB9 has
vealed a selective and virtually complete absence ofbeen inactivated by gene targeting (Arber et al., 1999;
motor neurons, as assessed by the lack of Isl11/HB91Thaler et al., 1999). In HB9 mutant mice, motor neurons
neurons in the ventral spinal cord (Figure 2; data notlose differentiated properties (Arber et al., 1999; Thaler
shown). Despite the absence of motor neurons, AChRset al., 1999), and the phrenic nerve, which normally inner-
were still clustered in the central region of the diaphragmvates the diaphragm muscle, fails to form (Thaler et al.,
muscle (Figure 2). Taken together, these results provide1999). As a consequence, motor axons are not observed
strong evidence that AChR expression in skeletal mus-in the vicinity of the diaphragm muscle (Thaler et al.,
cle is patterned in the absence of motor neurons and1999).
their axons.Motor axons and nerve terminals in diaphragm mus-

cles were visualized by expression of neurofilament (NF) We were concerned, however, by the fact that sensory
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Figure 2. AChRs Are Clustered in the Central
Region of Muscle Lacking Motor Neurons

Transverse sections of the spinal cord from
HB91; Isl2DTA (A and C) or HB9cre; Isl2DTA (B and
D) embryos were stained with antibodies to
HB9 (E16.5) or Isl1 (E18.5). HB9cre; Isl2DTA mice
lack motor neurons (MN) but have normal
numbers of Isl1-expressing dorsal interneu-
rons (IN). Whole mounts of diaphragm muscle
from E18.5 HB91; Isl2DTA (E and F) or HB9cre;
Isl2DTA (G and H) embryos were stained with
Texas red-a-BGT and antibodies to NF and
Syn.

and/or autonomic axons that are found at the periphery in the central region of muscle lacking nerve terminals
(Figures 3C and 3D). The position and width of the bandof diaphragm muscle by E16.5 (Yang et al., 2000), and

synthesize neural isoforms of Agrin (Ma et al., 1995), of nonsynaptic AChR clusters in innervated muscle was
similar to that found in muscle of HB9 mutant micemight provide signals that pattern muscle AChR expres-

sion at late embryonic stages. We therefore analyzed the lacking motor axons (Figures 1 and 2, and see below).
In contrast, in innervated muscle of wild-type mice ex-diaphragm muscle of HB9 and top 2b mutant embryos at

E15, prior to the arrival of sensory and/or autonomic amined at E18.5, AChRs were clustered only at synaptic
sites (Figures 1 and 2). These results provide evidenceaxons, and found that AChRs were still clustered in the

central region of the muscle (Figures 3A and 3B). Thus, that motor innervation ultimately extinguishes nonsyn-
aptic AChR clusters present in the central region ofmuscle exhibits patterned AChR expression in the ab-

sence of all peripheral innervation. muscle at an earlier stage of synapse formation.
The existence of a prepattern of AChRs in noninner-

vated muscle in turn raised the issue of the distribution Prepatterning of AChR Gene Expression
The mechanisms that control AChR subunit gene tran-of AChRs during the early stages of muscle innervation

in wild-type embryos. In embryos examined at E15, scription are thought to be distinct from those that con-
trol AChR clustering (Burden, 1998). We therefore exam-AChRs were clustered both at synaptic sites and at sites
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Figure 3. Patterning of AChRs in the Central Region of Muscle at E15

In HB9 mutant embryos at E15, motor, sensory, and autonomic axons are absent from muscle, but AChR clusters are concentrated in the
central region of muscle (A and B). In normal muscle at E15, AChRs are clustered both at synaptic sites and at nonsynaptic sites in the central
region of muscle (C and D). Whole mounts of diaphragm muscle from E15 HB9 mutant (A and B) or wild-type (C and D) embryos were stained
with Texas red-a-BGT and antibodies to NF and Syn.

ined whether AChR gene transcription is also patterned How can these findings be reconciled with our observa-
tions that AChR clusters are spatially patterned in mus-in the absence of motor innervation. We used in situ

hybridization to assess the pattern of AChR subunit cle that has never received motor innervation? One po-
tential explanation invokes the idea that the arrival ofgene expression in whole-mount preparations of muscle

from wild-type, HB9 mutant, and HB9cre; Isl2DTA mice. In motor axons is associated with two activities: one that
directs the extinction of the AChR prepattern, and adiaphragm muscle of wild-type embryos examined at

E18.5, AChR a and d subunit mRNAs were restricted to second, dominant and Agrin-associated activity, that
ensures the persistence of clustered AChRs at nascenta narrow band, corresponding to the central zone of

innervation (Figures 4A and 4B; data not shown). In dia- synaptic sites. One prediction of this model is that the
elimination of neural Agrin, when coupled with the ab-phragm muscles from top 2b and HB9 mutant mice, as

well as in HB9cre; Isl2DTA mice, we found that AChR a and sence of motor axons, should permit the maintenance
of the AChR prepattern. To test this idea, we examinedd subunit mRNAs were also enriched in the central region

of muscle (Figures 4C–4E; data not shown). In addition, the pattern of AChR expression in neural agrin; HB9
double mutant embryos at E18.5. AChR clusters werethe level of AChR mRNA expression throughout the mus-

cle was higher in top 2b and HB9 mutant, as well as in indeed patterned in the central region of muscle from
neural agrin; HB9 double-mutant mice, in a manner simi-HB9cre; Isl2DTA mice, than in wild-type embryos (Figure

4) (see below). This latter finding is consistent with the lar to that observed in HB9 single-mutant mice (Figure
5). These results, taken together with the phenotype ofelevated levels of AChR gene expression observed in

denervated, electrically inactive, adult muscle (Goldman neural agrin mutant mice, support the idea that the major
role of Agrin at developing neuromuscular synapses isand Staple, 1989). These results therefore provide evi-

dence for a spatially restricted pattern of muscle AChR to maintain a patterned distribution of AChRs in the face
of an independent neural signal that would otherwisegene transcription in the absence of motor innervation.
extinguish the preexisting AChR prepattern.

The dispensability of neural Agrin raised the issue ofDistinct Roles of Agrin and MuSK in the Early
whether MuSK is involved in patterning AChRs in theControl of AChR Expression
central region of developing, uninnervated muscle. ToPrevious studies in newborn mice have provided genetic
examine this issue, we analyzed the pattern of AChRevidence that neurally derived Agrin has a critical role

in clustering AChRs at synapses (Gautam et al., 1996). clustering in top 2b; MuSK and HB9; MuSK double-
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Figure 4. Muscle Is Transcriptionally Patterned in the Absence of Motor Axons

Whole mounts of diaphragm muscle from E18.5 wild-type (A and B), HB9 mutant (C), top 2b mutant (D), HB9cre; Isl2DTA (E), MuSK mutant (F),
HB9; MuSK double-mutant (G), and top 2b; MuSK double-mutant (H) embryos were processed for in situ hybridization using a probe from
the AChR a subunit gene. AChR transcription is patterned in the central region of wild-type, HB9 mutant, top 2b mutant, and HB9cre; Isl2DTA

muscle but not in MuSK mutant, HB9; MuSK double-mutant, or top 2b; MuSK double-mutant embryos. The zone of enhanced transcription
is wider in HB9 mutant, top 2b mutant, and HB9cre; Isl2DTA muscle than in wild-type embryos, and the level of transcription outside this zone
is greater in these mutants than in wild-type embryos. We obtained similar results using a probe from the AChR d subunit gene (data not
shown). A low magnification view of the diaphragm muscle is shown in (A); the other panels show higher magnification views.

mutant embryos at E18.5. In both double-mutant back- detected, no evidence of AChR clustering was observed
(Figure 6). Thus, MuSK is required to pattern AChRs ingrounds, motor axons fail to grow or enter the dia-

phragm muscle, and although AChR expression was the absence of motor innervation. In addition, AChR
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Figure 5. AChRs Are Clustered in the Central Region of E18.5 Muscle Lacking both Neural Agrin and Motor Axons

Whole mounts of diaphragm muscle from E18.5 neural agrin mutant (A and B) or neural agrin; HB9 double-mutant (C and D) embryos were
stained with Texas red-a-BGT and antibodies to NF and Syn.

transcription was uniform in muscle from top 2b; MuSK rons normally restrict and refine the muscle-autono-
mous pattern of AChR mRNA and AChR protein to aand HB9; MuSK double-mutant mice (Figure 4), indicat-

ing that MuSK is required, directly or indirectly, to regu- narrower region of the muscle. Moreover, because the
zones of AChR mRNA expression and AChR clusteringlate the pattern of AChR transcription in muscle lacking

motor axons. Thus, even in the absence of motor in- are similar in width, we infer that the domain of AChR
transcription is likely to define the pattern of AChR clus-nervation, MuSK has a critical role in patterning AChR

transcription. Our results also indicate that the uniform ters found in the absence of innervation.
pattern of AChR expression observed in MuSK mutant How might the pattern of AChR transcription be re-
mice is unlikely to be caused by the broad and uniform fined? One possibility is that nerve-induced electrical
release of acetylcholine (or other neural signals) from activity in muscle reduces AChR transcription through-
the widely distributed ectopic motor axons evident in out the myofiber, and this repressive effective is coun-
these mutants. teracted by the ability of neuronal NRG-1 to stimulate

AChR transcription locally in prospective synaptic nu-
clei. We therefore examined whether neuronal NRG-1A NRG-1-Independent Neural Signal Refines
is required to promote the mature localized pattern ofthe Muscle-Autonomous AChR Pattern
AChR transcription in skeletal muscle. Mice lackingEven though the results described above provide evi-
NRG-1 die from defects in cardiac development atdence for a prepattern of AChR gene transcription and
E10.5, several days prior to neuromuscular synapseAChR clusters, the spatial features of AChR expression
formation (Meyer and Birchmeier, 1995). To circumventwere distinct from those observed normally at devel-
this early lethality, we inactivated NRG-1 selectively inoping synapses. In wild-type, innervated embryos ex-
motor and sensory neurons, leaving muscle NRG-1 ex-amined at E18.5, the band of AChR clusters was 7% 6
pression intact. To achieve this, we crossed Isl1cre mice,4% of muscle length, and the band of AChR mRNA was
which express Cre recombinase selectively in motor and8% 6 3% of muscle length (Figures 1 and 4). In contrast,
sensory neurons (Srinivas et al., 2001) (Supplementaryin HB9 mutant mice, the band of AChR clusters and
Figure S1 [http://www.neuron.org/cgi/content/full/30/2/AChR transcription was markedly wider (AChR clusters
399/DC1]), with mice containing floxed and null alleleswere 17% 6 5% of muscle length and AChR mRNA was
of nrg-1.16% 6 5% of muscle length) (Figures 1 and 4). These

results raise the possibility that signals from motor neu- Isl1cre/1; nrg-1flox/2 embryos were recovered at ex-
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Figure 6. MuSK Is Required to Cluster
AChRs in Muscle Lacking Motor Axons

Whole mounts of diaphragm muscle from
E18.5 wild-type, top 2b mutant, HB9 mutant,
MuSK mutant, HB9; MuSK double-mutant,
and top 2b; MuSK double-mutant embryos
were stained with Texas red-a-BGT and anti-
bodies to NF and Syn. AChRs are clustered
at synaptic sites in muscle from wild-type em-
bryos and in the central region of muscle from
HB9 and top 2b mutant embryos. AChRs are
not clustered in muscle from MuSK mutant,
HB9; MuSK double-mutant or top 2b; MuSK
double-mutant embryos.

pected frequencies at E18.5, indicating that inactivation Procedures). This result provides strong evidence that
NRG-1 expression is markedly reduced or absent fromof nrg-1 selectively in motor and sensory neurons cir-

cumvents the early embryonic lethality of constitutive motor and sensory neurons.
Strikingly, we found that the pattern of AChR a andnrg-1 mutant mice. Nonetheless, most (z90%) neuronal

nrg-1 mutant mice died at birth with a phenotype identi- d subunit transcription was normal in neuronal nrg-1
mutant embryos (Figure 7C). Importantly, the band ofcal to that observed in mice lacking NRG-1 signaling in

Schwann cells (Morris et al., 1999; Riethmacher et al., AChR mRNA was as narrow in neuronal nrg-1 mutant
embryos as in wild-type embryos (Figure 7C). These1997; Woldeyesus et al., 1999) (Figure 7) (Experimental
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Figure 7. Neuronal NRG-1 Is Not Required
for Synapse-Specific Transcription

We inactivated the nrg-1 gene selectively in
motor and sensory neurons by crossing
Isl1cre/1 mice with mice containing floxed and
null alleles of nrg-1 (A). The floxed allele of
the nrg-1 gene contains one loxP site in intron
6 and a second loxP site in intron 9; the null
allele lacks exons 7, 8, and 9.
(A) In E15.5–E16.5 neuronal nrg-1 mutant em-
bryos, motor axons, stained with antibodies
to neurofilaments (NF), are highly defasicu-
lated but form terminal arbors, stained with
antibodies to SYN, that are correctly posi-
tioned in the middle of the muscle.
(B) By E18.5, motor axons and terminals are
absent from neuronal nrg-1 mutant embryos,
but AChRs remain clustered in the middle of
the muscle.
(C) AChR transcription is patterned normally
in muscle from Isl1cre; nrg-1flox/2 muscle. Whole
mounts of diaphragm muscle from Isl1cre; nrg-
1flox/1 control embryos and Isl1cre; nrg-1flox/2

embryos were processed for in situ hybridiza-
tion using a probe from the AChR a subunit
gene.

findings suggest that neuronal NRG-1 is not required muscle. Our results provide several lines of evidence
that the pattern of AChR transcription and AChR proteinto refine the domain of AChR subunit gene expression

during development. They also imply that neuronal is restricted to the central region of developing muscle
in the absence of motor neurons and their axons. Thus,NRG-1 is not required for synapse-specific AChR gene

transcription. certain features of the early patterning of skeletal muscle
are established in a manner independent of neurally
derived signals.Discussion

Taken together, our findings provide insight into the
sequential steps involved in establishing the pattern ofAChR genes are expressed and AChRs are clustered

selectively at synaptic sites in skeletal muscle. Prevail- AChR expression on developing skeletal muscle fibers
(Figure 8). An initial spatially restricted pattern of AChRing views suggest that AChR expression, and other fea-

tures of muscle patterning, are established by signals gene expression and AChR clusters is clearly generated
in muscle prior to motor innervation and is achievedderived from motor neurons as they contact developing
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Figure 8. Model for Prepatterning and Refining AChR Expression in Skeletal Muscle

(A) MuSK is required for patterning AChR expression, suggesting that MuSK is clustered and activated, possibly by Rapsyn, in the central
region of the muscle. We speculate that activated MuSK clusters ErbBs and muscle-derived NRG-1, thereby establishing an autocrine signaling
pathway that stimulates AChR transcription.
(B) Innervation refines the prepattern by restricting AChR clusters and AChR transcription to synaptic sites. This refinement may depend on
neural Agrin, which enhances AChR transcription and clustering at synaptic sites, and ACh-induced electrical activity, which represses AChR
transcription and clustering in nonsynaptic regions.
(C) In the absence of innervation (e.g., in top 2b, HB9, or HB9cre; Isl2DTA mutant mice), the pattern of AChR transcription and clustering persists
in a zone in the central region of the muscle.
(D) Our experiments indicate that the refinement and restriction of AChR transcription to synaptic nuclei does not require neuronal NRG-1.

in a manner independent of neurally derived Agrin, or Muscle AChR Patterning Is Independent
of Innervationindeed of any other neural signal. Nevertheless, the

steps involved in the emergence of this muscle AChR Although muscle prepatterning has not been incorpo-
rated into conventional views of synapse formation, theprepattern appear to co-opt at least some of the same

molecules used during normal synaptogenesis, since possibility that muscle AChRs are patterned in the ab-
sence of motor innervation has been examined pre-the AChR prepattern is dependent on MuSK expression.

Arrival of the nerve does, however, have a critical role viously by Harris and colleagues, who attempted to
study muscle development in the absence of innerva-in converting the AChR prepattern into the more refined

pattern of AChR transcription and AChR clustering char- tion, through elimination of motor axons with the neuro-
toxin b-bungarotoxin, (Braithwaite and Harris, 1979). Inacteristic of mature synapses. The arrival of the nerve

triggers two separable molecular programs of muscle b-bungarotoxin-treated rat embryos, AChRs were clus-
tered in the central region of muscle, despite the ab-differentiation. One program appears to utilize neurally

derived Agrin to counteract a latent nerve-evoked disso- sence of motor axons. Although these experiments sug-
gested that muscle might be patterned in the absencelution of the AChR prepattern and thus ensures the sta-

ble expression of AChR clusters at nascent synapses. of innervation (Harris, 1981), this interpretation was com-
plicated by the difficulty in establishing that b-bungaro-A second program involves a neural signal that refines

the pattern of AChR gene transcription, ensuring focal toxin exposure completely eliminated motor axons be-
fore they had contacted developing muscle fibers. Theexpression of AChR genes in subsynaptic nuclei. The

neural signal responsible for this refinement program present studies, together with previous findings in top
2b mutant mice (Yang et al., 2000), strongly reinforcehas not yet been defined but appears not to depend on

neuronal NRG-1 activity. the idea that AChR gene expression and AChR clusters
are patterned in developing skeletal muscle in the com-Below, we discuss some of the implications of this

developmental scenario: first, the background to the plete absence of motor axons.
idea that muscle can be patterned independent of motor
innervation; second, the relative contributions of Agrin, The Contribution of Agrin and MuSK Signaling

to AChR Patterning in MuscleMuSK, and NRG-1 signaling to muscle patterning; third,
the possible role of muscle prepatterning in regulating Are the mechanisms used to establish the muscle pre-

pattern similar to those involved in promoting synapticthe pattern of innervation; and fourth, how muscle pre-
patterning might be achieved. differentiation? Our results show that MuSK is required
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to pattern AChRs and AChR transcription in muscle lack- but sufficient to activate synapse-specific transcription,
is initiated prior to Cre-mediated inactivation of nrg-1.ing motor axons. Thus, this aspect of the pathway in-

volved in patterning AChR expression in the absence Our results, however, are most easily explained by the
idea that neural signals other than NRG-1 refine theof motor axons appears to be similar to that used for

synaptic differentiation. This role for MuSK, however, is pattern of AChR transcription in skeletal muscle (Figure
8D). Our experiments also leave open the possibility thatnot dependent on neural Agrin, since AChR expression

is patterned in mutant embryos in which motor axons muscle-derived NRG-1 may be required for synapse-
specific transcription. We note that neural Agrin cannever invade the muscle, and in mutant embryos lacking

both neural Agrin and motor axons. cluster muscle-derived NRG-1 (Jones et al., 1997; Meier
et al., 1998; Rimer et al., 1998), and thus, it is possibleNon-neural Agrin, when presented on the cell surface,

can stimulate clustering of AChRs in cultured muscle that neural Agrin is responsible for refining the muscle-
autonomous pattern of AChR transcription, as well ascells (Ferns et al., 1992, 1993), and thus it remains possi-

ble that non-neural Agrin, supplied by the muscle, is AChR clustering, by defining the limits of NRG-1 and
NRG-1 receptor expression and thus restricting an auto-involved in patterning AChRs in the absence of innerva-

tion. However, levels of muscle Agrin are markedly re- crine NRG-1 signaling pathway to nascent synaptic sites
in muscle (Burden and Yarden, 1997) (Figures 8B and 8D).duced in the agrin mutants we studied (Gautam et al.,

1996), and thus we favor the idea that MuSK is activated In addition, we emphasize that we have not analyzed
expression of the AChR e subunit gene, which is acti-in developing muscle in a manner independent of Agrin.

Consistent with this view, MuSK can be activated inde- vated later than other AChR subunit genes and is in-
duced to a greater extent by NRG-1 in cultured musclependently of Agrin by its overexpression or by coexpres-

sion with Rapsyn, an intracellular peripheral membrane cells (Martinou et al., 1991). It remains possible therefore
that neuronal NRG-1 is involved in activation of the AChRprotein that clusters MuSK (Apel et al., 1997; Gillespie

et al., 1996; Watty et al., 2000). Thus, a high level of e subunit gene, or in maintaining AChR gene expression
in synaptic nuclei. Such an action of NRG-1 might pro-MuSK and/or Rapsyn expression in the central region

of developing muscle could, in principle, activate MuSK, vide a basis for the finding that adult mice heterozygous
for the Ig isoform of NRG-1 express fewer AChRs atindependent of Agrin, and thus pattern AChR transcrip-

tion and AChRs (Figure 8). neuromuscular synapses (Sandrock et al., 1997).

Functional Relevance of a Muscle PrepatternNeural Refinement of AChR Prepattern
The neural signals that regulate synapse-specific tran- What is the significance of the AChR prepattern in mus-

cle? AChRs can cluster “spontaneously” in noninner-scription in muscle remain elusive (Morris et al., 1999;
Riethmacher et al., 1997; Woldeyesus et al., 1999; Wol- vated myotubes in cell culture, indicating that aspects

of postsynaptic differentiation can occur in the absencepowitz et al., 2000). Here, we show that AChR genes
are expressed preferentially in the central region of mus- of presynaptic input (Fischbach and Cohen, 1973; Syt-

kowski et al., 1973). These preexisting AChR clusterscle in the absence of motor axons and its attendant
signals. These results show that motor neuron-derived are distributed randomly on cultured myotubes and do

not preconfigure presumptive synaptic sites (Andersonsignals are not required to pattern AChR transcription in
developing muscle. But because the zone of enhanced and Cohen, 1977; Frank and Fischbach, 1979), leading

to the idea that motor axons do not form synapses withtranscription is narrower in muscle from wild-type mice
than in muscle lacking motor axons, neural signals ap- muscle cells at predetermined sites. In vivo, motor axons

typically terminate and create a synaptic zone in thepear to be required to refine the initial muscle-autono-
mous pattern of AChR transcription (Figure 8). NRG-1 central region of the muscle. This arrangement of syn-

apses has been proposed to arise from random contacthas been considered a strong candidate for the neuronal
signal that induces synapse-specific transcription (Falls between motor axons and developing myotubes, fol-

lowed by extensive growth of muscle (Bennett and Petti-et al., 1993; Carraway and Burden, 1995; Fischbach and
Rosen, 1997). In principle, two possible mechanisms, grew, 1974; Burden, 1998; Dennis, 1981; Hall and Sanes,

1993). This view, however, does not readily explain theeach involving NRG-1 signaling, might refine the pattern
of AChR expression. First, neuronal NRG-1 might stimu- observation that in neuronal nrg-1 mutant embryos,

which exhibit exuberant growth of motor axons, synap-late AChR transcription locally in synaptic nuclei, while
nerve-induced electrical activity reduces AChR transcrip- tic terminals are still located normally in the central re-

gion of the muscle (Figure 7A).tion throughout the myofiber. Second, NRG-1 might ac-
tivate AChR transcription in the synaptic region and The demonstration of regional differences in AChR

expression within muscle thus raises the possibility ofinduced synaptic nuclei may signal laterally to perisyn-
aptic nuclei and repress AChR expression. Each model other prepatterned aspects of muscle cell differentiation

that may have a role in defining sites of motor axonpredicts that AChR transcription would not be appropri-
ately patterned in the absence of neuronal NRG-1. termination and synapse formation (Figure 8A). In this

context, it is noteworthy that prospective synaptic sitesHowever, the pattern of AChR transcription in neu-
ronal nrg-1 mutants is indistinguishable from that of on Drosophila muscle fibers are thought to be marked

in a manner independent of innervation and to direct thewild-type mice, indicating that neuronal NRG-1 is not
required for the refinement of the AChR prepattern, or site of axon termination and synapse formation (Broadie

and Bate, 1993).for synapse-specific transcription. We have not ex-
cluded that a very low level of neuronal NRG-1 expres- Finally, it remains unclear how mammalian muscle is

patterned in the absence of innervation. In Drosophila,sion, insufficient to support survival of Schwann cells,
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neuronal nrg-1 mutant embryos, unlike in wild-type embryos, aremuscle patterning is dependent on a population of spe-
not stained by antibodies to NRG-1 (data not shown). Second, likecialized founder cells that have an early role in muscle
erbB mutant embryos, Schwann cells are absent from intramusculardevelopment, and are thought to regulate the targeting
motor axons in neuronal nrg-1 mutant embryos (E13.5–E16.5), and

of motor axons (Dohrmann et al., 1990; Knirr et al., 1999; as a consequence, motor axons are defasiculated and disorganized,
Landgraf et al., 1999; Williams et al., 1991). One intri- resulting in exuberant axon growth throughout the muscle (Figure

7A). Third, as in erbB mutant embryos, despite the ectopic locationguing possibility is that mammalian muscle fibers also
of motor axons in developing muscle, Syn-stained nerve terminalscontain founder cells that establish a pattern of AChRs
(Figure 7A) and clusters of AChRs (Figure 7B) are located normallyand other aspects of muscle differentiation in an in-
in the central region of the muscle. Fourth, like erbB mutant embryos,nervation-independent manner, thus providing preex-
these motor axons largely retract by birth (Figure 7B). Thus, the

isting spatial cues that could be recognized by incoming motor nerve phenotype of neuronal nrg-1 mutant mice mimics that
motor axons. of mice lacking ErbB signaling in Schwann cells, indicating that

NRG-1 is entirely, or largely, lacking from motor and sensory neurons
in isl1cre/1; nrg-1flox/2 mice.Experimental Procedures
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