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Iterative solution of simultaneous equations
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Abstract: Stationary linear iteration methods are used to obtain generalized solutions for simultaneous equations. In
particular the case is considered that the iterates terminate after finitely many steps. On the other side also the case is
pointed out that the iterates converge, but not to a generalized solution. The well known method of Kaczmarz arises as
a special case. Finally, the connection to matching rules is set up, which appear in the asymptotic theory of singular
perturbations.
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1. Preliminaries

Let us consider an arbitrary linear equation
Ax=f (1)

with given linear operator 4 € (2 — %), given right-hand side f€ % and with unknown x € 2,
where 2 and # are linear vector spaces. We choose a linear Operator B € (# — £) and obtain
from (1) the fixed point equation

x=Tx+ Bf (2)
with
T=1-BA. (3)

Every linear one-step iteration method arises from (2) for suitable B, cf. Maess [11]. We restrict
ourselves to stationary iteration methods, according to nonstationary methods cf. [15] and [5]. By
iteration we obtain from (2) and (3)

x=Tkx+ Y, Bf (4)
with

k—1
Y,= Y T, Y,BA=Y,(I-T)=I—-T" (5)
j=0

Let X € (% — 2) be an inner inverse of A, i.e. according to Nashed and Votruba 1976
AXA = A, (6)
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and define the projectors

P=1—-XA, O=1—-4X, (7)
where I as before denotes suitable unit operators. Then
x=Px+ Xf (8)

is called the generalized solution of (1) with respect to X. This means that (7) with an arbitrary
x € 9 on the right-hand side is the general solution of (7), so far as the necessary and sufficient
solvability condition

Of =0 (9)
is satisfied.

The question arises, whether (4) coincides with (8), i.e. whether T*=P and Y, B=X.
Comparing (5) with (6) we find the answer in the following lemma.

Lemma 1. For a fixed k equation (4) gives the generalized solution of (1), if and only if
AT*=0. (10)

2. Simultaneous equations

Now we consider the case of a linear system of simultaneous equations

Aix =fi’ (11)
i=1,...,n, with 4,€ (2> X,), f, € Z%,. Introducing the block vectors
4, h
A=| |, f=|:| (12)
A, Ja

cf. [7], the system (11) can be reduced to (1) with #=%, X -+ XZ#,. Each A, shall have an
inner inverse X,, and using analogous notations as in (7) we see from (8) and (9) that every
solution x of (11) satisfies

x=Px+ X.f, (13)
for i=1,..., n, and that
Q.fi=0 (14)

are necessary solvability conditions for (11). Vice versa, in case of (14) every solution x of (13)
satisfies also (11), but since in general the conditions (14) are not sufficient for the solvability of
the whole system, it can be possible that also (13) is not solvable.
Substituting x from the first equation of (13) into the second and afterwards the result into

the third equation we obtain

x=P,Px+PX fi +X, /5,

x=P;PPix+ PP, X\ /i + P X, [+ X3 fy
and finally after n — 1 similar steps

x=P, - Px+P, - P,X fi+ - +P,X, 1 f, 1+ X, [, (15)
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This is an equation of type (2) with

T=P ---P,B=(P,---P,X, ---P,X,_X,). (16)
Lemma 2. In case of

A4, X,=0 (17)
for 1 <i<j<n, condition (10) of Lemma 1 is satisfied for k = 1 and we have

Q = diag(Q, Q, ... Q.). (18)

The short proof is contained in [1], cf. also [2]. Since inner inverses are not uniquely
determined, one can try to satisfy the additional conditions (17).
In the general case condition (10) means A,7% = 0, and this is equivalent to

PT*=T* (19)

for i =1,..., n, where the last equation with / = n is satisfied automatically in view of (16).
Example 1. Let be n =2,
= C _ (1
and, let us say, A, = X,=1— P, for i =1, 2, then we have for T= P, P,
T = (’)(CD)HC(D 1), PlT"=( ¢ )(DC)"(D 1),

0 11— DC
so that (19) is satisfied in case of (CD)*'C = (CD)*C. The example
01 0 - 0 10 -0
C= , D= 01,
0 "1
0 0 1 0 0
01 0 0
CD = .0
1
0 0

with matrices C, D of sizes (k — 1) X k and k X (k — 1), respectively, shows the possibility that
(19) is satisfied for a fixed k, but not for smaller k, since (CD)*~? possesses only one entry 1 in
the position (1, kK — 1) and (CD)*~1 = 0.

3. The limit case
If the condition (10) is not satisfied for any &, we can try to go to the limit k — co. We assume
that # 1s a limit space satisfying together with the appearing operators the conditions of Berg

[3]', then we have, following Maess [10], the following lemma.

! Note that the quoted paper contains the letter R in two different meanings, at the beginning as a single operator and
later on after Lemma 1 as a ring of operators.
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Lemma 3. If the limits

T® = lim T*, (20)
k—
Z= lim Y, B (21)

exist and if
AT* =0 (22)
is satisfied, then (8) with P =T and X = Z gives the generalized solution of (1).

Now we specialize ourselves to the case (16) belonging to (12).

Proposition 1. For orthogonal projectors P,, i =1,..., n, into a finite dimensional Hilbert space 3
the conditions (20) and (22) are satisfied.

Proof. It suffices to restrict all operators to 5#. Then we have || P,;|| <1 for all i and therefore
T <1 as well as ||T*| <1 for all k. The Pythagoras theorem || x| *=|Px|>+ ||(I—
P)x||* shows that || x|| = || P,x|| if and only if x = P.x. Hence ||Tx|| = || x| implies x = P,x
for all i and therefore x = Tx. This means that for the eigenvalues A of T we only can have
either A=1 or |A| < 1. All Jordan blocks belonging to A = 1 must be simple, because otherwise
T* cannot be bounded. This shows the convergence of (20). The equivalence of x = Tx and
x=Px for i=1,..., n together with A4,P, =0 shows that (22) is satisfied, too. O

Sufficient conditions for the existence of (21) you find in [3] and in [11]. Another condition
can be set up according to Pyle [14], if we first substitute (15) into the equations (13) for
i=n~—1step —1 to 1, so that we obtain equation (2) with

I'=pP, ---P,_PP_, P (23)
and after denoting the old B from (16) by B,,
B=P1---P"_1B0+(X1 PXy oo Py Pn—2Xn—lO)‘ (24)

We need the notation of a reflexive inverse X, that is an inner inverse being at the same time an
outer inverse of A, i.e. :

XA, X, = X,. (25)

Concerning this case we have the following proposition.

Proposition 2. Let X, be reflexive inverses of A, and let the projectors P, be orthogonal into a finite
dimensional Hilbert space H# for i=1,...,n. Then with respect to (23) and (24) all three
conditions of Lemma 3 are satisfied.

Proof. Since the proofs of (20) and (22) run as before we restrict ourselves to (21). With respect
to o we have T* = T, so that T* is an orthogonal projector onto the intersection of the ranges
im P, for i =1,..., n. This projector is uniquely defined and does not depend on the order of the
projectors P,, so that we have

T*P, = T*



L. Berg / Simultaneous equations 261

for all i, but this together with P, X, =0 implies 7°B = 0. On the other hand, denoting by B, the
operator analogous to B in (24), only with 0 instead of X;, we have in view of 7X, =0 for j > 1

T'B=(I'—T*)B=(T'— T*)B,
and therefore
IT/Bf || < IIT/ = T* || | B.f || < Mg’

where ¢ <1 is a bound ¢ > |A| for all eigenvalues A of T different from A = 1. This inequality
proves (21) in the sense of strong convergence. DO

Remarks. In the case that all A4, are matrices with linearly independent lines and X, the
corresponding right inverses with orthogonal projectors, the iteration method (4) with (16) is well
known from Kaczmarz [9], Peters [13], Maess [10], and others. Though the method is convergent,
it is numerically unstable, whereas the change-over to (23) and (24) causes a stabilization effect.
However, in general the convergence is bad nevertheless, so that for practical purpose it is
necessary to use methods, which accelerate the convergence, cf. [14].

4. Further iterations

If the limits (20) and (21) exist, but if (22) is not satisfied, then the limit equation
x=T%x+Zf (26)
of (4) with (5) and (16) is not the generalized solution of (1) with (12) for every x on the
right-hand side. In this case we consider the differences of (3) with (26), i.e. the equations
(T* - P)x=Xf—-Zf (27)

fori=1,...,n—1, and we have a proposition.

Proposition 3. If the solvability conditions (14) are satisfied and if x is the general solution of the
n — 1 equations (27), then, after substituting this solution into the right-hand side of (26), the
left-hand side is the general solution of (11).

Proof. From the foregoing considerations it is clear that every solution of (13) solves also (26)
and (27). Now let x be a solution of (27). Then (26) goes over into (13) and in view of (14)
moreover into (11) for i=1,..., n — 1. But according to 4,P, =0 we have 4, T=A,T* =0 and

A,Z=A,B=(0 --- 04,X,),
so that from (26) and (14) we obtain A,x =A4,X,f,=f,, i.e. (11) also for i=n. O

Let us mention that similar as before the necessary solvability conditions (14) for (11) do not
guarantee the solvability of the system (27).

Now we can repeat the whole iteration procedure with respect to the n — 1 equations (27)
instead of the original n equations (11) and so on, until we obtain the solution x or one single
equation, for which as in the foregoing cases we assume to have an inner inverse and therefore a
generalized solution.
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Of course, in practice nobody would proceed in this way. But the following example shows
that the assumptions we imposed upon equation (26) are quite well realistic.

Example 2. Let be

AA;=A;
for i, j=1,...,n as in the case
P
0 0

Then X, = A, are inner inverses of 4, with P,=Q,=1—A4,, and we have P,4,=0 for all i, j as
well as

PP =P,
From (16) we find that T* =T=P, and Z=B=(0 --- 0 X)), so that (26) is nothing else than
(13) with i = n.

Remarks. By the way, Example 2 shows that the iteration method in single steps
Xpksi = PiXppqion + X f;

fori=1,...,n—1and k=0,1,... can be divergent in spite of the convergence of x,,.
On the other side we see that for Example 2 the system (27) can be written in the form
(Pn—Pi)x:‘Xifi—ann (28)
fori=1,...,n— 1.1t is easily to see further that also in general Proposition 3 can be transferred

to (28) and (13) with i = » instead of (26), but (27) contains more information than (28).

5. Matching rules

In the asymptotic theory of singular perturbations matching rules are of great importance, cf.
[6]. An abstract version of matching rules was set up by Felgenhauer [8], using the following

notion: A projector P is called a composite projector of the projectors P, i=1,..., n, if
ker P= () ker P, (29)
i=1

where ker A in general means the null space of the linear operator 4. If P is the composite
projector of the projectors P, then the complementary projector P =1 — P is the intersection
projector of the complementary projectors P,=1— P, in the sense of Pyle [14] and vice versa.
This means that P is a projector onto (29), where you have to note that ker P equals to the range
im P of the complementary projector P. The following result was shown in [4] for the case n =2,

but it is also valid in general.

Proposition 4. If A,,..., A, are projectors and if X is an inner inverse of A from (12), then XA is a
corresponding composite projector.



L. Berg / Simulraneous equations 263

Proof. With the notation
X=(U U ... U) (30)

we have

XA=) UA,.
i=1
This equation at once implies that the intersection of all ker A4, is contained in ker XA4. But the
opposite conclusion follows from AXA = A and therefore 4, XA = A, for all j, what proves the
statement, cf. [§]. O

The last equations of the proof can be written in the form
A= ;AJU,A, (31)
for j=1,...,n, and these equations are the already mentioned matching rules. They have the
following meaning.

Lemma 4. The necessary and sufficient solvability conditions for the system (11) read

fi= > AU,

i=1

forj=1,...,n.

Proof. The necessity follows easily from (11) and (31). The sufficiency follows from (9) with (7),
i.e. from f= AXf with (12), in view of (30) and therefore

X(= Y U,

i=1
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