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There are large individual differences in the susceptibility for metabolic disorders such as obesity, the
metabolic syndrome and type 2 diabetes. Unfortunately, most animal studies in this field ignore the
importance of individual variation which limits the face validity of these studies for translation to the human
situation. We have performed a series of studies that were particularly focused on the individual differences in
the (patho)physiology of energy balance. The studies were performed with passive and proactive individuals
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C?l;‘il‘;gsstyle of two different rat strains: the Roman High and Low Avoidance rats and the Wild type Groningen rat. The
Insulin data reveal that passive and proactive individuals differ significantly on several parameters, i.e. body

composition, Hypothalamic-Pituitary-Adrenal (HPA) axis activity, plasma levels of insulin and leptin,
intestinal transit time, systolic blood pressure and meal patterns. We also found that the selection line of the
Roman Low Avoidance rat may be considered as a non-obese animal model for the metabolic syndrome, since
these rats display, under sedentary conditions, many of the related symptoms such as hypertension, visceral
adiposity and insulin resistance during an intravenous glucose tolerance test. These symptoms disappeared
when the animals were allowed to exercise voluntarily in a running wheel. We conclude that experiments
with passive and proactive individuals are highly relevant for studying the (patho)physiology and behavior of
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energy balance and the related metabolic disorders.

© 2011 Elsevier Inc. Open access under the Elsevier OA license.

1. Personality in energy balance

In humans, there are large individual differences in the suscepti-
bility for metabolic disorders such as obesity, the metabolic syndrome
and type 2 diabetes. Unfortunately, most animal studies in the field
ignore the importance of individual variation and use standard
models such as the Wistar and the Sprague-Dawley rats. This limits
the face validity of rat studies in energy balance and metabolism for
translation to the human situation.

Variation in the susceptibility of metabolic disorders between
individuals is, in part, caused by psychosocial factors such as
differences in levels of education, low sense of coherence, work stress
and lack of sleep [1-3]. Personality plays a role as well, as indicated by
observations in children [4] and adults [5] that a type A personality
has a higher risk to develop the metabolic syndrome. The following
paragraphs are therefore particularly focused on our studies on the
role of an individual's personality in the (patho)physiology of energy
balance.
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2. Personality and coping style

Personality is defined as a set of behavioral and physiological
responses that characterize an individual. Most of the current theories
on personality are based on the behavioral disposition model
proposed by Allport in 1937 [6]. This theory states that a personality
characterizes individuals in terms of a set of stable dispositions
(traits) that are distinctive for the individual and determine a wide
range of behavioral responses. A personality is thus a set of behavioral
responses that are genetically imbedded within an individual and
these behavioral strategies are employed throughout life to interact
with the environment. Even though the theoretical framework of the
behavioral disposition model is well accepted, scientific descriptions
of personality are mostly methodology based; the methods used to
assess personality (Bortner scale, Big Five, and Jenkins Activity
Survey) also determine the definition of personality [7-9].

This makes it difficult to investigate the physiological and neuronal
mechanisms underlying the behavioral differences between indivi-
duals. The use of an objective and unbiased animal model might be
useful for this since most described personality traits in humans are
identifiable in animal models as well [10-12]. However, the animal
literature prefers the term coping style when describing individual
differences in physiology and behavior. Coping style is defined as a
coherent set of behavioral and physiological stress responses that are
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consistent over time and that characterize a certain group of
individuals [13]. Although the definitions of personality and coping
style show overlap, coping style may be preferred for translational
studies since it is based on an objective observation of behavior and
physiology.

3. Proactive and passive coping styles

The development of a coping style is aimed at controlling the
environment successfully to increase survival [14]. In most animal
species, including humans, two major coping strategies (proactive
and passive copings) are distinguished (reviewed in Ref. [13]). The
proactive coping style is characterized by the fight/flight response, a
stress response primarily mediated through activation of the
sympathetic nervous system (reflected by increased catecholamine
release [15]). As a consequence, heart rate, blood pressure and
blood flow to the muscles are increased allowing the animal to
escape or fight the threat [16]. Individuals with a proactive coping
style display higher levels of aggression, impulsivity and they are
more prone to routine formation [17,18]. Proactive individuals are
also characterized by low hypothalamus-pituitary-adrenal (HPA)
axis reactivity [19-21].

The passive (or reactive) coping style originates from a conserva-
tion/withdrawal response. This response, originally described by
Engel et.al [22], is characterized by freezing behavior, activation of
the HPA-axis (leading to elevated corticosterone/cortisol levels),
increased parasympathetic and reduced sympathetic reactivity
[19-21]. The freezing response minimizes the chance of being
attacked and thereby lowers the risk of being harmed by the threat.
Individuals with a passive coping style are characterized by a low
aggressive nature, low levels of cue dependency and high levels of
behavioral flexibility [17,18,23].

In wild populations of animals, the coping strategies of the
individuals within a population display a bimodal distribution, mainly
because individuals with an extreme coping style have by definition a
higher fitness [14,24,25]. The evidence for this is derived from studies
in wild populations of the great tit (parus major) and the mouse (mus
musculus domesticus) [17,26]. Individuals with an intermediate coping
style are generally not present in a population in the wild since they
have a lower fitness in both a stable, territorial environment as well as
in a variable migratory setting. In contrast, in a laboratory or domestic
settings there is no environmental pressure pushing the population
into a bimodal distribution. This means that in domesticated
populations, like domesticated pigs and most laboratory rat strains,
a normal distribution in coping strategies is observed [24].

4. Proactive and passive rat models

Studies in our laboratory focus on the individual differences in
the (patho)physiology and behavior of energy balance and its impact
on the development of metabolic disorders, such as obesity and
insulin resistance. In these studies we use two rat models with
extreme coping styles: 1) Roman High and Low Avoidance rats
and 2) proactive and passive Wild Type Groningen rats.

The Roman High and Low Avoidance rat selection lines were
founded in 1965 by Bignami [27] and populations of these rat lines
have been maintained ever since. The rats originated from a Wistar
stock and have been selectively bred on the basis of their performance
in a two way active avoidance test. During this test the rats are placed
in a shuttle box with two compartments and trained to associate a
light stimulus with a mild foot shock. This shock can be avoided
by moving to the other compartment of the box [27]. The initial
acquisition of avoidance behavior is strongly dependent on emotional
reactivity, anxiety and coping strategy [28,29]. The Roman High
Avoidance (RHA) rats were selectively bred on the basis of rapid
learning to avoid the shock, while the Roman Low Avoidance (RLA)
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Fig. 1. Distribution of bury behavior within the Roman, Wild Type Groningen (WTG)
and Wistar rat populations. The z-axis presents the three rat populations tested. On the
x-axis the percentage time spent burying during a defensive bury test is categorized. On
the y-axis the percentage rats of each population in each category is presented. The
defensive bury test was performed using methods described in Ref. [36].

rats were selectively bred based on non-acquisition of avoidance
behavior. RLA and RHA rats are extensively studied in the field of
aggression, anxiety and depression and several excellent reviews are
available that provide information on the behavioral, hormonal and
neuro-chemical characteristics of these passive and proactive selec-
tion lines [30-32].

The Wild Type Groningen (WTG) rat population is originally
derived from the University of Wageningen in The Netherlands and is
bred in our Department under conventional conditions. This outbred
rat population is characterized by display of a wide variety of behavior
and the bimodal distribution of passive and proactive individuals, as
observed in the wild populations, is still present in the WTG rat (for a
review, see Ref. [33]).
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Fig. 2. Distribution of bury behavior in Roman Low Avoidance (RLA), Roman High
Avoidance (RHA), passive Wilde Type Groningen (WTGp) and proactive Wild Type
Groningen (WTGa) rats. The z-axis presents the four rat strains tested. On the x-axis the
percentage time spent burying during a defensive bury test is categorized. On the y-axis
the percentage rats of each population in each category is presented. The defensive bury
test was performed using methods described in Ref. [36].
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Table 1

Behavioral characteristics of passive and proactive rats from the Roman and the Wild Type Groningen strains. The defensive bury test was performed using methods described in Ref.
[36]. The Elevated plus maze test was performed according to the methods described in Ref. [82]. The open field test was performed using methods described in Ref. [83]. The Novel
object recognition task was performed using methods described in Ref. [84]. Differences between the proactive and passive rats within each strain were assessed with a one-way

ANOVA (coping style = between subjects factor).

RLA RHA WTGp WTGa
Proactive behavior
Defensive bury test (% immobile) 65.0+9.9 15+1.0" 75.0+£9.1 13.2+4.7
Defensive bury test (% bury prod) 15409 63.7+7.8 " 0.8+0.8 38.7+7.9"
Defensive bury test (% explore cage) 8.0+3.2 16.1+6.2 15.7+6.1 25.6+3.8
Defensive bury test (% explore prod) 12.7+10.2 133+4.1 6.4+2.6 102+33
Defensive bury test (% grooming) 124440 9.0+4.0 6.6+2.7 122449
Anxiety
Elevated plus maze test (% open arms) 62435 121+21F 10.5+23 11.2+15
Open field test (% inner zone) 102445 124+£13 11.7+£19 142+£15
Learning and memory
Novel object recognition (% new object) 69.54+3.2 68.9+2.6 No data No data
Aggression )
Resident intruder test (attack latency in second) 43224752 124+ 43.87" 497.2+55.2 76.6+38.0"

* Indicates significant differences between the passive and proactive rats within the same strain (p<0.05).

In our laboratory we use the so-called defensive bury test,
developed by Pinel and Treit [34], to select proactive and passive
individuals within the WTG rat population. Rats that display less
than 10% (in time) burying behavior are categorized as passive,
individuals that spend more than 20% of the time burying are
categorized as proactive. Fig. 1 shows the distribution of proactive
and passive coping behavior in the defensive bury test for
individuals from the Roman selection lines, the WTG rats and a
standard Wistar population. It is evident that the bimodal distribu-
tion in coping style is still present in both WTG rats and the Roman
lines. This is not the case in the standard Wistar rat line in which
most of the animals can be characterized as passive or intermediate
individuals, an observation that confirms previous findings in the
so-called resident-intruder aggression test [35].

Fig. 2 shows the distribution in bury behavior of the Roman
selection lines and the WTG rats that were used in our studies. It is
clear that, in comparison with the WTG rats, the RHA rats are more
extreme in their proactive behavior, which confirms our previous
findings. Likewise, passive RHA rats tended to bury less than passive
WTG rats. This difference did, however, not reach statistical
significance [36].

Table 1 provides the results of a series of additional behavioral
tests in both rat strains to confirm the passive and proactive nature of
the rats that were used in our experiments. In both rat strains, the
passive personalities may be characterized as non-active and non-
aggressive with relative high levels of anxiety while proactive animals
are much more active and aggressive with low levels of anxiety. The
data confirm previous studies from others [13,28,29,35].

Table 2
Metabolic characterization of a coping style. An arrow indicates a significant difference
from controls, “ns” no differences to controls [49].

RLA RHA WTGp WTGa
Body weight (g) ns ns ns ns
Food intake (kcal) ns ns ns ns
Resting energy expenditure ns ns ns ns

Fat mass (%) ns ns ns ns

Fat free mass (%) ns ns ns ns
Epididymal fat (g) I ! 1 !
Retroperitoneal fat (g) ! 1 ! 1
Subcutaneous fat (g) ns ns ns ns

5. Coping style and energy balance

So what is the influence of the coping style of an individual on the
(patho)physiology of energy balance? Tables 2 and 3 summarize some
of the data obtained. Under baseline conditions (ad lib standard lab
chow and resting state) there were no differences between passive
and proactive animals with respect to body weight, 24 h food intake,
energy expenditure and blood glucose levels. There were, however,
significant differences in body composition: passive rats had more fat
in the visceral fat depot in comparison with proactive rats [37]. These
changes in body composition were accompanied with related changes
in the regulatory hormones: both plasma insulin, leptin and
corticosterone levels were higher and sympathetic outflow (reflected
by plasma noradrenalin levels) was lower in the passive individuals
[36]. The differences between passive and active animals were all
highly significant in the Romans selections lines and less pronounced
in the WTGs. The observed effects on plasma noradrenalin and
corticosterone confirm the idea that the proactive coping style is
characterized by increased activation of the sympathetic nervous
system in combination with low hypothalamus-pituitary-adrenal
(HPA) axis (re)activity and that passive individuals are characterized
by increased activation of the HPA-axis and reduced sympathetic (re)
activity [13,19-21].

One of the most striking findings was the difference in baseline
plasma insulin levels between RHAs and RLAs. Passive individuals
have high insulin levels and proactive animals have relative low levels
of plasma insulin under baseline conditions. Fig. 3 shows the

Table 3

Levels of regulatory hormones in passive and proactive Roman rats. Hormone levels
were measured in blood samples taken from indwelling jugular vein catheters. The
samples were taken in the middle of the light phase (CT4-CT6) from animals that were
fasted for at least 4 h. Differences between the RLA and RHA rats were assessed with a
one-way ANOVA.

RLA RHA
Blood glucose (mmol) 6.074+0.30 6.56 +0.32
Plasma insulin (ng/ml) 2.76+0.56" 2.06+0.25
Plasma leptin (ng/ml) 4.4640.65" 3.1940.76
Plasma corticosterone (ng/ml) 364.4+42.1" 22854309
Plasma noradrenalin (pg/ml) 78.1+256" 178.7+£11.9

* Indicates a significant difference between RLA and RHA rats (p<0.05) (derived
from Refs. [17] to [49]).
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Fig. 3. Distribution of insulin levels within a Roman and a Wistar rat population. The z-
axis presents the two rat populations tested. The x-axis expresses baseline insulin levels
at the middle of the light phase, the y-axis the percentage rats of each population in
each category. Insulin was measured in blood samples taken from indwelling jugular
vein catheters. The samples were taken in the middle of the light phase (CT4-CT6) from
animals that were fasted for at least 4 h.

distribution of plasma insulin levels over the Wistar and Roman rat
population. There is a clear bimodal distribution within the Roman rat
population which is remarkably different from the normal distribu-
tion in the standard laboratory Wistar rat strain. This suggests that
plasma insulin levels are strongly linked to the coping strategy of an
individual.

We further investigated this by subjecting passive and proactive
individuals from both strains to a series of intravenous glucose
tolerance tests (IVGTT). Fig. 4 shows that passive RLA animals are not
only characterized by increased baseline insulin levels but also by an
elevated insulin response during an IVGTT, suggesting that these
animals are insulin resistant, even on standard chow diet [37]. This
development of insulin resistance was, as mentioned before,
accompanied with an elevation in baseline plasma leptin levels and
increased epididymal fat deposition (visceral obesity). The passive
WTG rats had also an increased insulin response to an IVGTT, but
unfortunately this did not reach significance. That is, when the
animals were fed a standard chow diet. But when we placed them on a
palatable high fat diet, the passive individuals clearly developed
insulin resistance (reflected by an elevated insulin response to an
IVGTT) and visceral obesity [36]. A passive personality may therefore
be considered as a risk factor for developing insulin resistance. In
contrast, proactive individuals of both strains were always resistant to
the development of insulin resistance and visceral obesity, even when
they were overfeeding on a palatable high fat diet.

6. Coping style and cardiovascular activity
In a subset of experiments, passive and proactive animals from the

Roman selection lines were equipped with the Dataset telemetry
devices [15] for chronic on-line measurements of blood pressure and

heart rate. The data under resting conditions are presented in Table 4.

Systolic blood pressure is dramatically increased in RLA rats and
the increased pulse pressure indicates that this, in part, may be caused
by increased arterial stiffness. From these data, one may conclude that
the passive RLA rat, which is already characterized by insulin
resistance and visceral obesity, is also hypertensive. This means that
the RLA rat develops several characteristics of the metabolic
syndrome, already under baseline chow conditions. Since there are
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Fig. 4. Blood glucose and plasma insulin levels during to a 30 min intravenous glucose
infusion (15 mg/ml) in Roman Low Avoidance (RLA, n = 8), Roman High Avoidance (RHA,
n=28), passive Wilde Type Groningen (WTGp, n=8) and proactive Wild Type Groningen
(WTGa, n= 8) rats. All rats were fed a standard lab chow diet and housed under sedentary
conditions. Differences between the four experimental groups were assessed by
calculating the area under the response curve followed by ANOVA statistical analysis
(experimental group=between subjects factor). * indicates a significant difference
between RLA and RHA, WTGa, WTGp rats (ANOVA F [3,28] =9.368 p<0.01).

Data from Boersma 2010 [36].

no differences in food intake and body weight between RLAs and
RHAs (Table 2), one may argue that the RLA rat may serve as an ideal
animal model for the metabolic syndrome in non-obese animals.
The underlying mechanism that may explain the increased blood
pressure in the passive animals is still unknown. In a previous study
[37] we found that Table 2 also reveals that RLAs are characterized by
elevated daily water intake. The combination of increased blood
pressure and elevated water intake points to a possible role for

Table 4

Cardiovascular parameters in passive and proactive Roman rats. Before the start of the
experiment, the rats in this study were equipped with a transmitter (PA-C40, Data
science, St. Paul, MN) to allow cardiovascular measurements. During the whole study
the cages of the rats were place on an antenna board (RA1010, Data sciences) to allow
constant measurements of cardiovascular parameters. The data were collected and
analyses using Dataquest IV (Data sciences) software. Cardiovascular parameters were
measured once every 5 min for 10 s. The cardiovascular parameters of the rats were
measured for one week (days 0-7) under the standard sedentary conditions in rats fed
either a chow or a high fat diet. For statistical analysis an average per week was
calculated for each rat. Differences between RLA and RHA rats were assessed with a
multivariate ANOVA (strain = between subjects factor).

RLA RHA
Chow
Heart rate (bpm) 285+5.1 291+64
Systolic pressure (Hg/mm) 120+£3.5 109+ 1.3"
Diastolic pressure (Hg/mm) 83+29 78+24
Pulse pressure (Hg/mm) 369+1.7 31.0+2.7"
Heart rate variability 49403 51405
High fat diet
Heart rate (bpm) 289+5.1 290+6.5
Systolic pressure (Hg/mm) 126 +2.4 113+36"
Diastolic pressure (Hg/mm) 86+1.7 86+5.0
Pulse pressure (Hg/mm) 399+1.6 292+65"
Heart rate variability 52402 51+03

* Indicates a significant difference between RLA and RHA rats (p<0.05) [50].
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vasopressin are discussed in Refs. [38,39]. Indeed, Aubry and
colleagues showed already in 1995 that vasopressin levels at the
level of the paraventricular nucleus of the hypothalamus are increased
under basal conditions in the passive RLAs [40].

7. Coping style and eating behavior

Data from a literature suggest that there are marked differences in
the eating behavior of passive and proactive personalities, in humans
as well as in experimental animals [41,42]. Rossi et al. studied
different aspects of eating behavior of the Roman rat strains and found
that the passive and proactive individuals are different with respect to
meal size, eating rate (the number of kcal/min consumed within a
defined meal) and distribution of meals over the day [41]. They also
found that RLAs eat more frequent meals with a smaller meal size and
a low eating rate, with relatively more meals in the inactive light
period. In our studies we confirmed Rossi's findings in the Romans
and, in part, in the WTGs (Table 5).

One may argue that the nature of the personalities by itself may
explain the differences in eating behavior. Passive animals are more
anxious and more sensitive to environmental cues [29] and are
therefore more easily distracted when eating. Distraction and anxiety
leads to a lower eating rate and smaller meals and, consequently, to an
increased number of meals per day. The observation that RLAs but not
RHAs eat less in a novel environment strengthens this idea. Likewise,
the higher eating rate and, to a lesser extent, the larger meals in the
RHA and active WTGs fits with the rigid nature of proactive animals.

Physiological differences, in particular at the level of the gut
hormones, are known to influence meal patterns and many aspects of
eating behavior. Unfortunately, data on the individual variation of the
actions and alterations of gut hormones such as CCK and Ghrelin are
not available in the literature. We measured the intestinal transit time
in RLA and RHA rats and obtained indirect evidence that gut factors
might be different between proactive and passive individuals. In
short, a sucrose solution with a dye (carmine red — E120) was given to
the animals, they were sacrificed 30 min later and the concentration
of the dye was measured by photo-spectrometry in the different
segments of the gut [43]. Fig. 5 reveals that intestinal transit time was
significantly shorter in the passive RLAs when compared with the
proactive RHAs. Although this is contradictory to what should be
expected on the basis of lower eating rate and smaller meal size in
passive animals, the striking differences in meal patterns and
intestinal transit time between passive and proactive individuals
make it worthwhile to perform future studies on individual
differences in gut physiology.

In their study in 1997, Rossi et al. [41] observed that there were
differences between RLAs and RHAs with respect to the distribution of
meals over the day. This seems to be caused by differences in the
biological clock since Rivest and colleagues found that the pineal of
the RHAs was twice the size of the glands of the RLA rats [44]. This
difference at the level of the pineal gland leads to increased secretion
of melatonin in the RHA rats [45] and significant changes in sleep
patterns and the organization of sleep [46]. We also looked at the

Table 5

Coping styles and meal pattern analysis. Meal patterns were assessed using the TSE
drinking and feeding monitor system (TSE, Bad Homburg). The meal size was measured
with 0.1 g precision. Meal duration was measured with 30 s precision. An arrow
indicates a significant difference from controls, “ns” no differences to controls
(unpublished data from the experiment described in Ref. [17]).

RLA RHA WTGp WTGa
Meal size (kcal/meal) l ns ns ns
Meal number 1 ns ns ns
Eating rate (kcal/min) 1 1 ! 1
Time with food (min) ns ns ns ns
Intake in a novel environment ! ns no data no data
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Fig. 5. Intestinal transit time of RLA and RHA rats. Transit of a red dye (carmine red)
25 mg/100 ml diluted in 10% glucose solution was measured 30 min after ingestion. The
small intestine (including stomach and ceacum) was dissected directly after sacrifice.
First, the stomach was isolated by placing ligatures at the end of the esophagus and the
pylorus. Here after the duodenum was isolated and divided into two equal parts. Next
the jejunum was isolated and divided with ligatures into two parts. Hereafter the Ilium
was isolated and divided into four parts. Finally, the ceacum was isolated. The intestinal
content of the 10 isolated parts was saved in separate files. Intestinal content was
centrifuged (2600 rpm for 20 min) and dye concentration in 75 pl of the supernatant
+1ml 0.1M NaOH was measured in a photo-spectrometer (E580). White bars
represent RLA rats, Black bars represent RHA rats. From the data the percentage of the
total fraction found in each part was calculated. Differences between the RLA and the
RHA rats were assessed by repeated measures ANOVA (strain = between subjects
factor and the part of the intestine = within subjects factor), followed by multivariate
ANOVA post-hoc analysis for the separate intestinal parts. * indicates a significant
difference between RLA and RHA rats (RM-ANOVA F (23,137) =5.623 p<0.05).

circadian rhythmicity meal patterns, in both the Roman and the WTG
strain (Fig. 6) and confirmed Rossi's findings in the Roman rat strain,
but failed to find differences in circadian eating patterns in the WTGs.
It is therefore not yet clear whether the differences in the biological
clock in the passive and proactive Romans might be a result of a
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Fig. 6. Cumulative food intake in passive and proactive individuals of the Roman and the
Wild Type Groningen rat strains. Food intake was measured continuously using the TSE
drinking and feeding monitor system (TSE, Bad Homburg). The figure displays the
average intake per day over a period of three weeks. White symbols represent RLA rats
(n=38), Light grey symbols represent passive WTG rats (n=28), dark grey symbols
represent proactive WTG rats (n=238), and black symbols indicate RHA rats (n=38).
Differences between the experimental groups were calculated using repeated measures
ANOVA (experimental group = between subjects factor and the time of day = within
subjects factor). The RM-ANOVA was followed by a multivariate ANOVA post-hoc
analysis to allow comparison at the different time points. * indicates a significant
difference between RHA rats and all other tested rats (p<0.01) (unpublished data from
the experiment described in [17]).
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Fig. 7. Glucose and insulin responses to an intravenous glucose tolerance test (IVGTT) in sedentary and running rats of the Roman stain on a chow diet. A: the glucose response to a
30 min glucose infusion (15 mg/ml) in RLA rats (n=8) on a chow diet. B: the glucose response to a glucose infusion in RHA rats (n=8) on a chow diet C: the insulin response to a
glucose infusion in RLA rats (n =28) on a chow diet. D: the insulin response to a glucose infusion in RHA rats (n=8) on a chow diet. The black symbols represent baseline sedentary
conditions and the white symbols represent voluntary running conditions. Differences between the RLA and RHA rats were assessed by calculating the area under the response curve
followed by repeated measures ANOVA analysis (strain = between subjects factor, condition = within subjects factor). The RM-ANOVA was followed by a multivariate ANOVA post-
hoc analysis to allow comparison at the different time points. * indicates a significant difference between the running and the sedentary condition (F [1,28] =5.435, p<0.05). [50].

genetic co-selection within the strain rather than being secondary to
differences in coping style.

8. Coping style and (spontaneous) physical activity

It is well known that there are marked differences in the locomotor
activity between proactive and passive animals (reviewed in Ref.
[17]). By definition, proactive animals are active and passive animals
are inactive, particularly in threatening or potential stressful environ-
ments. This is of course the case for the defensive bury test, the
selection procedure that is used in our lab to distinguish between
passive and proactive individuals of the WTG strain. But proactive
animals are also more active in behavioral tests such as the open field
test, the Porsolt forced swim procedure and the elevated plus maze
test [47-49].

We tried to replicate these findings and placed passive and
proactive Romans in a novel cage with a running wheel and scored
their wheel running activity and their home cage ambulatory activity
(measured with infra red activity sensors). As expected, proactive rats
showed more exploratory behavior and wheel running in the first
hours after the animals were moved into the new environment
(unpublished data). However, after the rats became habituated to
their environment, the passive individuals dramatically increased
their running wheel activity to a level that was significantly higher
than that of the proactive animals [50]. We found that, after a while,
both daily running wheel activity and home cage activity are
significantly elevated in the rats with a passive coping style. We
also found that, when placed on a palatable high fat diet, only passive
but not proactive individuals from both rat strains increase their
running activity to counteract the increased energy intake (data not
shown).

The most interesting findings, however, are presented in Fig. 7 and
Table 6. Fig. 7 gives the blood glucose and plasma insulin profiles
during an IVGTT in both sedentary and running RHAs and RLAs. As

mentioned before, the passive Roman Low Avoidance rat is, under
baseline conditions, characterized by insulin resistance and increased
visceral adiposity. But the RLA rat increases its spontaneous home
cage activity and wheel running when it is allowed to run voluntarily
in a wheel. All this leads to a normalization of the plasma insulin
responses to control (RHA) levels. This phenomenon, increased
spontaneous wheel running activity in animals that are normally
obese and insulin resistant under sedentary conditions has been
observed before in overweight animal models such as the Oleft rats
[51] and MC4 knockout mice [52]. Not only the insulin levels

Table 6

Cardiovascular parameters in rest and body composition in sedentary and exercising
passive and proactive Roman rats. Before the start of the experiment, the rats in this study
were equipped with a transmitter (PA-C40, Data science, St. Paul, MN) to allow
cardiovascular measurements. During the whole study the cages of the rats were place on
an antenna board (RA1010, Data sciences) to allow constant measurements of
cardiovascular parameters. The data were collected and analyses using Dataquest [V
(Data sciences) software. Cardiovascular parameters were measured once every 5 min for
10 s. The cardiovascular parameters of the rats were measured for one week (days 0-7)
under the standard sedentary conditions. Then the rats were switched to a cage with a
running wheel and left to habituate for three weeks. After habituation, cardiovascular
parameters were again measured for one week (days 28-35). Differences between the
RLA and RHA rats under the difference conditions were assessed with repeated measures
ANOVA (strain and condition were between subjects factors).

RLA RHA RLA RHA

sedentary  sedentary  running running
Heart rate (bpm) 285+5.1 291+64 282426 285+3.1
Systolic pressure (Hg/mm) 120+£3.5 109413 115435 112+59
Diastolic pressure (Hg/mm) 83+29 78+2.4 79+2.0° 78+2.3
Heart rate variability 49403 51405 59+04° 52409
% Visceral fat 37422 33+£1.6° 34+18° 31+£26

@ Indicates a significant difference between the RHAs and RLAs within the same
condition (p<0.05) [50].

b Indicates significance between the running and sedentary condition in the same
animals (RM-ANOVA; p<0.05).


image of Fig.�7

G.J. Boersma et al. / Physiology & Behavior 103 (2011) 89-97 95

improved in the RLA rat, but also the increased spontaneous activity
normalized visceral adiposity and elevated the systolic and diastolic
blood pressures in the resting state (Table 6). Finally, the increased
spontaneous activity significantly increased heart rate variability, an
indication of increased physical fitness [53] in the RLAs.

To summarize, in a previous paragraph we concluded that the RLA
rat could be considered as a non-obese animal model for the
metabolic syndrome. The data above reveal that all the symptoms of
the metabolic syndrome (insulin resistance, hypertension, and
visceral adiposity) in the RLA disappear when the animals are allowed
to run voluntarily in a wheel. One should note that the so-called
passive RLA rat ran even significantly more than their active
counterparts when allowed to run. This suggests that the RLAs used
a behavioral strategy (increased physical activity) to compensate for
their pathological characteristics in the sedentary state. One may also
argue that the standard sedentary state is in fact a pathological
condition for laboratory animals [54], particularly those with a passive
personality since they are highly influenced by the environmental
conditions [13].

9. Personality and metabolism: relevance for humans application

The present studies revealed that there are significant behavioral
and (patho)physiological differences between rats with passive or
proactive coping styles. The crucial question is: what is the relevance
for the human population? Can we simply translate our data to
humans with a proactive or passive personality? Unfortunately,
available data in humans on the interactions between personality
and the metabolic syndrome or the risk to develop insulin resistance
are scarce and confusing. This confusion may be partly due to the fact
that in most human studies, individual differences in behavior are
categorized by means of self rate personality scales. Unfortunately,
these scales are subjective because the personality itself may
influence the rating process. The differences in methodology of
personality/coping style assessment make a direct translation of the
data in rodents to the human complex, however, using the
physiological and behavioral parameters characteristic of the different
personality types could prove helpful. Most studies using physiolog-
ical and behavioral parameters to identify different personalities
found that the typical characteristics of a passive personality, such as
increased HPA-axis activity [55,56] and increased anxiety traits
[57,58], are indeed associated with an increased risk to develop of
insulin resistance. This was confirmed in a few studies using
questionnaires to identify the personality of an individual [4,5].
However, there are also several questionnaire studies that report the
opposite: an increased risk for the proactive personality [59-61]. It
should be mentioned that, although questionnaire studies are the
most abundant in the personality literature, they might not be the
most objective for a pathophysiological characterization of patients at
risk.

Available data in the human literature suggest that particularly
the proactive personality has an increased risk in cardiac infarction
[62-64]. This is hypothesized to be the result of an interaction
between the increased sympathetic stress response and increased
exposure to interpersonal stressors in these individuals [65,66].
Consisted with the human data, rats used for hypertension research
such as the Spontaneous Hypertensive Rat, were found to be more
aggressive and more explorative in anxiety tests compared to less
proactive normotensive Wistar control rats [67,68]. Although this is
seemingly in contrast with our current findings in the Roman rat
strain, one should realize that there are several cardiovascular
pathologies in humans, such as arteriosclerosis and stroke, that are
certainly not correlated with a proactive personality (reviewed in
Ref. [65]). Most of these pathologies are directly associated with
increased adiposity which may indicate that, when studying the
relation between personality and cardiovascular risk factors, one

should dissociate these risk factors in a group that are related to
increased sympathetic activity and a group that are the result of
increased adiposity. A proactive personality may be more prone to
the first group of pathologies, whereas the passive personalities
might be particularly sensitive to the latter group.

In our studies, all symptoms of the metabolic syndrome (insulin
resistance, hypertension, and visceral adiposity) disappeared when
the RLAs were allowed to run voluntarily in a wheel. We also found
that only the passive but not the proactive individuals from both rat
strains increase their running activity when they were fed a palatable
high fat diet. This means that in particular passive rats are sensitive for
potential environmental cues. Human data are more or less similar.
Passive personalities are more sensitive to external motivation and
external motivation improves performance only in passive but not in
proactive personalities [69]. This is an important issue because this
differential response to external motivation may be crucial for the
development of tailor-made treatment programs. We speculate that
particularly the passive personality might be successful in following a
lifestyle intervention program, for example for the prevention or
treatment of overweight and type 2 diabetes. Proactive personalities,
who are much less sensitive to external cues, will probably fail in a
lifestyle intervention program and should focus on more intrinsic
methods such as pharmacological treatment. Preliminary data from
our current studies seem to confirm this.
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