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Abstract

We provide a systematic study of minimal left–right models that are invariant under P , C, and/or CP
transformations. Due to the high amount of symmetry such models are quite predictive in the amount and 
pattern of CP violation they can produce or accommodate at lower energies. Using current experimental 
constraints some of the models can already be excluded. For this purpose we provide an overview of the 
experimental constraints on the different left–right symmetric models, considering bounds from colliders, 
meson-mixing and low-energy observables, such as beta decay and electric dipole moments. The features of 
the various Yukawa and Higgs sectors are discussed in detail. In particular, we give the Higgs potentials for 
each case, discuss the possible vacua and investigate the amount of fine-tuning present in these potentials. 
It turns out that all left–right models with P , C, and/or CP symmetry have a high degree of fine-tuning, 
unless supplemented with mechanisms to suppress certain parameters. The models that are symmetric un-
der both P and C are not in accordance with present observations, whereas the models with either P , C, 
or CP symmetry cannot be excluded by data yet. To further constrain and discriminate between the mod-
els measurements of B-meson observables at LHCb and B-factories will be especially important, while 
measurements of the EDMs of light nuclei in particular could provide complementary tests of the LRMs.
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1. Introduction

Left–right models (LRMs) have been studied extensively as possible physics beyond the 
SM (BSM) [1–5]. LRMs extend the standard model (SM) gauge-group to SU(3)c × SU(2)L ×
SU(2)R × U(1)B−L and possess several attractive features. They offer an interpretation of the 
U(1) generator in terms of baryon and lepton number and naturally allow for neutrino masses 
through the see-saw mechanism. Furthermore, the gauge group of the LRM can appear in grand 
unified theories (GUTs), such as SO(10) and E6, as an intermediate step [6], while avoiding the 
SU(5) group which has problems with proton decay. But perhaps their most appealing feature 
is the possibility of having a symmetry between left- and right-handed particles at high ener-
gies, a so-called LR symmetry. LR models employing such a symmetry, LR symmetric models 
(LRSMs), restore parity (P ) and/or charge conjugation (C) invariance at high energies, thereby 
explaining the P - and/or C-violating nature of the SM as a low-energy effect.

From a theoretical standpoint, the most attractive LRSMs might be those which exhibit both 
P and C symmetries, and thereby CP symmetry, at high energies. Such models in principle can 
explain the observed CP violation as resulting from spontaneous CP violation rather than from 
explicit CP violation as in the SM. However, the LR symmetries of such “C+P ” models strongly 
constrain the left and right CKM matrices, dictating the amount and pattern of CP and flavor 
violation. For the so-called minimal LRSMs, which are most commonly considered and which 
have a minimally extended Higgs sector, these model constraints turn out to be incompatible 
with measurements of Kaon and B-meson mixing, as will be discussed. Therefore, minimal 
LRSMs require explicit P or C violation. It is the goal of this paper to assess the viability 
of these options, of which many aspects have already been discussed in the literature before. 
Nevertheless, it seems useful to collect the available results, combine and supplement them, and 
arrive at clear conclusions about which models are ruled out by current experimental constraints 
and which models require an unacceptably large amount of fine-tuning. Apart from the LRSMs 
with “C + P ”, P or C symmetry, we also will consider an LRM that is CP symmetric, but not 
necessarily P and C symmetric. Since this option does not correspond to an LR symmetry, it is 
not a left–right symmetric model.

For all these models we consider the quark and Higgs sectors, review the relations between 
the left- and right-handed CKM matrices, consider the possible vacua and calculate a measure 
of the fine-tuning in the Higgs potential in each case. Furthermore, we give an overview of 
the relevant experimental constraints on the different LRMs, considering bounds from direct 
searches at the LHC, from B-meson-mixing measurements at LHCb and B-factories, from Kaon 
mixing, and low-energy observables, such as beta decay and electric dipole moments (EDMs). 
As said, in the “C + P ” models current constraints are sufficiently strong to exclude them, 
but for the other options future measurements, in particular on CP violation by LHCb will be 
able to limit the options further considerably and may also be able to differentiate between the 
C-symmetric and P -symmetric LRMs. Measurements on EDMs for the neutron, but also for 
the proton, other light nuclei and the electron would offer additional tests of LRMs. Currently 
the LR scale as given by the mass of the right-handed W boson, commonly referred to as W ′
boson, is required to be at least 2 TeV by direct searches and in the case of P or C-symmetric 
LRSMs 3 TeV by indirect Kaon and B-meson constraints [7]. In the coming decade this bound 
could extend to 8 TeV or higher. As this scale gets pushed upwards, the already considerable 
if not huge fine-tuning required in the models will increase further and the models become in-
creasingly less likely scenarios. These bounds and perhaps the fine-tuning may be weakened 
though by considering non-minimal [8,9] and/or less symmetric models [10–12]. We will not 



W. Dekens, D. Boer / Nuclear Physics B 889 (2014) 727–756 729
include such models here, not for lack of theoretical motivation, but simply in order to limit the 
scope.

The large amount of fine tuning in the LRMs models considered here is due to the fact that 
the Higgs potential necessarily relates the electroweak scale to the LR scale. As the LR scale has 
been pushed into the TeV range there is a hierarchy between the scales which requires the tuning 
of some of the parameters in the potential. In fact, unless some of the parameters are chosen to be 
zero (or exactly related) the fine-tuning becomes extreme. Although it is not clear what amount of 
fine-tuning should be considered acceptable, it does affect the attractiveness of the LRSMs. We 
have introduced a measure of fine-tuning often employed in studies of supersymmetric extensions 
of the SM, in order to quantify the amount of fine-tuning. This may expedite the discussion about 
the viability of such models and hopefully stimulate the search for new mechanisms to mitigate 
the fine-tuning problem.

The outline of this paper is as follows. First we introduce the general minimal LR model in 
Section 2 and experimental bounds on CP violation in Section 3, while discussing the specific 
LRSMs in subsequent sections. We first discuss the “C + P ” LRSMs in detail in Section 4, 
which, although they turn out not to be viable, have many features in common with the LRSMs 
with a single LR symmetry to be discussed in Section 5. We present a summary and conclusions 
in Section 6.

2. Minimal left–right models

In this section we will discuss minimal left–right models and highlight some of their features. 
We will start with the basic ingredients of the model, namely, its field content.

2.1. Field content

The gauge group of left–right (LR) models is given by SU(2)L × SU(2)R × U(1)B−L [1–5]. 
As in the standard model (SM) the left-handed fermions form doublets under SU(2)L. New, with 
respect to the SM, is that the right-handed fermions now form doublets under the added gauge 
group, SU(2)R . In order to build these doublets right-handed neutrinos have to be introduced. In 
short, the fermions are assigned to representations of the above gauge group as follows,

QL =
(

uL

dL

)
∈ (2,1,1/3), QR =

(
uR

dR

)
∈ (1,2,1/3),

LL =
(

νL

lL

)
∈ (2,1,−1), LR =

(
νR

lR

)
∈ (1,2,−1). (1)

With the fermions in the above representations a scalar, φ ∈ (2, 2∗, 0), is required in order to 
produce fermion masses. Furthermore, additional scalar fields are introduced to facilitate the 
breakdown of the LR gauge group to that of the SM. In the LR model under discussion here, 
which has been often considered e.g. [5,13], these are two triplets ΔL,R assigned to (3, 1, 2) and 
(1, 3, 2), respectively. These fields can be written as

φ =
(

φ0
1 φ+

1

φ−
2 φ0

2

)
, ΔL,R =

(
δ+
L,R/

√
2 δ++

L,R

δ0
L,R −δ+

L,R/
√

2

)
. (2)

We will refer to LR models with such a Higgs sector as minimal LRMs. Symmetry breaking is 
realized through the vacuum expectation values (vevs) of the scalar fields,
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〈φ〉 = √
1/2

(
κ 0
0 κ ′eiα

)
, 〈ΔL〉 = √

1/2

(
0 0

vLeiθL 0

)
,

〈ΔR〉 = √
1/2

(
0 0
vR 0

)
, (3)

where all parameters are real after gauge transformations have been used to eliminate two of the 
possible phases [5]. In the first step of symmetry breaking the vev of the right-handed triplet, vR, 
breaks the SU(2)L × SU(2)R ×U(1)B−L group down to SU(2)L ×U(1)Y . This vev also defines 
the high scale of the model, and gives the main contribution to the masses of the additional gauge 
bosons, W±

R and ZR belonging to SU(2)R . At the electroweak scale the vevs of the bidoublet, 
κ and κ ′eiα , then break SU(2)L ×U(1)Y to U(1)EM. In turn, these vevs dictate the masses of the 
W±

L and ZL bosons, which belong to SU(2)L, while α is the parameter indicating spontaneous 
CP violation. This implies these vevs are of the electroweak scale, indeed, we have

κ+ = v � 246 GeV, (4)

where κ2± ≡ κ2 ± κ ′ 2. Finally, while the Dirac masses of the fermions are generated by the vevs 
of φ, the vevs of the triplets generate Majorana masses for the neutrinos. Thus, vL contributes to 
the light neutrino masses and so is not expected to exceed this scale by much, i.e., vL �O(1 eV). 
A (much) less stringent upper bound without theoretical prejudice can be derived from the ρ0

parameter; ρ0 ≡ M2
W

M2
Zc2

W

defined such that it is 1 to all orders in the SM. Since vL breaks custodial 

symmetry it contributes to ρ0 − 1, from a global fit of ρ0 [14] one can then deduce, vL � 5 GeV.
As for the Higgs fields themselves, there are two neutral and two singly-charged would-be-

Goldstone bosons. The remaining fields are physical and make up six neutral, two singly-charged 
and two doubly charged fields. For approximate expressions of the mass eigenstates and their 
masses, see e.g. [13,15,16]. One of the mass eigenstates plays the part of an SM-like scalar whose 
mass should be 125 GeV. The non-SM neutral fields arising from the bidoublets are required to 
be heavy, >10 TeV in LRMs [7,17], as they give rise to stringently constrained flavor-changing 
neutral currents, see Section 4.1.2. The scalars arising from the triplet fields are not as well con-
strained and can still be relatively light while keeping the flavor-changing scalars heavy [18]. 
In fact, the doubly charged scalars can still have masses ∼450 GeV, while in the future, at √

s = 14 TeV with 300 fb−1, the LHC is expected to probe masses up to 600 GeV [18,19].

2.2. LR symmetries

One of the main motivations for LRMs is the possibility of explaining the broken symmetry 
between left and right in the SM as a low-energy phenomenon. In LR models it is possible to 
restore this symmetry at high energies, which is then spontaneously broken at lower energies by 
the vevs of the scalar fields. There are two possible transformations which qualify as symmetries 
between left and right1,2

1 There are two other possible transformations on the φ fields which would qualify as a left–right symmetry, namely, 
φ → φ̃† and φ → φ̃T , where φ̃ = τ2φ∗τ2. However, as observed in [20] these lead to unrealistic quark mass matrices, 
Mu = M

†
d

in the former case and Tr(MuM
†
u) = Tr(MdM

†
d
) in the latter.

2 To be general these transformations should also include the possibility of changing the flavors of the quarks. However, 
when a single LR symmetry applies we can always choose a basis such that the transformations are as in Eq. (5). When 
both LR symmetries apply flavor rotations can play a role as we will see in Section 4.
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P : QL ←→ QR, φ ←→ φ†, ΔL,R ←→ ΔR,L,

C: QL ←→ (QR)c, φ ←→ φT , ΔL,R ←→ Δ∗
R,L, (5)

where the superscript c indicates charge conjugation. An LR model with such a P or C symmetry 
is called left–right symmetric. Note that the combination of the two symmetries in Eq. (5), CP, 
does not interchange left- and right-handed fields and so is not an LR symmetry. Both LR sym-
metries require the SU(2)L,R gauge couplings to be equal, gL = gR , at the LR scale, although 
a difference between the two could be induced when they are evolved down to the electroweak 
scale. Two more specific (albeit not necessarily minimal) models, often discussed in the litera-
ture, are the manifest and pseudomanifest LR models. The former refers to an LR model with 
P -symmetric Yukawa couplings and the additional assumption of a vanishing spontaneous phase, 
α = 0 [10,21]. A pseudomanifest LR model on the other hand assumes C- and P -symmetric 
Yukawa couplings [10,22]. In the past the case of a P -symmetric LR model was mainly studied 
[1,2,13], however, recently there has been renewed interest in the C-symmetric case as well [7,
20]. In either case these symmetries impose important restrictions, as we will see later.

2.3. Charged gauge-bosons

Perhaps the most characteristic way in which LR models affect observables is through the 
right-handed charged-current interaction of the W±

R boson. For the quarks it is given by (in the 
quark-mass basis)

LCC = gL√
2
ULγ μVLDLW+

Lμ + gR√
2
URγ μVRDRW+

Rμ + h.c., (6)

where VL and VR are the SM CKM matrix and its right-handed equivalent. However, the gauge 
fields W±

L,R are not quite mass eigenstates. The two charged gauge-bosons mix because both of 
them couple to the bidoublet φ which is charged under both SU(2) groups. The mass terms for 
the charged gauge-bosons are given by

LWmass = (
W−

Lμ W−
Rμ

)(
g2
L

4 (κ2 + κ ′ 2 + 2v2
L) − 1

2gLgRκκ ′e−iα

− 1
2gLgRκκ ′eiα g2

R

4 (κ2 + κ ′ 2 + 2v2
R)

)(
W

+μ
L

W
+μ
R

)
, (7)

where gL,R are the coupling constants of SU(2)L,R . These gauge couplings will be equal in 
both the P - and C-symmetric case. The gauge eigenstates are related to the mass eigenstates as 
follows(

W
+μ
L

W
+μ
R

)
=

(
cos ζ − sin ζe−iα

sin ζeiα cos ζ

)(
W

+μ
1

W
+μ
2

)
, tan ζ � gL

gR

κκ ′

v2
R

, (8)

where W±
1,2 refer to the mass eigenstates of the charged gauge-bosons. The masses themselves 

are approximately given by

M2
1 � g2

Lκ2+
4

, M2
2 � g2

Rv2
R

2
. (9)

Direct searches at the LHC set a lower limit of 2 TeV (95% CL) on the mass of the right-
handed W±

R from the W+
R → t b̄ channel [23]. More stringent limits have been obtained in 

leptonic decays which rely on certain assumptions about right-handed neutrinos. These limits 
extend to M2 ≥ 2.5–3 TeV [24–26] for a range of values for the right-handed neutrino mass, MN . 
Although these bounds on M2 depend on MN the two masses become correlated in some LRSMs 
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after applying constraints from low-energy precision experiments in muon decay, thereby con-
siderably reducing the allowed region in parameter space [27]. The collider bounds from both 
types of channels assume the right-handed couplings to be the same as the left-handed couplings, 
e.g. for the W+

R → t b̄ channel gL|V tb
L | = gR|V tb

R |. Thus, the strength of the above bounds is in 
part determined by whether or not the model is LR symmetric. If we do not assume any LR 
symmetry these bounds can be weakened and even be evaded in some cases.

2.4. Yukawa couplings

In turn, the masses for the quarks are generated by the interactions of the bidoublet with the 
quarks. The most general form of the Yukawa interactions respecting the gauge symmetries in 
the weak basis is,

−LY = Q̄L(Γ φ + Γ̃ φ̃)QR + h.c., (10)

where Γ and Γ̃ are complex 3 × 3 matrices and φ̃ ≡ τ2φ
∗τ2. After the Higgs fields acquire their 

vevs this leads to the following mass matrices for the quarks

Mu = √
1/2

(
κΓ + κ ′e−iαΓ̃

)
, Md = √

1/2
(
κ ′eiαΓ + κΓ̃

)
. (11)

The implications of the possible LR symmetries on the Yukawa sector are the following

P : Γ = Γ †, Γ̃ = Γ̃ †, (12)

C: Γ = Γ T , Γ̃ = Γ̃ T . (13)

For the P -symmetric case this means that if α were zero, as in the manifest LR symmetric model, 
the mass matrices would be hermitian as well. In this limit there is a relation between the left-
and right-handed CKM matrices, namely,

VR = SuVLSd, (14)

where Su,d are diagonal matrices of signs. In general α �= 0 and the above relation will not be 
satisfied. Nonetheless, in the P -symmetric case, in order to reproduce the observed quark masses, 
the combination κ ′/κ sinα should be small [20]. Thus, the quark mass matrices will be nearly 
hermitian, implying that Eq. (14) is approximately correct and the right and left mixing angles 
should be nearly equal. This was already shown numerically in Refs. [20,28] and was recently 
confirmed by an explicit solution of VR [29].

In the C-symmetric case the mass matrices will be symmetric which implies the following 
relation between the two CKM matrices [30]

VR = KuV
∗
LKd, (15)

where Ku = diag(θu, θc, θt ) and Kd = diag(θd, θs, θb) are diagonal matrices of phases, of which 
one combination can be set to zero, while the rest remains unconstrained. This relation holds 
irrespective of the value of α. As a result the mixing angles in both matrices will be equal.

Which relation between the left- and right-handed CKM matrices applies has implications for 
the bounds that can be set on these models. We will come back to this issue when discussing the 
P - and C-symmetric LR models in more detail.
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2.5. The Higgs potential

The final part of the Lagrangian to be discussed is the Higgs potential. As we intend to discuss 
the potential for the LR symmetries, P and C as well as the CP-symmetric case, we will give the 
potentials for these three cases.

The potential invariant under the gauge group and the P symmetry is given by [5]

V P
H = −μ2

1 Tr
(
φ†φ

) − μ2
2

[
Tr

(
φ̃†φ

) + Tr
(
φ†φ̃

)]
− μ2

3

[
Tr

(
ΔLΔ

†
L

) + Tr
(
ΔRΔ

†
R

)] + λ1
[
Tr

(
φ†φ

)]2

+ λ2
([

Tr
(
φ̃†φ

)]2 + [
Tr

(
φ†φ̃

)]2) + λ3 Tr
(
φ̃†φ

)
Tr

(
φ†φ̃

)
+ λ4 Tr

(
φ†φ

)[
Tr

(
φ̃†φ

) + Tr
(
φ†φ̃

)]
+ ρ1

([
Tr

(
ΔLΔ

†
L

)]2 + [
Tr

(
ΔRΔ

†
R

)]2)
+ ρ2

[
Tr(ΔLΔL)Tr

(
Δ

†
LΔ

†
L

) + Tr(ΔRΔR)Tr
(
Δ

†
RΔ

†
R

)]
+ ρ3 Tr

(
ΔLΔ

†
L

)
Tr

(
ΔRΔ

†
R

)
+ ρ4

[
Tr(ΔLΔL)Tr

(
Δ

†
RΔ

†
R

) + Tr(ΔRΔR)Tr
(
Δ

†
LΔ

†
L

)]
+ α1 Tr

(
φ†φ

)[
Tr

(
ΔLΔ

†
L

) + Tr
(
ΔRΔ

†
R

)]
+ α2

(
eiδ2

[
Tr

(
φ̃†φ

)
Tr

(
ΔRΔ

†
R

) + Tr
(
φ†φ̃

)
Tr

(
ΔLΔ

†
L

)] + h.c.
)

+ α3
[
Tr

(
φφ†ΔLΔ

†
L

) + Tr
(
φ†φΔRΔ

†
R

)]
+ β1

[
Tr

(
φΔRφ†Δ

†
L

) + Tr
(
φ†ΔLφΔ

†
R

)]
+ β2

[
Tr

(
φ̃ΔRφ†Δ

†
L

) + Tr
(
φ̃†ΔLφΔ

†
R

)]
+ β3

[
Tr

(
φΔRφ̃†Δ

†
L

) + Tr
(
φ†ΔLφ̃Δ

†
R

)]
, (16)

while the potential in the case of an unbroken C symmetry at high energies is given by,

V C
H = −μ2

1 Tr
(
φ†φ

) − μ2
2

[
eiδμ2 Tr

(
φ̃φ†) + h.c.

]
− μ2

3

[
Tr

(
ΔLΔ

†
L

) + Tr
(
ΔRΔ

†
R

)] + λ1
[
Tr

(
φ†φ

)]2

+ λ2
(
eiδλ2

[
Tr

(
φ̃φ†)]2 + h.c.

) + λ3 Tr
(
φ̃†φ

)
Tr

(
φ†φ̃

)
+ λ4 Tr

(
φ†φ

)[
eiδλ4 Tr

(
φ̃φ†) + h.c.

]
+ ρ1

([
Tr

(
ΔLΔ

†
L

)]2 + [
Tr

(
ΔRΔ

†
R

)]2)
+ ρ2

[
Tr(ΔLΔL)Tr

(
Δ

†
LΔ

†
L

) + Tr(ΔRΔR)Tr
(
Δ

†
RΔ

†
R

)]
+ ρ3 Tr

(
ΔLΔ

†
L

)
Tr

(
ΔRΔ

†
R

)
+ ρ4

[
e−iδρ4 Tr(ΔLΔL)Tr

(
Δ

†
RΔ

†
R

) + eiδρ4 Tr(ΔRΔR)Tr
(
Δ

†
LΔ

†
L

)]
+ α1 Tr

(
φ†φ

)[
Tr

(
ΔLΔ

†
L

) + Tr
(
ΔRΔ

†
R

)]
+ α2

[
eiδα2 Tr

(
φ̃†φ

) + h.c.
][

Tr
(
ΔLΔ

†
L

) + Tr
(
ΔRΔ

†
R

)]
+ α3

[
Tr

(
φφ†ΔLΔ

†
L

) + Tr
(
φ†φΔRΔ

†
R

)]
+ β1

[
eiδβ1 Tr

(
φΔRφ†Δ

† ) + e−iδβ1 Tr
(
φ†ΔLφΔ

† )]

L R
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+ β2
[
eiδβ2 Tr

(
φ̃ΔRφ†Δ

†
L

) + e−iδβ2 Tr
(
φ̃†ΔLφΔ

†
R

)]
+ β3

[
eiδβ3 Tr

(
φΔRφ̃†Δ

†
L

) + e−iδβ3 Tr
(
φ†ΔLφ̃Δ

†
R

)]
. (17)

Finally, the CP-symmetric, but not necessarily C- or P -symmetric, potential is given by,

V CP
H = −μ2

1 Tr
(
φ†φ

) − μ2
2

[
Tr

(
φ̃†φ

) + Tr
(
φ†φ̃

)] − μ2
3L Tr

(
ΔLΔ

†
L

) − μ2
3R Tr

(
ΔRΔ

†
R

)
+ λ1

[
Tr

(
φ†φ

)]2 + λ2
([

Tr
(
φ̃†φ

)]2 + [
Tr

(
φ†φ̃

)]2)
+ λ3 Tr

(
φ̃†φ

)
Tr

(
φ†φ̃

) + λ4 Tr
(
φ†φ

)[
Tr

(
φ̃†φ

) + Tr
(
φ†φ̃

)]
+ ρ1L

[
Tr

(
ΔLΔ

†
L

)]2 + ρ1R

[
Tr

(
ΔRΔ

†
R

)]2

+ ρ2L Tr(ΔLΔL)Tr
(
Δ

†
LΔ

†
L

) + ρ2R Tr(ΔRΔR)Tr
(
Δ

†
RΔ

†
R

)
+ ρ3 Tr

(
ΔLΔ

†
L

)
Tr

(
ΔRΔ

†
R

)
+ ρ4

[
Tr(ΔLΔL)Tr

(
Δ

†
RΔ

†
R

) + Tr(ΔRΔR)Tr
(
Δ

†
LΔ

†
L

)]
+ α1L Tr

(
φ†φ

)
Tr

(
ΔLΔ

†
L

) + α1R Tr
(
φ†φ

)
Tr

(
ΔRΔ

†
R

)
+ [

Tr
(
φ̃†φ

) + Tr
(
φ†φ̃

)][
α2L Tr

(
ΔLΔ

†
L

) + α2R Tr
(
ΔRΔ

†
R

)]
+ α3L Tr

(
φφ†ΔLΔ

†
L

) + α3R Tr
(
φ†φΔRΔ

†
R

)
+ β1

[
Tr

(
φΔRφ†Δ

†
L

) + Tr
(
φ†ΔLφΔ

†
R

)]
+ β2

[
Tr

(
φ̃ΔRφ†Δ

†
L

) + Tr
(
φ̃†ΔLφΔ

†
R

)]
+ β3

[
Tr

(
φΔRφ̃†Δ

†
L

) + Tr
(
φ†ΔLφ̃Δ

†
R

)]
. (18)

In all cases all parameters are real, the P -symmetric potential contains 18 parameters while in 
the C- and CP-symmetric cases there are 25 and 23 parameters, respectively. This implies that 
the P -symmetry is the most constraining when it comes to the Higgs potential. However, as we 
will see later these potentials are all closely related.

In the upcoming discussion about the amount of fine-tuning in these potentials we impose the 
condition that the dimensionless parameters are in the perturbative regime, i.e. take on values of 
order 1. As will be discussed, in some cases the amount of fine-tuning can be greatly reduced by 
setting some parameters to zero. In the literature this has been done for the βi parameters, without 
further justification, e.g. [13]. This in turn requires vL = 0. The choice βi = 0 is in principle 
unstable under renormalization unless enforced by a symmetry. However, in Refs. [5,31] it was 
argued that such symmetries do not allow for Majorana masses for the neutrinos, it may thus not 
be a viable option.

We note that for avoiding or strongly reducing the fine-tuning it is not needed to set βi = 0. As 
we will demonstrate below, the same reduction in the amount of fine-tuning can be achieved by 
arranging vL = 0, which does however require relations among some of the βi parameters [31]. 
Another option is to introduce a mechanism that yields small βi . In Ref. [16] a softly broken 
horizontal U(1) symmetry was introduced to enforce βi of order vL/vR , with vL ∼ 0.1 eV. This 
also reduces the fine-tuning and satisfies the current experimental constraints.

3. Experimental constraints on CP violation

In this section we will discuss a number of experimental constraints on CP violation in LRMs, 
namely those from Kaon mixing and decays, Bd,s–Bd,s mixing, electric dipole moments (EDMs) 
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and neutron β decay. We will discuss the impact of these bounds in specific LRSMs in more detail 
in the subsequent sections.

3.1. Kaon mixing and decays

The well-known indirect and direct CP-violating parameters in the Kaon sector, ε and ε′, are 
currently determined to be [14]

|ε| = (2.228 ± 0.011) · 10−3, (19)

Re
(
ε′/ε

) = (1.65 ± 0.26) · 10−3. (20)

Depending on the particular realization of the LR symmetry, these parameters can lead to strong 
constraints on the phases in the matrix Ku,d relating the left and right CKM matrices. For the 
relevant expressions we refer to Refs. [7,32–34].

In LRMs there are additional contributions to ε compared to the SM from box diagrams 
involving W±

R bosons and tree-level diagrams involving flavor-changing Higgs bosons [35]. This 
is analogous to the case of B meson mixing which will be discussed more explicitly next.

3.2. Bd,s–Bd,s mixing

The Bd,s–Bd,s mixing is described by the off-diagonal matrix element Mq

12 = 〈Bq |H|Bq〉/
2MBq . In the SM Mq

12 is determined by box diagrams involving W±
L bosons. The magnitude of 

M
q

12 is related to the mass difference �MBq between the mesons while its phase signifies CP
violation,

�MBq = 2
∣∣Mq

12

∣∣, φq = ArgM
q

12. (21)

In LRMs there are additional contributions from box diagrams involving W±
R bosons and tree-

level diagrams involving flavor-changing Higgs bosons. Separating the SM and LRM contribu-
tions, M12 = MSM

12 +MLR
12 the new contributions can be parametrized by the following quantities,

M
q

12 = MSM
12 (1 + hq), hq ≡ MLR

12

MSM
12

, hq = |hq |eiσq . (22)

Thus, the magnitude of 1 + hq can be constrained by the mass differences, while CP violation in 
Bq mixing as measured by φd,s is sensitive to its phase. The LR contribution to these angles is 
given by

φLR
q = Arg

(
1 + |hq |eiσq

)
, σq � Arg

(
−V tb

R V
tq∗
R

V tb
L V

tq∗
L

)
. (23)

The expressions for hq can be found in Refs. [7,32,33]. Clearly, this contribution depends on the 
phases present in the CKM matrices. This in turn depends on the choice of LR symmetry. When 
the phases in VR are free they can be tuned so as to avoid the bounds from the CP-violating ob-
servables, φd,s . However, in the more constrained LRSMs these bounds will be important. These 
phases appear in asymmetries of Bd,s decays, currently the averages of experimental measure-
ments give the following values [36]

−Amix
CP (Bd → f ) = sinφd = 0.68 ± 0.02 (68% CL), (24)

Amix(Bs → f ′) = sinφs = 0.00 ± 0.07 (68% CL), (25)
CP
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where f = (J/ψKS, J/ψKL, . . .) and f ′ = (J/ψφ, J/ψf0(980), . . .) are all final states involv-
ing c̄cs̄d and c̄cs̄s valence quarks, respectively. Currently the value for sinφd is still compatible 
with its SM prediction, sinφSM

d ∼ 0.83 [37], within (theoretical) errors, but is approaching a 3σ

level deviation [38]. The SM prediction for sinφSM
s ∼ 0.036 is also still consistent with the ex-

perimental value [37]. The precision of these measurements is expected to improve of course. In 
the long run, the error in the φd (φs ) measurements should decrease by roughly a factor 3 (10), 
while the determination of the mass differences is not expected to improve significantly. This 
assumes 50 fb−1 LHCb and 50 ab−1 Belle II data, which may be achieved by the mid 2020’s at 
the earliest [39].

Implications of these measurements in terms of bounds for the specific C + P , P , C, and CP
symmetric LRSMs will be discussed in Sections 4.1.1, 5.1, 5.2 and 5.3, respectively.

3.3. Electric dipole moments

As mentioned before, LR models introduce a number of additional CP-violating sources. At 
low energies these will generally contribute to electric dipole moments (EDMs). In the lepton 
sector this leads to a nonzero electron EDM while CP-violating interactions in the quark sector 
EDMs can induce the EDMs of the neutron, proton and light nuclei. In the following we discuss 
the resulting bounds.

3.3.1. Hadronic EDMs
Hadronic EDMs receive contributions from the CP-violating phases in the CKM matrices 

and α as well as the QCD-theta term, θ̄ . In a general LRM the latter is a free parameter. We 
will first discuss the case where θ̄ = 0, simply assuming this has been achieved through the 
implementation of a Peccei–Quinn mechanism or in some other way. Note, however, that this 
is not always the case, in fact, there is an interesting scenario in which θ̄ becomes calculable, 
leading to strong constraints on the LR scale [40].

When θ̄ = 0 hadronic EDMs are dominated by a single interaction which appears at tree level 
while other contributions only appear at the loop level [41,42]. At the scale of ∼1 GeV the 
operator responsible is given by

LLR = −i
2

v2

gR

gL

sin ζ Im
(
eiαV ud∗

L V ud
R

)[
η1

(
uRγ μdRdLγμuL − dRγ μuRuLγμdL

)
+ η8

(
ūRγ μtadRd̄LγμtauL − d̄Rγ μtauRūLγμtadL

)]
, (26)

where ta are the SU(3)c generators and η1 = 1.1 and η8 = 1.4 are QCD RGE factors [43]. This 
operator is induced by tree-level exchange of W±

L –W±
R bosons, see Fig. 1c. Nonperturbative 

techniques are required to determine the contribution of this operator to the neutron EDM. Using 
naive dimensional analysis (NDA) [44,45] and the upper limit on the neutron EDM, dn ≤ 2.9 ·
10−26e cm [46] one finds∣∣∣∣gR

gL

sin ζ Im
(
V ud∗

L V ud
R eiα

)∣∣∣∣ ≤ 4 · 10−6, (27)

with a considerable theoretical uncertainty. This is about a factor 40 weaker than the upper bound 
found in Ref. [13], however, a recent analysis [47] using chiral perturbation theory (χPT) indi-
cates that the constraint obtained there may have been overestimated. A stronger bound on the 



W. Dekens, D. Boer / Nuclear Physics B 889 (2014) 727–756 737
Fig. 1. Figures (a) and (b) show some of the LR contributions to meson mixing. The wavy and dashed lines represent 
W±

L,R
-bosons and flavor-changing Higgs bosons, respectively. The external fermions lines are the quarks in the mesons. 

Figure (c) shows the dominant diagram contributing to the neutron EDM and CP violation in neutron β decay (assuming 
θ̄ = 0). The fermion lines now represent up and down quarks while one line represents e and ν in case of β decay and 
the dot denotes WL–WR mixing.

same combination may be derived from the limit on the mercury EDM [48], however, large nu-
clear uncertainties now play a role. In fact, taking the estimated uncertainties [48] at face value, 
the contribution of the operator in Eq. (26) to the mercury EDM is consistent with zero.

It is also interesting to consider, in LR models, the EDMs of the proton, deuteron and helion
(3He), for which there are plans for measurements in storage rings [49–52]. Using NDA esti-
mates, one would expect the proton and neutron EDMs to be of similar size while the deuteron 
EDM is enhanced by about one order of magnitude [53]. This implies the deuteron EDM is a 
more sensitive probe of LRMs than the neutron and proton EDMs.

Furthermore, although the lack of knowledge of the nonperturbative physics does not allow 
for a prediction of the absolute size of these EDMs, it is possible to relate them. This is due 
to the fact that the dominant contributions come from a single operator whose chiral symmetry 
properties imply these EDMs are not independent. An LRM in which the operator of Eq. (26) is 
indeed dominant would predict [54],3

d3He = (0.78 ± 0.18)dD + (0.11 ± 0.24)dn − (0.82 ± 0.35)dp, (28)

where the errors are mainly due to nuclear uncertainties. Thus the measurements of the EDMs of 
light nuclei would provide a test of LR models.

The above no longer applies when θ̄ �= 0. When θ̄ is a free parameter it becomes hard to say 
something in general about hadronic EDMs. A (partial) cancellation between the θ̄ contribution 
and that of the operator in Eq. (26) can weaken or even evade the bound of Eq. (27). However, 
the P and CP symmetries in principle forbid θ , in which case θ̄ is induced by the CP-violating 
phases in the quark mass matrices. θ̄ then becomes calculable in terms of r sinα and Yukawa 
couplings [40]. For the P -symmetric case this means that instead of the operator in Eq. (26)
θ̄ gives the dominant contribution to the nEDM by far. The result is a very strong bound on 
r sinα � mb

mt
· 10−10 which in turn implies (through ε′) a strong bound on M2 � 20 TeV [40].

In some scenarios this bound on α also has consequences for the leptonic Yukawa couplings 
as they contribute to α at loop level. Assuming the Dirac Yukawa couplings for the quarks and 
leptons are similar the leptonic Dirac phase should naturally be �10−3, which would suppress 
CP violation in neutrino oscillations beyond the reach of upcoming experiments [55].

However, it is possible to suppress θ̄ and thereby the contribution to the nEDM, for example, 
by implementation of the Peccei–Quinn mechanism. The strong bounds on α and M2 then no 
longer apply, the bounds that can be derived instead will be discussed in Section 5.1.

3 It should be noted however that there exists a caveat in the form of a three-pion interaction induced by Eq. (26) which 
can also contribute to the tri-nucleon EDMs, possibly spoiling such a relation, see Ref. [54] for details.
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Returning to the θ̄ = 0 case, from the comparison of Eqs. (27) and (23) it is clear that the 
neutron EDM and the phases φd,s probe different combinations of CP-violating phases. The 
B-mixing observables, φd,s , depend on the phases in VL,R while the neutron EDM is also sen-
sitive to α. Furthermore, the neutron EDM only receives contributions from WL–WR mixing 
(Fig. 1c) and thus depends on ζ . The best model independent bound on ζ allows a maximal 
value of 0.02 [56].4 Barring cancellations between α and the phases in the right and left CKM 
matrices, ζ ∼ 0.01 will require sinα < 10−4, but if ζ is smaller, sinα is of course allowed to 
be larger. Instead, sinφd,s receive contributions from box-diagrams and flavor-changing Higgs 
exchange (diagrams a and b of Fig. 1), resulting in an M2 and MH dependence. The CP violation 
in Kaon mixing ε is similar to φd,s concerning the dependence on the model parameters while ε′
is also sensitive to α. This emphasizes the importance of the different precision measurements of 
CP violation in order to probe all aspects of CP violation in LR models.

Thus, the flavor-diagonal CP violation in the neutron EDM would seem to be complemen-
tary to the flavor-changing CP violation appearing in meson mixing. Nonetheless, as we will 
discuss in upcoming sections, there are some scenarios in which these observables are no longer 
independent. Such correlations then lead to strong bounds on the right-handed scale.

3.3.2. The electron EDM
Measurements of the electron EDM (eEDM) have recently improved considerably and also 

lead to a strong bound, at present de ≤ 8.7 · 10−29e cm [58].5 However, the eEDM is sensitive 
to other parameters than the hadronic EDMs, in this case the phases of the neutrino mixing 
matrix enter. Thus, the eEDM and hadronic EDMs are complementary observables. Furthermore, 
in principle the coupling of the right-handed bosons in the lepton sector may differ from those in 
the quark sector. Upon demanding anomaly cancellation one can relate the couplings from one 
sector to the other, but this could be altered by an as yet undiscovered fourth generation.

Another difference is that for the eEDM there are no contributions from a leptonic equivalent 
of the four-quark operators in Eq. (26). This means that there are no tree-level contributions and 
the eEDM is generated at loop level. The generated eEDM is given by [59,60]

de � − e3

16π2M2
W

gR

gL

sin ζ Im
(
e−iα(MνD

)ee
)
, (29)

where (MνD
)ee is the ee element of the neutrino Dirac-mass-matrix. It is in general not possible to 

compare the electron EDM to the neutron EDM as the two involve different phases. Nonetheless, 
we can still try to estimate their relative sizes. Taking the different phases to be of the same order 
and assuming |(MνD

)ee| � me one finds de/dn ∼ 10−4 (again assuming θ̄ = 0) [54].

4 To be precise this bound holds for the combination Re
[
tan ζeiα gRV ud

R

gLV ud
L

] ≤ 0.02. Limits of this order of magnitude 

were already derived in Ref. [57] using hyperon decays, while more stringent limits O(10−3) can be derived if one is 
willing to make certain assumptions about the CKM matrices [56].

5 What is probed in these experiments is actually a combination of the eEDM and semi-leptonic four-fermion interac-
tions. The semi-leptonic interactions originate from tree-level diagrams which involve non-SM Higgs fields and thereby 
small Yukawa couplings. This, together with the fact that these Higgs fields should be heavy, of order >10 TeV for 
LRSMs, see Section 4.1.2, implies that de will generally dominate.
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3.4. Neutron β decay

Bounds on LR models can also be obtained from neutron β decay (nβd). In fact, Ref. [61]
even claims that it already provides evidence against the manifest LRSM [21]. Although not 
statistically significant, their result does show that especially the neutrino-neutron spin asymme-
try αν is very sensitive to the mass M2. Here αν = 2[N(θν < π/2) − N(θν > π/2)]/[N(θν <

π/2) + N(θν > π/2)], where θν is the angle between the neutrino direction and the polariza-
tion direction of the neutron. The analysis of [21] assumes that the right-handed current couples 
equally to leptons and quarks, which is an implicit assumption on the existence and mass of the 
right-handed neutrinos, namely that the decay to right-handed neutrinos is kinematically allowed. 
This requires that they should be light (mνR

≤ mN ), which is not in accordance with a see-saw 
mechanism such as in the minimal LR models discussed here.

Neutron β decay is sensitive to the CP-violating phase of the mixing between the W1 and 
W2 bosons in a similar but not completely identical way as the neutron EDM. Due to hadronic 
uncertainties which are hard to improve upon, the best current bound from nβd is not as strong 
as that of the neutron EDM. Assuming θ̄ = 0 and assuming heavy right-handed neutrinos, the 
best bound from nβd is6

Im

(
tan ζeiα gR

gL

V ud
R

V ud
L

)
= (1.0 ± 2.4) · 10−4 (68% CL), (30)

which for LRSMs and small mixing angles translates into

κκ ′

v2
R

sin(α + θu + θd) = (1.0 ± 2.4) · 10−4. (31)

This bound is obtained from Ref. [56] using updated experimental results [62,63] and a lat-
tice determination of gA/gV = 1.20(6)(4) [64]. For LRSMs the neutron EDM bounds the same 
quantity (also assuming θ̄ = 0) and is much stronger, see Eq. (27), thus for LRSMs this bound 
is superseded by the nEDM constraint. However, for more general LRMs a comparison of the 
two observables would be sensitive to a deviation from |V ud

L | = |V ud
R |. Another way to detect 

deviations from the LR symmetric case is proposed in Ref. [65] which shows that a study using 
b-tags at the LHC would be sensitive to deviations of |V tb

R | from |V tb
L |.

Having discussed the LR model and parts of its Lagrangian rather generally, we will now 
discuss in more detail the models which have an unbroken discrete symmetry, P , C, and/or CP
at high energies. Starting with the most symmetric option, we will discuss in the next section the 
LR models that are both P and CP symmetric.

4. P - and CP-symmetric LR models

An LR model with both discrete symmetries has the appealing feature that P , C, and CP vio-
lation are explained as low-energy phenomena. However, there is no unique LR theory with both 
a C and a P symmetry as there are several ways of implementing both LR symmetries in Eq. (5). 
This is due to the fact that the P and C transformations need not be aligned in flavor-space [66]. 

6 This bound is altered if we assume the right-handed neutrinos to be light. Again, this is not what one would expect 
in an LRM using the scalar triplets of Eq. (2), however, this can be achieved in an LRM using doublets instead [4].
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In what follows we will briefly discuss all possible ways of implementing both the P and C
symmetries of Eq. (5), for a more detailed discussion see Refs. [32,67].

Whenever the C and P symmetries are not aligned the transformation rules for P or C will 
not have the simple form of Eq. (5). We will select the basis in which the P transformation 
does have the form of Eq. (5), while the C transformation may be different. The implications in 
Eq. (13) for the P symmetry are then unchanged so that Γ and Γ̃ will be hermitian matrices. 
Following Ref. [66] we next demand invariance under CP symmetry.

The most general CP transformation can be written as follows [66]

QL,R → UL,R Qc
L,R, Φ → HΦ∗, ΔL,R → eiφL,RΔ∗

L,R, (32)

where UL,R are unitary 3 × 3 matrices, Φ ≡ (φ, φ̃)T , and H is a unitary 2 × 2 matrix. As φ and 
φ̃ are not independent fields this implies a relation between the elements of H . Taking this and 
the unitarity of H into account there are two possible forms of H ,

H1 =
(

0 ±1
±1 0

)
, H2 =

(
eiϕ 0
0 e−iϕ

)
, (33)

where ϕ is a real number. These possibilities for H and UL,R give rise to a number of possible 
CP transformations, which in principle lead to different models. To simplify the discussion, and 
without loss of generality, we work in the basis where Γ is diagonal. The possible transformation 
rules and the consequences of the resulting models are summarized in Fig. 2. For a more detailed 
discussion see Refs. [32,67]. In short, only the option H = H2 with e4iϕ = 1 remains as a possible 
CP transformation for the Φ fields, while the other possibilities are unable to reproduce the quark 
masses or their mixing. Thus, there are two CP transformations which cannot be excluded on the 
basis of yielding unrealistic quark masses, namely [66]

CP1: H = ±1, UL = 1, UR = ±1,

CP2: H = ±iσ3, UL = 1, UR = ∓i1. (34)

We now discuss these two possibilities in more detail.

4.1. CP1-symmetric LR models

4.1.1. Mass and mixing matrices
The CP1 case is the more widely studied possibility, see for instance Refs. [17,32,66,68]. 

At first sight, this model is able to produce phenomenologically viable mass and mixing angles 
for the quarks. However, as we will discuss, the model is unable to produce the observed CP
violation due to the CP1 symmetry which constrains the Yukawa interactions as follows,

Γ = Γ T = Γ ∗, Γ̃ = Γ̃ T = Γ̃ ∗. (35)

The symmetric Yukawa couplings imply VR = KuV
∗
LKd [30] for the CKM matrices, as in 

Eq. (15). The hermiticity of the Yukawa couplings implies additional conditions which allows all 
phases in the CKM matrices to be solved in terms of known mixing angles, quark masses, and 
the parameters α and r ≡ κ ′/κ [32,69]. There are seven such phases to be solved which can be 
parametrized by the usual SM phase in the left-handed CKM matrix and six additional phases 
in the right-handed CKM matrix. This solution allows for the prediction of CP-violating observ-
ables in terms of the combination r sinα. However, in order to reproduce the quark masses this 
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Fig. 2. Flowchart for a P - and CP-symmetric Yukawa sector, depicting the possible choices for the CP transformation, 
Eq. (32), and their consequences. We work in a basis where Γ is diagonal. See Refs. [32,67] for a detailed discussion.

combination has to be small [20], thus the above solution only exists for relatively small amounts 
of CP violation, namely [17,68]

r sinα

1 − r2
� mb

mt

. (36)

The SM CKM phase δ can be expressed in terms of this combination as well, the above bound 
then requires this phase to be rather small, δ < 0.25 [17]. In contrast, the SM CKM fit requires 
δ to be rather large, δ � 1.2 [14]. This means that the CP1 LR model cannot reproduce the CP
violation of the SM in the decoupling limit, vR → ∞. This limit can therefore be excluded [17].

The above observations have further implications. Since the decoupling limit does not re-
produce the SM there is not necessarily a range in parameter space where the CP1 LR model 
reproduces the SM. In fact, from recent measurements of the CP violation in B–B̄ mixing the 
predictions of the model can be shown to be too small. After taking into account constraints from 
CP-violating parameters in the Kaon sector, ε and ε′, the model predicts (for any value of M2
and MH ) [68,70],

|sinφd | < 0.1, sinφs < −0.1. (37)
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Clearly, this is incompatible with the measured value in Eq. (24). Thus, although the model 
can reproduce the observed quark masses and mixing angles, it is untenable when discussing 
CP-violating observables. As the Yukawa couplings of the pseudomanifest LRM coincide with 
that of the P - and CP1-symmetric LRM under discussion here, it follows that the minimal pseu-
domanifest LRM can be excluded in the same way.

4.1.2. The Higgs potential
Further problems arise when considering the Higgs sector of the CP1 model. Although the 

above considerations may be considered to rule out the model we will nevertheless review some 
of these problems as they are exemplary of what will be encountered in other versions of LR 
symmetric models. Our discussion will largely follow that of Refs. [5,31].

In this case the Higgs potential takes the form of Eq. (16) with the additional constraint from 
the CP1 transformation that there is no explicit CP violation:

δ2 = 0. (38)

Note that if the phases φL,R are introduced in the CP transformation of the ΔL,R fields, 
Eq. (32), additional constraints, βi = ρ4 = 0, are acquired. However, as the potential Eq. (16)
is (B − L)-symmetric no such constraints appear when ei(φL−φR) = 1. Such a Higgs potential 
has been widely studied in the literature [5,16,31,71,72]. From the requirement that the potential 
is minimized one can obtain the following expressions for the dimensionful parameters of the 
potential [31],

μ2
1

v2
R

= α1

2
− κ ′ 2

2κ2−
α3 + κ2+

v2
R

λ1 + 2
κκ ′

v2
R

λ4 cosα,

μ2
2

v2
R

= α2

2
+ κκ ′

4κ2− cosα
α3 + κ2+

2v2
R

λ4 + κκ ′

v2
R cosα

(λ3 + 2λ2 cos 2α),

μ2
3

v2
R

= ρ1 + κ2+
2v2

R

α1 + 2κκ ′ cosα

v2
R

α2 + κ ′ 2

2v2
R

α3, (39)

where we neglected terms of order vL/vR and v2
L/v2

R . Substituting the exact expressions for μ2
i

in the three remaining minimum equations we obtain

2ρ1 − ρ3 = β1κκ ′ cos(α − θL) + β2κ
2 cos θL + β3κ

′ 2 cos(2α − θL)

vRvL

, (40)

0 = κκ ′
[
α3

(
1 + v2

L

v2
R

)
+ κ2−

v2
R

(4λ3 − 8λ2)

]
sinα

+ vL

vR

[
β1

(
κ2 sin θL + κ ′ 2 sin(θL − 2α)

) + 2(β2 + β3)κκ ′ sin(θL − α)
]
, (41)

0 = β1κκ ′ sin(α − θL) − β2κ
2 sin θL + β3κ

′ 2 sin(2α − θL). (42)

These equations were obtained by minimizing with respect to vL, α and θL, respectively. From 
Eq. (41) we approximately have (for vR � κ+ � vL)

α3 sinα =O(βivL/vR). (43)

As we require the hierarchy vR � vL, this implies that α3 sinα must be small in order for β1
to be in the perturbative regime. As two extreme cases we could have a small spontaneous 
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phase, i.e. α = O(vL/vR), while α3 can be of order one, or α3 is small with a sizeable α, thus, 
α3 = O(vL/vR) with α = O(1). It turns out that in both extremes, as well as in all intermediate 
cases, some of the additional Higgs fields become too light, such that their effects should have 
been detected experimentally already [5,31]. In one extreme, α = O(vL/vR) and α3 = O(1), 
Eqs. (40) and (42) imply 2ρ1 −ρ3 =O(κ2+/v2

R), which in turn implies that the left-handed triplet 
fields become light, O(κ+). Explicit calculation shows that they are even lighter, namely of order 
O(vL). As these fields couple to the electroweak gauge-bosons such light fields should already 
have been discovered at LEP-I [31].

For the other extreme, whenever α3 is small, O(κ2+/v2
R), there are problems with flavour-

changing neutral-currents (FCNCs). In the minimal LR model these FCNCs are generated by the 
neutral scalars of the bidoublet. FCNCs are stringently constrained by Kaon- and B-mixing, in 
fact, the mass of such a scalar should be of the order of >10 TeV [7,17] in LRSMs. An analysis 
of the masses of the physical Higgs fields [31] shows that whenever α3 is small, O(κ2+/v2

R), the 
Higgs fields with the FCNC couplings remain light and the FCNC bounds cannot be evaded.

The remaining scenarios interpolate between the two extremes. Here one finds three light 
neutral states, which are now mixtures of the neutral triplet field, δ0

L, and the flavor-changing 
neutral Higgs field [31].

Thus, whenever sinα �= 0 the potential Eq. (16) cannot reproduce the SM Higgs spectrum. The 
addition of extra scalar fields could solve this, simultaneously allowing for an SM-like Higgs 
spectrum and spontaneous CP violation in the CP1 potential [17,73]. This option will not be 
discussed any further here. Another possibility is to have a potential without spontaneous CP
violation, α = θL = 0. In this case all the non-SM scalars can obtain a large mass and decouple, 
thereby allowing for an SM-like Higgs spectrum. Even in this case, however, there is a price to 
pay in the form of fine-tuning as we will discuss next.

4.1.3. Fine-tuning
The fact that there should be a hierarchy between the vevs, vR � κ, κ ′ � vL, induces fine-

tuning in the potential. This occurs because the minimum equations relate the different scales 
to one another. For the parameters of the potential to be in the perturbative range this requires 
a certain amount of fine-tuning. Similar to the Higgs potential itself it is useful to review the 
fine-tuning in the CP1 invariant potential, as it will turn out to be exemplary of the cases we will 
study in the following sections.

One of the dominant sources of fine-tuning appears in Eq. (40), schematically we have,

2ρ1 − ρ3 ∼ κκ ′

vLvR

βi, (44)

which has been called the vev see-saw relation [5]. If we insist on the desired hierarchy, one may 
make the following estimates for the vevs, vR ∼ 10 TeV, κ, κ ′ ∼ 100 GeV and vL ∼ 1 eV, which 
would imply the fraction in Eq. (44) to be huge ∼109. Thus, in order for the ρ parameters to be of 
order one, the βi parameters should cancel to a precision of ∼10−9, implying a very fine-tuned 
potential. There are two ways to avoid this fine-tuning. One can either accept a very high scale for 
the LR model, vR ∼ 1013 GeV, making the additional gauge fields, ZR and W±

R unobservable, 
or eliminate the vev see-saw relation. The latter option can be achieved by setting vL and βi to 
zero. In this case Eq. (40) vanishes and is no longer a source for fine-tuning. This option was 
concluded to be the only viable option leading to observable effects in Ref. [5]. However, even 
in the case there is still a considerable amount of fine-tuning. Looking, for instance, at the third 

equation in Eq. (39) we see that the ρ1 and μ2
3 terms should cancel to O

( κ2+
2

)
in order for α1
vR
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to be of order one. Similarly, from the first equation in Eq. (39) the α1,3 and μ2
1 terms should 

cancel to O
( κ2+

v2
R

)
in order for λi to be of order one. Combining the two, we see that cancellations 

to a precision of order O
( κ4+

v4
R

)
, i.e. O(10−7) for the above selected values, are needed. Some 

of this fine-tuning may be avoided if we set some of the parameters to be small by hand or by 
introducing an additional mechanism [16].

As we will discuss later this type of fine-tuning tends to occur in more general scenarios as 
well. Before moving on to these LR models, however, we will first review the second P - and 
CP-symmetric case.

4.2. CP2-symmetric LR models

This case has received somewhat less attention than the CP1 possibility [66,73]. Although the 
Yukawa sector is distinct from the CP1 case, which is relevant for the amount of CP violation 
allowed, we will see that the Higgs potential is very similar.

4.2.1. Mass and mixing matrices
As in the previous case, the Yukawa interactions are constrained by the P and CP trans-

formations. For the Yukawa interactions the P and CP2 transformations have the following 
implications

Γ = Γ T = Γ ∗, Γ̃ = −Γ̃ T = −Γ̃ ∗. (45)

The fact that Γ̃ is antisymmetric means that in this case the mass matrices will not be symmetric. 
Thus, there is, in general, no simple relation between the left and right-handed CKM matrices. 
However, the Higgs potential is clearly more constrained in this case.

4.2.2. The Higgs potential
The CP2 invariant Higgs potential is that of Eq. (16) with the additional constraints,

μ2 = λ4 = 0, δα2 = ±π/2,

β1
(
1 − ei(φL−φR)

) = 0, β2,3
(
1 + ei(φL−φR)

) = 0, ρ4
(
1 − e2i(φL−φR)

) = 0. (46)

Thus, we have β1 = 0 and/or β2,3 = 0 (and possibly ρ4 = 0) depending on φL − φR .
As was already noted in Ref. [73], barring fine-tuning, there will be very little CP violation 

in this case. Neglecting subleading terms in the potential, one finds α = ±π/2, which in this 
case is a CP conserving minimum, as, after an SU(2)L,R gauge-transformation, the vevs of the 
bidoublet can then be written as

〈φ〉 = e±iπ/4
(

κ 0
0 κ ′

)
, (47)

which is invariant under the CP2 transformation.
The feature that without fine-tuning the spontaneous CP violation will be small is reminiscent 

of the CP1 case. In fact, we observe that the CP2-symmetric potential is very similar to a special 
case of the CP1-symmetric potential. This can be seen by use of a field redefinition. In case we 
take ei(φL−φR) = 1, and thereby β2,3 = 0, we can apply the following redefinition

φ → e∓iπ/4φ, (48)
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the resulting potential is then, after an SU(2)L,R transformation, nearly equal to the CP1 case 
with the following identifications,

μ
CP1
2 = λ

CP1
4 = β

CP1
2,3 = 0, λ

CP1
2 = −λ

CP2
2 ,

αCP1 = αCP2 ± π/2, θ
CP1
L = θ

CP2
L ± π/2. (49)

The only remaining difference comes from the α2 terms involving Tr(ΔLΔ
†
L). Clearly, these 

terms are suppressed with respect to their right-handed equivalent, due to the hierarchy vR � κ , 
κ ′ � vL, meaning that to good approximation the two potentials are equivalent. Thus, in this 
case the minimum equations correspond to those of Eqs. (39) and (40)–(42) to O(κ2+/v2

R), with 
the identifications of Eq. (49). A similar redefinition can be made for the case ei(φL−φR) = −1.

Thus, the CP2 potential is, to good approximation, equal to a special case of the CP1 invariant 
potential. This also implies that the conclusions about the CP1-symmetric potential carry over. 
The case with spontaneous CP violation implies a non-SM-like Higgs spectrum whereas the case 
without spontaneous CP violation has no CP violation at all. Therefore, we conclude that also 
the CP2-symmetric case is not viable.

In the following sections we will study minimal LR models with fewer discrete symmetries. 
We will see that although there may be important differences between the Yukawa sectors of 
these models, their Higgs potentials will tend to be very similar, like for the CP1 and CP2 cases.

5. P - or C-symmetric LR models

5.1. P -symmetric LR models

P -symmetric LRMs have been studied quite extensively in the literature, e.g. [1,2,7,13,16]. 
In this case there is an approximate relation between the mixing matrices,

VL � KuVRKd, (50)

where Ku,d are diagonal matrices of phases. As was already mentioned, this is due to the fact 
that the combination r sinα should be small in order to be able to reproduce the small ratio 
mb/mt [20]. In fact, the same bound (36) as in the CP1 case applies here too. In order to satisfy 
this bound and simultaneously the experimental constraints on CP violation, one can arrive at 
constraints on the phases in Ku,d and on M2. In other words, even though CP violation can arise 
in this type of model, the pattern of CP violation in Kaon and B-meson mixing and the nEDM 
may not be reproducible unless M2 has some minimum value. Although this has been discussed 
before in the literature [7,13,20], we will briefly summarize this point.

At the moment we do not know the value of r , but if it is small (r � mb/mt ) one can use the 
analytical expressions for the phases in Ku,d derived in terms of r sinα [13], which have recently 
been generalized to general r values [29]. For M2 in the TeV range, the constraint on indirect 
CP-violation in Kaon mixing, ε, then drives a combination of the phases in Ku,d to a nonzero 
value, |θd − θs | � 0.17. As in this case all the phases are functions of r sinα, this requires a 
nonzero value for this combination. Both the neutron EDM as well as ε′ then set a strong bound 
on ζ sinα. These observables can then only be reconciled with ε for large values of M2 � 10 TeV
[7,13].

On the other hand, if r is large (r � mb/mt ) the phases in Ku,d can be sizable and tuned to 
satisfy the CP violation constraints. This leads to θc − θt � π/2 from ε and θd − θs � π from ε′. 
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In addition, for the CP-violation in B meson mixing (see Eq. (23)) we have

σd � π + θb − θd, σs � π + θb − θs, (51)

which leads to a correlation between φd and φs , on which we will comment further below (57). 
These constraints together with the Kaon and B-meson mass-differences, �MK and �MBd,s

, 
require M2 � 3 TeV [7]. The recent analytical results of [29] for general r probably allows to put 
an even more stringent bound, as in this case all phases in Ku,d are known expressions of r sinα, 
like in the CP1 case.7

In the limit of vanishing α the quark sector of the P -symmetric LRM coincides with that of 
the minimal manifest LRM. In this case ε sets a strong bound on the W±

R mass of M2 � 20 TeV
[40].

The above shows that the indirect constraints for P -symmetric LRMs are more stringent than 
the direct limits on M2 and will be even more so in the future thanks to LHCb, B-factories and 
improvements in lattice determinations of the relevant matrix elements. The increase of experi-
mental sensitivity discussed in Section 3, which will take at least another 10 years to realize, is 
expected to push the lower bound on M2 to roughly 8 TeV [7], which will likely allow confronta-
tion of the P -symmetric LRMs with data, although in this case there is no upper limit on M2, as 
the decoupling limit has not been excluded, in contrast to the CP1 case.

5.1.1. The Higgs potential
The Higgs potential in this case is that of Eq. (16). As pointed out in Ref. [31] it can be mapped 

onto the CP1 case to good approximation by a field redefinition, similar to that of Eq. (48),

φ → φe−iϕ/2, ϕ = Arg
(
α2v

2
R/2eiδ2 − μ2

2

)
. (52)

After an SU(L)L-gauge transformation this gives

αCP1 → αP + ϕ, θ
CP1
L → θP

L + ϕ. (53)

The remaining differences between the two potentials then are terms subleading in vR , 
O(κ2+/v2

R). Thus, the minimum equations of Eqs. (39)–(41) with the above replacement ap-
ply here too, to O(κ2+/v2

R). The remaining minimum equations result from subleading terms and 
are not obtained from their CP1 equivalents after applying the identifications Eq. (53). Instead 
they simply equal the corresponding CP1 equations, Eqs. (40) and (42). This near-equivalence 
means the conclusions of Ref. [31] about CP1 models discussed in Section 4.1 should apply 
here too. Thus, again it will not be possible to obtain an SM-like Higgs spectrum for arbitrary 
values of α. However, as mentioned in Section 4.1 for the CP1 case there is the possibility of an 
SM-like Higgs spectrum in the limit vR → ∞ for a specific value of α which now occurs very 
close to α = ϕ. Note that this is now an acceptable possibility as it still allows for spontaneous 
CP violation and we already allowed explicit CP violation in the Yukawa couplings. Thus, in 
the P -symmetric LR model it is possible to have an SM-like spectrum in the decoupling limit 
in combination with spontaneous CP violation. However, the amount of spontaneous CP viola-
tion then entirely results from the explicit CP violation present in the Higgs potential, as ϕ = 0
when δ2 = 0. In a sense this means that the CP violation is put in by hand and can be as large 
as allowed by the value of r . Nevertheless, as discussed in the previous section, the pattern of 
CP violation in Kaon and B-meson mixing and the nEDM also put stringent constraints on the 
model, in particular on M2. Moreover, there is the issue of fine-tuning.

7 Note that in the CP1 scenario also the SM phase δ can be expressed in terms of r sinα.
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Table 1
The ranges taken for the parameters of the potential when generating random points in parameter space.

ρ1 ρ3 λ1, ρ2, α2,3 λ2,3,4, α1, ρ4, β1,2,3 α, δ2, θL vL (eV) κ (GeV) vR (GeV)

[0,5] [2ρ1,10] [0,10] [−10,10] [0,2π ] [0,10] [0,246] [0,5 · 104]

5.1.2. Fine-tuning
The fact that the minimum equations relate several very different scales, namely, vR � κ+ �

vL to one another means that some of the parameters in the potential will tend to be fine-tuned. 
This is especially true for cases where vL �= 0 [5] as was already noted in Section 4.1. In this 
case one can obtain the vev see-saw relation of Eq. (44). This requires some parameters to be 
fine-tuned to a precision of order O(vL/vR). However, as we will show, more fine-tuning may 
be required, similar to that discussed in Section 4.1, due to the remaining minimum equations. 
In fact, solving the minimum equations for μ2

1,2, β1,2, α2 and ρ3 we see that the leading terms in 
ρ3 are proportional to v2

R/v2
L. This implies that if ρ3 is to be of order one, i.e. in the perturbative 

regime, these terms should cancel to a precision of v2
L/v2

R .
In order to study the matter quantitatively we use the minimum equations to solve for as many 

parameters, which we will denote by pi , as there are equations. Subsequently we study the de-
pendence of these pi on the remaining parameters, pj . More specifically, we adopt the following 
quantity as a measure for the fine-tuning in pi typically used for supersymmetric extensions of 
the SM [74,75],

Δi = Maxj

∣∣∣∣ d lnpi

d lnpj

∣∣∣∣. (54)

Our procedure is as follows, we first generate random O(1) values for nearly all parameters 
in the potential while obtaining values for the remainder through the minimum equations. The 
allowed ranges for the parameters are shown in Table 1. As the dimensionless parameters should 
remain in the perturbative range we conservatively constrain their values to lie in the interval 
[−10, 10]. Exceptions occur for several dimensionless parameters. These are further constrained 
in order for the potential to be bounded from below, in the case of λ1 and ρ1 and to have posi-
tive masses-squared values of the Higgs fields, like for ρ2, ρ3 − 2ρ1, and α3 [16]. However, the 
imposed constraints are actually not sufficient to keep all mass-squared values positive, but this 
will not affect the conclusions. In addition, we have not imposed any experimental constraints on 
these masses. Thus, only a subset of the generated points will be phenomenologically viable. We 
further take values for the vevs which adhere to their naive expectations. We make no assump-
tions for the μ2

i parameters, instead we calculate their values through the minimum equations.
We then solve the minimum equations for as many parameters as there are equations. The 

random points in parameter space are then used to calculate the fine-tuning measures for the 
solved parameters pi . The results are shown in Fig. 3 where we plot the maximum value of 
ΔMax ≡ Maxi Δi against vR .

Clearly, the degree of fine-tuning can be significantly larger than one might expect from the 
see-saw relation of Eq. (44) alone and be enhanced through the coupled minimum equations. As 
can be seen from the plot in Fig. 4 and was noted in Ref. [5] the fine-tuning may be considerably 
decreased by setting vL = βi = 0, as was done in e.g. [13]. In this case, however, still a fine-tuning 
of order Δ = O(v4

R/κ4+) � 100 remains. Since setting βi = 0 may lack justification [5,31], we 
observe that setting only vL to zero leads to the same reduction in the amount of fine-tuning. 



748 W. Dekens, D. Boer / Nuclear Physics B 889 (2014) 727–756
Fig. 3. The figure shows the fine-tuning measure ΔMax as a function of vR in TeV for a P -symmetric VH . The blue 
points are randomly generated points satisfying the minimum equations and the ranges in Table 1. Here the red line is 
chosen such that 0.1% of the points are found below it. It is parametrized by 6 · 10−4v2

R
/v2

L
taking an average value for 

vL of 10 eV. (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)

Fig. 4. Similar plots to that of Fig. 3. The plot on the left shows the fine-tuning in the case where βi and vL are set to 
zero, while the figure on the right does the same in the case where only vL is set to zero. The red lines are again chosen 
such that 0.1% of the points are found below it. It is parametrized by 3 · 10−3v4

R
/κ4+ and 2 · 10−3v4

R
/κ4+ in the left and 

right plots, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

In this case the vev see-saw relation vanishes and instead we obtain two relations for the βi

parameters, namely,

β1 = −2β3
κ ′

κ
cosα, β2 = κ ′ 2

κ2
β3. (55)

It remains to be seen whether these relations can be justified or not. Therefore, setting vL and 
possibly βi to zero is a simple way to greatly reduce the fine-tuning in the Higgs potential, but in 
both cases one may wonder whether this is justified.

5.2. C-symmetric LR models

C-symmetric LRMs have been less investigated in the literature so far, although recently there 
has been renewed interest in Refs. [20] and [7]. In this case the mixing matrices are related by 
Eq. (15),

VR = KuV
∗
LKd, (56)

with Ku,d diagonal matrices of phases. The mass matrices are now less constrained than in the 
P -symmetric case; the Yukawa couplings are symmetric as opposed to being hermitian. One of 
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the consequences is that the combination r sinα is no longer required to be small in order to 
reproduce the quark masses, as opposed to the P -symmetric case. Furthermore, now the phases 
in Ku,d are free parameters of the model. These can be tuned in order to evade the constraints 
from CP-violating observables. The ε constraint can be evaded when |θd − θs | � nπ (n = 0, 1), 
while the ε′ constraint can be satisfied when θd − θs � π or r is small. From the relation in 
Eq. (15) we have for the phases σd,s (see Eq. (23))

σd = π + θb − θd + 2φ, σs = π + θb − θs, (57)

where φ = Arg(V tb∗
L V td

L ). Note that σd and σs are again correlated in an M2 and MH dependent 
way through the ε(′) constraints. To be specific, for the quantities which determine the Bd,s

observables one has

1 + hd � 1 − |hd |ei(θb−θd+2φ), 1 + hs � 1 − (−1)n|hs |ei(θb−θd ), (58)

while in the P -symmetric case, again taking into account ε(′) constraints, one has

1 + hd � 1 − |hd |ei(θb−θd ), 1 + hs � 1 + |hs |ei(θb−θd ). (59)

From the Bd,s -mixing observables (�MBd,s
and φd,s ) it should in principle be possible to see 

which of the above patterns, Eq. (58) or (59), fits the data better (especially since |hd |/|hs |
is constant to good approximation [17,20]). In other words, if a sign of an LRSM is found in 
Bd,s -mixing these observables are in principle also sensitive to the difference between the P -
and C-symmetric options.

After the ε(′) constraints have been used to fix the phases, the constraints from �MK and from 
Bd,s mixing can again be used to put a strong limit on the W±

R mass. In this case the Bd,s meson 
limits are competitive with the bound from Kaon mixing [7] which is similar to the P -symmetric 
case, i.e. M2 � 3 TeV.

5.2.1. The Higgs potential
The Higgs potential in this case is that of Eq. (17). The form of this potential is quite similar 

to that of the P -symmetric potential, Eq. (16). In this case, however, phases appear in the μ2, 
λ2,4, ρ4 and βi terms which were absent in the P -symmetric potential. Nonetheless, to good 
approximation the potential of Eq. (17) can again be mapped onto the CP1-symmetric case by a 
field redefinition,

φ → e−iϕ′/2φ, ϕ′ = Arg

(
α2v

2
R

2
eiδα2 − μ2

2e
−iδμ2

)
. (60)

After an SU(2)L-gauge transformation this then implies the following identifications,

αCP1 = αC + ϕ, θ
CP1
L = θC

L + ϕ. (61)

This redefinition removes the phases from the μ2
2 and α2 terms, but does not remove the phases 

related to the λ2,4, ρ4, and βi terms. However, these terms are subleading, i.e. of order O(κ2+/v2
R)

and smaller. At first sight the ρ4 term may be an exception to this, however this term only con-
tributes an O(vLvR) term to the masses of doubly charged scalars and does not appear in the 
minimum equations. Thus, up to terms subleading in vR, after the redefinition Eq. (60) the 
C-symmetric potential is equal to the CP1-symmetric potential. Indeed four of the minimum 
equations are again those of the CP1 case, Eq. (39) and (41), to O(κ2+/v2

R), with the above iden-
tifications. The remaining two, do not follow this rule as they emerge from subleading terms in 
the potential. Instead they are given by,
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Fig. 5. The figure shows the fine-tuning measure ΔMax as a function of vR in TeV for a C-symmetric VH . With respect 
to the P -symmetric potential the C-symmetric potential has seven additional phases, for which we choose the range 
[0, 2π ]. The red line is parametrized by 30 · 10−4v2

R
/v2

L
taking an average value for vL of 10 eV. (For interpretation of 

the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Similar plots to that of Fig. 5. The plot on the left shows the fine-tuning in the case where βi and vL are set to 
zero, while the figure on the right does the same in the case where only vL is set to zero. The red lines are again chosen 
such that 0.1% of the points are found below it. It is parametrized by 2 · 10−3v4

R
/κ4+ and 1 · 10−3v4

R
/κ4+ in the left and 

right plots, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

2ρ1 − ρ3 = β1κκ ′ cos(δβ1 + α − θL) + β2κ
2 cos(δβ2 − θL) + β3κ

′ 2 cos(δβ3 + 2α − θL)

vRvL

,

0 = β1κκ ′ sin(δβ1 + α − θL) + β2κ
2 sin(δβ2 − θL) + β3κ

′ 2 sin(δβ3 + 2α − θL). (62)

Nevertheless, up to small corrections the conclusions of P - and CP1-symmetric case, discussed 
in Section 4.1, should apply once more.

The conclusions for the C-symmetric potential are very much like those for the P -symmetric 
case. Again it will not be possible to obtain an SM-like Higgs spectrum for arbitrary values of α. 
Nonetheless, there is a possibility of an SM-like Higgs spectrum in the decoupling limit for a 
specific value of the spontaneous phase which in this case occurs for α = ϕ′. Thus, much like 
the P -symmetric potential, it is possible to have an SM-like spectrum in the decoupling limit in 
combination with spontaneous CP violation, however, the size of the spontaneous phase is again 
entirely dictated by the explicit CP violation present in the potential, through Eq. (60).

5.2.2. Fine-tuning
Not surprisingly, the fine-tuning measures in the C- and P -symmetric potentials are rather 

similar. If we do not eliminate the vev see-saw relation, Eq. (44), the potential must again be 
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very fine-tuned, as can be seen in Fig. 5, which can be compared with Fig. 3 of the P -symmetric 
case.

One can again choose to eliminate the see-saw relation in order to reduce the amount of fine-
tuning substantially. As before, this can be achieved by setting vL = 0 and possibly βi = 0, see 
Fig. 6. In both cases still a considerable amount of fine-tuning remains, Δ = O(v4

R/κ4+) � 100. 
In case of vL = 0 only, one obtains again two relations for the βi parameters, which however 
differ from those of Eq. (55),

β1 = rβ3
sin(δβ2 − δβ3 − 2α)

sin(δβ1 − δβ2 + α)
, β2 = −rβ1. (63)

5.3. CP-symmetric LR models

In a CP-symmetric LR model the CKM matrices are in principle unrelated to one another, 
the same is true for the gauge couplings, generally, gR �= gL. Nevertheless, in a similar fashion 
to the P and CP1 cases [20] one may again derive the upper bound of Eq. (36). Despite this 
similarity, here it is possible to tune the right-handed gauge coupling and CKM elements in 
order to weaken the constraints from direct searches and B and K mixing. In fact, the study of 
general LRMs (without the constraints on VR of the C and P cases) of Ref. [76] shows that for 
M2 in the 2–3 TeV range a nearly diagonal form of VR , much like that of the SM CKM matrix, 
is allowed, but also regions with large off-diagonal (V cb

R and V ub
R ) elements are possible.

5.3.1. The Higgs potential
The Higgs potential in this case is that of Eq. (18). This potential contains 5 more parameters 

than the P -symmetric potential. Note, however, that if we were to neglect Tr(ΔLΔ
†
L) compared 

to Tr(ΔRΔ
†
R), we would obtain a potential very similar to the P -symmetric case. Indeed, five of 

the minimum equations are, up to terms of O(vL/vR) given by those of the CP1-symmetric case, 
Eqs. (39), (41) and (42), with the translations μ2

3 → μ2
3R , ρ2

1 → ρ2
1R and α2

i → α2
iR . The final 

minimum equation, the vev see-saw relation, is also given by the corresponding CP1 equation, 
Eq. (40), to O(κ2+/v2

R), where μ2
3L/v2

R now plays the role of ρ1. Schematically,

2
μ2

3L

v2
R

− ρ3 ∼ κ2+
vLvR

βi. (64)

Thus, unless the βi terms cancel to good precision, the natural value for μ2
3L is of the order 

of O( vR

vL
κ2+). The μ2

3L parameter thereby is the main difference between this and the CP1 case. 

Since, if μ2
3L = μ2

3R we could have identified it with μ2
3 of the CP1 case. Note, however, that μ3L

only appears in the mass terms for the left-handed triplet fields. Furthermore, the two mechanisms 
which led to small masses of additional Higgs fields in the CP1 case (see Section 4.1) are still 
in place here. The equivalent of Eq. (41) now implies α3R sinα to be small. Choosing α3R small 
again implies small flavor-changing Higgs masses. On the other hand, a small value of α implies, 
through Eqs. (42) and (40), small 2μ2

3L − v2
Rρ3 which dictates the masses of the left-handed 

triplet fields.
Thus, the condition that α3R sinα be small and the lower bound on the flavor-changing Higgs 

masses force α to be small. As this is the only source of CP violation in the quark sector, one 
might expect the model to predict hardly any CP violation. This would lead one to doubt the 
viability of the model. However, the lower bounds on the CP-violating Higgs mass in the C and 
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Fig. 7. The figure shows the fine-tuning measure ΔMax as a function of vR in TeV for a CP-symmetric VH . The red line 
is parametrized by 1 · 10−2v4

R
/κ2+v2

L
taking an average value for vL of 10 eV. (For interpretation of the references to 

color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Similar plots to that of Fig. 7. The plot on the left shows the fine-tuning in the case where βi and vL are set to 
zero, while the figure on the right does the same in the case where only vL is set to zero. The red lines are again chosen 
such that 0.1% of the points are found below it. It is parametrized by 2 · 10−3v4

R
/κ4+ and 5 · 10−3v4

R
/κ4+ in the left and 

right plots, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

P cases assumed the relation between the CKM matrices these symmetries imply. As there is 
no such relation in this case the bounds can be weakened. For example, the analysis of Ref. [76]
shows that points in parameters space for values of MH as low as MH ∼ 2.4 TeV are allowed. 
Such values still imply a very small α =O(vL/vR). However, even smaller values of MH might 
be achieved at the price of additional fine-tuning [76], which would allow for larger α.

5.3.2. Fine-tuning
The parameters multiplying the left-handed triplet terms do become important when dis-

cussing the fine-tuning in this potential. These terms contribute terms to the minimum equations 
which are smaller than those encountered in the P - and C-symmetric cases. This means these 
equations now relate high scales to even smaller scales, indicating more fine-tuning.

We again go through the same procedure as in the P - and C- symmetric cases, generating 
random points in parameter space and calculating the measure of fine-tuning. The results are 
shown in Figs. 7 and 8. Clearly, when vL �= 0 and βi �= 0 the fine-tuning measure reaches new 
heights, due to the vev see-saw relation and the newly added Tr(ΔLΔ

†
L)2 terms. However, when 

we choose to eliminate the vev see-saw relation we obtain fine-tuning measures comparable to 
the C- and P -symmetric cases. This may have been expected as when vL = 0 the terms which 
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differ from the P case do not contribute to the minimum equations. We then obtain the minimum 
equations of the P -symmetric potential (with δ2 = 0), with the translations, μ2

3 → μ2
3R , ρ2

1 →
ρ2

1R and α2
i → α2

iR . Thus, as far as the fine-tuning is concerned, when vL = 0 the CP-symmetric 
potential simplifies to a special case of the P -symmetric potential. As such, the relations between 
the βi parameters one then obtains is that of the P -symmetric case, Eq. (55).

6. Summary and conclusions

The most symmetric minimal LR models, the ones invariant under P , C, and CP, turn out 
not to be viable. There are just two possible implementations of both P and C that are able to 
produce the observed quark masses, yielding the CP1 and CP2 models. The models differ in the 
relation among the left and right CKM matrices. In the case of the CP1 model this relation puts 
constraints on CP-violating observables from Kaon and B-meson mixing that are incompatible 
with measurements, in particular, the bounds on the B-mixing angle φd . As the Yukawa cou-
plings of the minimal pseudomanifest LRM coincide with those of the CP1 model, it follows 
that it is also excluded. The CP2 model cannot be excluded in the same way, as there is in gen-
eral no simple relation between left and right CKM matrices. In this case the Higgs potential 
is more constraining. Here it was shown that the Higgs potentials of the CP2 model is, to good 
approximation, equal to a special case of the CP1 invariant potential. For that potential it was 
shown in Ref. [31] that whenever there is spontaneous CP violation, α �= 0, the potential cannot
reproduce the SM Higgs spectrum and since the model has no explicit CP violation, the case 
without spontaneous CP violation has no CP violation at all. Upon field redefinitions, these con-
clusions carry over to the CP2 model, which can therefore be considered excluded. In addition, 
both models generally require a large amount of fine-tuning. The minimum equations generally 
relate very different scales, κ+, vR and vL, which implies that some of the parameters will have 
to be fine-tuned. The most extreme tuning results from the so-called vev see-saw relation Eq. (44)
[5], which implies a huge amount of fine-tuning.

Less symmetric possibilities are the P -, C- and CP-symmetric LRMs, the first two are LR 
symmetric, while the last possibility, CP, does not relate left- and right-handed fields. The most 
widely studied case is the P -symmetric LRM. This type of LRSM is most constrained in the limit 
that the ratio of vevs r ≡ κ ′/κ is small �mb/mt . Based on an analytical solution for the phases in 
the CKM matrices, which allows for strong constraints from CP-violating observables Kaon and 
B-meson mixing and the neutron EDM, a lower bound M2 � 10 TeV was obtained [13]. Outside 
this regime this solution for the phases does not exist and the bound is weakened, M2 � 3 TeV [7]. 
Although use of a more general solution, recently derived [29], may strengthen this bound. This 
shows that the indirect constraints for P -symmetric LRMs are more stringent than the direct 
limits on M2 for left–right symmetric models, which currently are 2 TeV if one does not wish to 
make assumptions about right-handed neutrinos. The increase of experimental sensitivity in the 
coming 10 years is expected to push the lower indirect bound on M2 to roughly 8 TeV, thereby 
exploring a considerable part of the still available parameter space of the P -symmetric LRMs. 
The minimal manifest LRSM, the case of vanishing α, is more constrained, here the current 
bound on the W±

R mass is M2 � 20 TeV [40].
The Higgs potential of the P -symmetric LRM has been widely studied in the literature [5,31,

71,72]. This potential is very similar to that of the CP1-symmetric LRM [31], which implies that 
an SM-like Higgs spectrum is only possible for a specific value of the spontaneous phase. In this 
case, however, the spontaneous phase can be nonzero, although it is now entirely dictated by the 
explicit CP violation present in the potential. In a sense this means that the CP-violating phase α
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is put in by hand and can be as large as allowed by the value of r and the constraints from Kaon 
and B-meson mixing and the nEDM.

Finally, there is the issue of fine-tuning resulting from the minimum equations. Again the most 
extreme tuning results from the vev see-saw relation, which implies a huge amount of fine-tuning. 
It is possible to avoid this by setting vL and βi to zero by hand as was done in Ref. [13]. As we 
have demonstrated, the same reduction in the amount of fine-tuning can be achieved with vL = 0
only, in which case there are two relations among the βi parameters [31]. The minimum amount 
of fine-tuning, assuming O(1) parameters, is then found to be Δ ∼ 100, where Δ is a measure 
for fine-tuning often employed in the study of supersymmetric extensions of the SM, defined in 
Eq. (54). It indicates that a change in one parameter by a factor of O(1) implies a change in 
another parameter by a factor O(100). This may be acceptable for a theory with such widely 
varying scales.

Accepting such a minimum amount of fine-tuning, the P -symmetric LRM with some con-
straints on its βi parameters is still viable, but is expected to be much further constrained in the 
coming decade. As the lower bound on M2 and hence on vR increases, the amount of fine-tuning 
will also increase.

The C-symmetric LRM has been studied less in the literature. In this case the phases in the 
CKM matrices are free parameters, which can be tuned to avoid constraints from CP-violating 
observables. Nonetheless, a lower-bound similar to the P -symmetric case can be set, M2 � 3 TeV
[7].

For the C-symmetric and P -symmetric LRMs the Kaon and B observables are the most sen-
sitive probes of the mass of the W±

R boson and the most promising way to explore the parameter 
space of these models. This is due to the fact that these observables are determined by the left-
and right-handed CKM elements which, in the P/C-symmetric case, are constrained by the LR 
symmetries. Since the relation between the left and right CKM matrices is different for the C-
and the P -symmetric LRMs, these two types of models predict a different pattern in Bd,s-mixing. 
Thus, if signs of an LRM are observed in this sector one should in principle be able to tell the 
difference between C- and P -symmetric LR models using Bd,s-mixing observables. EDMs con-
strain the spontaneous CP-violating phase α and the WL–WR mixing angle ζ and are thereby 
complementary to the meson-mixing observables. At present the neutron EDM sets a strong 
limit on these parameters, although the deuteron EDM is expected to be a more sensitive probe 
by about an order of magnitude. Additionally, in an LR model one expects certain relations to 
hold between the EDMs of light nuclei, measurements of which would allow for another type of 
test of LRMs.

Although new phases arise in the Higgs sector of the C-symmetric LRM, the Higgs potential 
is again very similar to that of the CP1-symmetric LRM. An SM-like Higgs spectrum is only 
possible for a specific value of the spontaneous phase, which is again entirely dictated by the 
explicit CP violation present in the potential. Perhaps unsurprisingly, the amount of fine-tuning 
required in the potential is similar to the P -symmetric case. By setting vL = 0 (and possibly 
βi = 0) the vev see-saw relation can be eliminated and the fine-tuning dramatically reduced. 
Nevertheless, in this case a minimum fine-tuning of Δ ∼ 100 is required as well.

Finally, the CP-symmetric model, which need not be P and C symmetric separately, is con-
siderably different from the above cases. This is due to the fact that CP is not an LR symmetry. 
Although, like the P case, there is a bound on r sinα, the CKM matrices and coupling constants 
are now generally unrelated to one another (gL �= gR). This means there is more freedom in this 
model, such that both direct and indirect bounds are expected to be weakened, see, for instance, 
Ref. [76]. The relation between the EDMs of light nuclei is unaffected by this and would still 
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allow for a test of the model. As most features of the Higgs sector again resemble the CP1 case, 
a nonzero spontaneous phase again requires light Higgs fields. However, due to the additional 
freedom, the bounds on these fields may be weaker in this case. On the other hand, the potential 
generally requires more fine-tuning than the CP1 potential, except when considering the vL = 0
cases, in which the fine-tuning is similar to the P -symmetric case.

Recapitulating, LRSMs are possibly the most attractive of the possible LRMs, but also the 
most constrained. The LR scale of these models is currently constrained to be in the TeV range, 
M2 � 3 TeV. Instead, CP-symmetric LRMs seem less constrained, allowing for more freedom in 
the right-handed CKM matrix. In the Higgs sector the potentials of the LRSMs all turn out to be 
quite similar. The CP-symmetric case allows some more freedom in the masses of the left-handed 
triplet fields, but is otherwise similar as well. The Higgs potentials of all three models require a 
considerable amount of fine-tuning, which poses the biggest challenge to their viability.
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