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Insulin resistance has been associated with the progression

of chronic kidney disease in both diabetes and obesity.

In order to determine the cellular mechanisms contributing

to this, we characterized insulin signaling in renal tubules

and glomeruli during diabetic and insulin-resistant states

using streptozotocin-diabetic and Zucker fatty-insulin-

resistant rats. Compared with nondiabetic and Zucker lean

rats, the insulin-induced phosphorylation of insulin receptor

substrate-1 (IRS1), Akt, endothelial nitric oxide synthase, and

glycogen synthase kinase 3a were selectively inhibited in the

glomeruli but not in the renal tubules of both respective

models. Protein, but not mRNA levels of IRS1, was decreased

only in the glomeruli of streptozotocin-diabetic rats likely

due to increased ubiquitination. Treatment with the protein

kinase C-b inhibitor, ruboxistaurin, enhanced insulin actions

and elevated IRS1 expression. In glomerular endothelial

cells, high glucose inhibited the phosphorylation of Akt,

endothelial nitric oxide synthase, and glycogen synthase

kinase 3a; decreased IRS1 protein expression and increased

its association with ubiquitin. Overexpression of IRS1 or the

addition of ruboxistaurin reversed the inhibitory effects of

high glucose. Thus, loss of insulin’s effect on endothelial

nitric oxide synthase and glycogen synthase kinase 3a
activation may contribute to the glomerulopathy observed

in diabetes and obesity.
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Diabetic nephropathy is the most common cause of chronic
kidney disease and end-stage renal disease.1–3 Insulin resistance,
observed in both diabetes and obesity, has been associated with
increased risks of renal dysfunction and chronic kidney disease.4

However, a comprehensive and comparative characterization of
insulin signaling in renal glomeruli and tubules has not been
reported in these diseases.

Physiological studies have shown that renal tissues are
responsive to insulin, specifically in the renal tubules affecting
sodium uptake and glucose metabolism.5,6 The insulin’s effect
on renal sodium reabsorption has been reported to be
unaffected in diabetes or insulin resistance, manifested by
increased fluid retention in diabetic patients after the initiation
or intensification of insulin therapy.7 However, systemic insulin
resistance has been associated with the progression of nephro-
pathy in type 1 diabetic patients.8,9 Thus, insulin may have
actions in the glomeruli and the proximal tubules. A potential
site of insulin’s glomerular action is the endothelial cells,
regulating endothelial nitric oxide synthase (eNOS) and altering
nitric oxide (NO) production and actions.10 The role of NO
and eNOS in renal function and pathology is significant as
eNOS-null mice exhibit glomerular and peritubular capillary
endothelium injury with progressive renal disease.11,12 Insulin
can increase NO production by increasing eNOS actions in
endothelial cells,13 which can be impaired in insulin-resistant or
diabetic animals.14,15 NO production has been reported to be
decreased in the renal cortex of diabetic16 and Zucker fatty (ZF)
rats17 and patients with chronic kidney disease.18

This study characterized insulin signaling and actions in
renal glomeruli and tubules of rat models of diabetes with
insulin deficiency and insulin resistance due to obesity. The
mechanisms for the selective loss of insulin glomerular
actions were further studied in cultured rat glomerular
endothelial cells (RGECs).

RESULTS
Physiological characteristics of the experimental groups

Increases in blood glucose by 3.9±0.5-fold, kidney weight by
1.6±0.2-fold, and albuminuria by 24±7-fold were observed in
diabetic rats compared with control Sprague-Dawley (SD) rats.
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After 8 weeks of diabetes, body weight in diabetic SD rats were
less than the control SD rat group by 39±15% (Po0.001,
Table 1), although all the final weights of the diabetic rats were
higher than their weights at the initiation of the study. Body
weights of ZF rats were significantly greater than Zucker lean
(ZL) rats by 1.6±0.7-fold (Po0.001, Table 1).

Renal histology in experimental groups

Mesangial matrix expansion was prominent in diabetic rats
(control SD rats; 3.1±0.6% vs diabetic SD rats; 5.5±2%,
Po0.05, Figure 1a and b). Area in the glomeruli stained for
type IV collagen was also increased in diabetic rats compared
with control SD rats (control SD rats; 2.9±0.9% vs diabetic
SD rats; 4.9±0.7%, respectively, Po0.05, Figure 1a and c).

Insulin’s effect on the phosphorylation of Akt and ERK/MAPK
(extracellular signal-regulated kinase/mitogen-activated
protein kinase)

In the glomeruli, insulin stimulated phosphorylated Akt
(p-Akt) by at least 18±3-fold vs control SD or ZL rats. In
diabetic SD and ZF rats, insulin-induced p-Akt levels were
inhibited by 51±4% (Po0.001, Figure 2a) and 69±9%
(Po0.001, Figure 2b) compared with non-diabetic SD
control and ZL rats, respectively. In contrast, insulin
increased p-Akt in the tubules by 15±3-fold to 25±4-fold
in all groups (Po0.001, Figure 2a and b), which were
unaffected by diabetes.

Immunohistochemistry indicated that the number of
p-Akt-positive cells in the glomeruli of control SD rats
treated with insulin was increased significantly by 9.1±1.6-
fold when compared with control SD rats without insulin. In
diabetic SD rats treated with insulin, the number of p-Akt-
positive cells were decreased by 42±10% when compared
with control SD rats with insulin (Po0.05, Figure 2c and d).

Insulin increased Erk1/2 phosphorylation (p-Erk1/2) levels
in both the glomeruli by up to 5.8±0.2-fold (Po0.001, Figure
2e and f) and the tubules by up to 7.6±0.4-fold Po0.001,
Figure 2e and f) when comparing streptozotocin (STZ)-diabetic
SD and ZF rats with their respective controls. Moreover, the
levels of phosphorylation peaked similarly (88±5–95±3%;

p-Erk1/2/Erk1/2, Figure 2e and f). Basal levels of p-Erk1/2 were
increased in both glomeruli and tubules of diabetic SD rats
(42±3 and 27±1%, respectively; p-Erk1/2/Erk1/2, Po0.001,
Figure 2e and f) and ZF rats (40±1 and 23±1%, respectively;
p-Erk1/2/Erk1/2, Po0.05, Figure 2e and f) when compared
with non-diabetic and ZL rats.

In addition, we studied insulin’s effect on renal tubular cell
line (RPTEC). As in the case in vivo, insulin-induced p-Erk1/
2 and p-Akt were not inhibited when exposed to high glucose
condition (Supplementary Figure S1E and F online).

Phosphorylation of eNOS and glycogen synthase kinase
3a (GSK3a)

Insulin increased p-eNOS in the glomeruli of SD nondiabetic
and ZL rats by 6.4±2.9-fold and 13±3-fold, respectively.
However, insulin’s effect to increase p-eNOS was reduced by
15±6% (Po0.05, Figure 3a) in STZ-diabetic SD compared
with non-diabetic rats and was reduced by 68±1% in ZF
compared with ZL rats (Po0.001, Figure 3b).

To confirm that activation of phosphatidylinositol
3-kinase (PI3K)/Akt is selectively inhibited in the glomeruli,
we investigated insulin-stimulated phosphorylation of
GSK3a (p-GSK3a), another target of insulin signaling
induced by the activation of the insulin receptor substrate
(IRS)/PI3K pathway.19 Insulin increased p-GSK3a in the
glomeruli of all rat groups by at least 7.6±1.2-fold. Similar to
eNOS activation, GSK3a phosphorylation was reduced by
23±3% in STZ-diabetic rats and 62±3% in ZF rats when
compared with control SD and ZL rats, respectively
(Po0.001, Figure 3c and d). In contrast, insulin-induced
increases of p-GSK3a in the tubules were comparable in
control and diabetic rats by 7.9±0.5-fold to 10±1fold
(Po0.001, Figure 3c and d). Lastly, GSK3b phosphorylation
induced by insulin was reduced by 57±3% in STZ-diabetic
SD rats and 53±1% in ZF rats when compared with control
SD and ZL rats, respectively (Po0.001, Figure 3e and f).

Characterization of mRNA and protein levels of IRS1/2

To identify possible mechanisms of insulin resistance on the
activation of Akt/eNOS in the renal glomeruli, the protein

Table 1 | General characteristics of the experimental groups

Cont. Cont.+RBX DM DM+RBX ZL ZL+RBX ZF ZF+RBX

Number 6 6 6 5 6 6 6 6
After 1 week

Body weight (g) 165±4 165±2 168±8 166±1 188±8 164±3 262±23 261±12
Blood glucose (mg/dl) 98±8 94±7 405±183* 412±24* 124±9 100±13 159±34 138±9

After 8 weeks
Body weight (g) 527±45 541±56 320±78* 321±38* 391±30 402±58 617±23w 621±36w

Blood glucose (mg/dl) 106±9 108±15 415±50* 456±66* 114±24 130±16 157±46 170±49
Kidney weight (g) 2.3±0.1 2.2±0.2 3.7±0.4* 3.5±0.3* 2.0±0.1 1.8±0.3 3.0±0.3w 2.8±0.3
Albuminuria (mg/day) 0.2±0.1 0.2±0.1 4.7±1.6* 2.6±1.2*,# 0.1±0.1 0.2±0.1 0.6±0.3z 0.4±0.2z

Insulin (ng/ml) 2.4±0.5 2.5±0.4 0.2±0.1* 0.2±0.1* 2.9±0.5 2.8±0.4 42±3w 43±5w

Abbreviations: Cont., control rat; Cont.+RBX, control rat with ruboxistaurin (RBX) treatment; DM, diabetic rat; DM+RBX, diabetic rat with RBX treatment; ZL, Zucker lean rat;
ZL+RBX, Zucker lean rat with RBX treatment; ZF, Zucker fatty rat; ZF+RBX, Zucker fatty rat with RBX treatment.
The data are expressed as the means±s.d. *Po0.001 vs Cont.; wPo0.001 vs ZL; zPo0.05 vs ZL; #Po0.05 vs DM.
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and mRNA levels of IRS1/2 were assessed. Protein levels of IRS1,
measured by immunoblot analysis, in the glomeruli of STZ-
diabetic SD rats were reduced by 54±9% when compared with
controls (Po0.05, Figure 4a). In contrast, IRS1 protein levels in
the glomeruli from ZF rats were not changed vs ZL rats. No
significant differences in the expression of mRNA levels of IRS1/
2 and IRS2 protein levels in the glomeruli and tubules were
observed in all four groups of rats (Figure 4b and c).

Studies using immunohistochemistry showed that the
number of IRS1-positive cells was significantly decreased in
STZ-diabetic SD rats by 36±6% when compared with
control SD rats (Po0.05, Figure 4d and e).

Evaluation of insulin receptors and IRS1/2 activation

Insulin-induced tyrosine phosphorylation of IR in both
glomeruli and tubules were increased by 8.5±0.1-fold to
16±1-fold and 7.8±0.4-fold to 13±3-fold, respectively
(Po0.001, Supplementary Figure S1A and B online), and did

not differ significantly when compared with their respective
controls. In contrast, tyrosine phosphorylation of IRS1
was significantly reduced in the glomeruli of diabetic and ZF
rats by 21±2% and 64±1% compared with control SD and
ZL rats, respectively (Po0.001, Figure 4f and g). Insulin
increased IRS1 tyrosine phosphorylation in the tubules
by 5.5±0.5-fold to 23±2-fold, and no differences were
observed between STZ-diabetic SD and ZF rats and their
controls (Po0.001, Figure 4f and g).

Association of ubiquitin with IRS1/2 in the glomeruli

The results suggest that the decreases of IRS1 in the diabetic
SD rats are because of changes in the degradation of IRS1.
The association of IRS1/2 with ubiquitin was evaluated by
immunoprecipitation studies.20 Figure 4h showed that there
was a significant increase by 2.3±0.7-fold in the association
of ubiquitin with IRS1 in the glomeruli of diabetic SD rats
compared with non-diabetic control (Po0.001). No increases
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Figure 1 | Renal morphology and immunohistochemical staining for type IV collagen in the experimental groups. (a) Representative
light microscopic appearance of glomeruli (periodic acid-Schiff (PAS) and periodic acid–methenamine-silver (PAM) staining) and
immunohistochemistry of Col4 for control rats (A, E, I), STZ-induced diabetic SD rats (B, F, J), Zucker lean rats (C, G, K), and Zucker fatty rats
(D, H L). Bar¼ 100mm. (b) Morphometric analysis of PAM-positive staining area. The glomerular PAM-positive area was measured as
described in the Materials and Methods; n¼ 6 in each group, *Po0.05. (c) Morphometric analysis of the glomerular expression of Col4. The
glomerular staining area of Col4 was measured as described in the Materials and Methods; n¼ 6 in each group, *Po0.05. The data are
expressed as means±s.d. Cont., control rats; DM, STZ-induced diabetic Sprague-Dawley (SD) rats; NS, not significant; ZL, Zucker lean rats;
ZF, Zucker fatty rats.
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in association between ubiquitin and IRS2 were observed in the
glomeruli of diabetic vs control SD rats. In addition, no changes
in the association of IRS1/2 with ubiquitin were observed in the
glomeruli of ZL vs ZF rats (Figure 4i).

Nuclear factor-jB (NF-jB) activation in kidney

Previous reports have indicated that GSK3a/b phosphory-
lation is decreased in the renal cortex and associated with
increases in NF-kB activity.21,22 Thus, we evaluated the
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Figure 2 | Insulin’s effect on p-Akt and p-Erk1/2 in the glomeruli and tubules of SD and Zucker rats. (a, b) Representative
immunoblots of p-Akt from glomerular and tubular fractions. Data from three experiments were quantitated by densitometry. (a) Cont. vs
DM, (b) ZL vs ZF, n¼ 6 in each group, **Po0.001. (c) Immunostaining for Akt (A, E, I, M), p-Akt (B, F, J, N), DAPI (C, G, K, O), and merge images
(D, H, L, P) in the glomeruli of control rats without insulin, control rats with insulin, STZ-induced diabetic SD rats without insulin, and
STZ-induced diabetic SD rats with insulin. (d) Percentage of p-Akt-positive cells per DAPI; n¼ 6 in each group, *Po0.05. (e, f) Representative
immunoblots of p-Erk1/2 from glomerular and tubular fractions. Data from three experiments were quantitated by densitometry. (e) Cont.
vs DM, (f) ZL vs ZF; n¼ 6 in each group, *Po0.05, **Po0.001. These data are expressed as means±s.d. Cont., control rats; DM, STZ-induced
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activation of NF-kB in the kidney. In the glomeruli of
diabetic SD rats and ZF rats, NF-kB activation was increased
by 6.4±0.2-fold in the glomeruli of diabetic SD rats when
compared with control SD rats and by 7.8±0.9-fold in

the glomeruli of ZF rats when compared with ZL rats
(Po0.001, Figure 5a). However, no increases were observed
in the tubules of diabetic SD rats and ZF rats. Similar to
immunoblot study, NF-kB binding assay only exhibited
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Figure 3 | Insulin-induced p-eNOS and p-GSKa in the glomeruli and tubules of diabetic and control SD rats and ZL and ZF rats.
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diabetic and Zucker rats. mRNA expressions for IRS1/2 were measured by real-time reverse transcriptase-PCR (RT-PCR); n¼ 6 in each group.
(d) Immunostaining for IRS1 and representative pictures in (A) control rats, (B) STZ-induced diabetic SD rats, and (C) negative control.
Bar¼ 50 mm. (e) Number of IRS1-positive cells per glomerulus in control rats and STZ-induced diabetic SD rats; n¼ 6 in each group,
*Po0.05. (f, g) Representative immunoblots of tyrosine phosphorylation of IRS1 from glomerular and tubular fractions. Solubilized
glomeruli and tubular fractions were isolated and subjected to immunoprecipitation followed by immunoblotting. Data from three
experiments were quantitated by densitometry. (f) Cont. vs DM, (g) ZL vs ZF; n¼ 6 in each group, **Po0.001. (h, i) Solubilized glomeruli
fractions were immunoprecipitated with antibodies against ubiquitin and subsequently immunoblotted with anti-IRS1 or anti-IRS2
antibodies. Data from three experiments were quantitated by densitometry; n¼ 6 in each group, **Po0.001. These data are expressed
as means±s.d. Cont., control rats; DM, STZ-induced diabetic Sprague-Dawley (SD) rats; G, glomeruli; IRS, insulin receptor substrate;
NS, not significant; T, tubules; ZF, Zucker fatty rats; ZL, Zucker lean rats.
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increases in the glomeruli of diabetic SD rats and ZF rats
when compared with control SD rats and ZL rats (5.7±0.8-
fold and 7.5±0.9-fold, respectively, Po0.001, Figure 5b).

Effects of ruboxistaurin (RBX) on insulin-induced Akt, eNOS,
and GSKa phosphorylation

We have previously reported that activation of protein kinase
C (PKC), especially PKCb, inhibited insulin-stimulated p-Akt
and p-eNOS.15 Therefore, we evaluated whether inhibition
by RBX can decrease insulin resistance in the glomeruli of
diabetic SD and ZF rats. RBX treatment did not affect
insulin-induced phosphorylation of Akt or its actions in the
glomeruli of control SD rats and ZL rats. In contrast, RBX
treatment partially normalized Akt phosphorylation by
67±14% and by 43±12%, respectively (Po0.001, Po0.05,
Figure 5c and d) in the glomeruli of diabetic SD rats and ZF
rats. Treatment with RBX also normalized eNOS phospho-
rylation by 122±20% and by 144±48%, respectively
(Po0.001, Figure 5e and f) and GSK3a phosphorylation by
68±4% and by 136±10%, respectively (Po0.001, Figure 5g
and h) in diabetic SD and ZF rats. In addition, RBX
treatment partially normalized insulin-induced levels of
p-Erk1/2 and basal p-Erk1/2 (Supplementary Figure S1C
online).

Effect of RBX on IRS1 function and NO synthesis

In the glomeruli of diabetic SD rats and ZF rats, RBX
partially normalized insulin-induced tyrosine phosphory-
lation of IRS1 by 165±21 and by 164±11%, respectively
(Po0.001, Figure 6a and b). Moreover, RBX decreased the
degradation of IRS1 by 26±11% (Po0.001, Figure 6a)
and its association with ubiquitin by 35±7% (Po0.001,
Figure 6c) in the glomeruli of diabetic SD rats compared with
diabetic SD rats. NO release induced by insulin in the isolated
glomeruli of diabetic SD rats and ZF rats were reduced by
40±6 and by 41±5%, respectively (Po0.001, Figure 6d
and e) compared with control and ZL rats. In the isolated
glomeruli from diabetic SD rats and ZF rats, RBX treatment
improved insulin-induced NO release by 30±10 and by
31±11%, respectively (Po0.05, Figure 6d and e).

Effect of glucose levels on IRS1 expression and ubiquitination

To investigate whether hyperglycemia is responsible for the
increase in IRS1 degradation, we studied the effect of high
glucose on IRS mRNA and protein levels in RGECs, cultured
for 72 h, in the presence of low (5.5 mmol/l) and high
(25 mmol/l) glucose levels. Levels of IRS1 and IRS2 mRNA
and the protein levels of IRS2 were not changed during the
experiments (Figure 7a).

The protein levels of IRS1 decreased in high glucose
condition after 48 and 72 h of incubation by 21±2 and
30±1% compared with basal, respectively (Po0.05, Po0.001,
Figure 7b). Similar to the in vivo condition, polyubiquitination
for IRS1 in RGECs was increased by 1.7±0.2-fold when cells
were incubated with high glucose for 72 h compared with low
glucose condition (Po0.001, Figure 7c). No difference for IRS2

immunoreactive band associated with ubiquitin between
control and diabetic rats was detected (Figure 7c).

We also checked the differences of insulin receptor and
IRS expression among the glomerular cell types. In
podocytes, both insulin receptor and IRS1 expression were
higher than other cells (insulin receptor/actin: 85±13% in
podocytes, 74±10% in mesangial cells, and 80±15% in
RGECs, respectively, IRS/actin: 87±11% in podocytes,
70±11% in mesangial cells, and 82±14% in RGECs,
Po0.05, Supplementary Figure S1G online).

Effect of glucose and the overexpression of IRS1 on insulin
signaling in RGECs

As eNOS is selectively expressed in the endothelial cells and
inhibited by diabetes, we characterized the direct effect of
glucose levels on insulin signaling and activation of eNOS in
RGECs. As shown in Figure 6d and f, insulin at 5.5 mmol/l
glucose significantly increased p-Akt (Ser473), p-eNOS
(Ser1177), and p-Erk1/2 by 3- to 4-fold (Po0.001) with
maximum effects observed at 30, 30, and 15 min after the
addition of insulin, respectively.

Infection with Ad-IRS1 increased IRS1 protein expression
similarly in low and high glucose levels by 9.1±1.9-fold and
9.4±0.3-fold, respectively (Po0.001, Supplementary Figure
S1C). Insulin increased p-Akt (Ser473)/Akt to 91±2% of
total Akt in Ad-green fluorescent protein (GFP)-infected cells
(Figure 7g), which were not different from noninfected
RGECs (95±2% of total Akt protein, Figure 7d). Infection of
Ad-IRS1 increased basal p-Akt/Akt to 74±1% of total Akt.
Insulin still significantly increased p-Akt in Ad-IRS1-infected
cells, although the maximum did not change between Ad-
GFP vs Ad-IRS1-infected cells. In RGECs cultured in high
glucose, the maximal stimulation of p-Akt in control or Ad-
GFP-infected cells showed a 15±3% inhibition compared
with low glucose condition (Po0.05). The infection of
Ad-IRS1 in RGECs reversed the loss of insulin’s activation of
p-Akt in RGECs incubated in high glucose conditions
(Figure 7g) without infection with Ad-IRS1. RGECs, in-
cubated without insulin but with Ad-IRS1 infection, had
elevated basal p-eNOS levels (Figure 7h). Lastly, insulin’s
effect on p-GSK3a was inhibited by 17±2% in RGECs
incubated with high glucose when compared with low glucose
conditions (Po0.001). Overexpression of Ad-IRS1 in RGECs
totally normalized the maximum responses per p-GSK3a
induced by insulin in high glucose conditions (Figure 7i).

Effect of antioxidant, PKCb inhibitor, and proteosome
inhibitor on RGECs

To characterize the possible role of PKC activation in RGECs,
we examined the effects of bisindolylmaleimide I
(GF109203X, GFX), a general PKC inhibitor, or RBX in
RGECs. In RGECs cultured with high level of glucose,
insulin’s activation of p-Akt was inhibited, compared with
low glucose condition (Po0.001). Addition of GFX and RBX
reversed the inhibitory effect of high glucose on p-Akt
activation by 32±2 and by 17±2%, respectively (Po0.05).
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The addition of N-acetyl-L-cystein (NAC), an antioxidant,
also partially normalized this inhibition by 30±4% (Po0.05,
Figure 8a). Similarly, inhibitions of p-eNOS and p-GSK were
also partially normalized by NAC, GFX, or RBX (Po0.05,
Figure 8b and c). Next, we tested the effect of NAC, GFX,
RBX, and proteasome inhibitor, MG132, on proteasomal
IRS1 degradation in RGECs. When the cells were incubated
with high glucose for 72 h, IRS1 protein levels in RGECs were

decreased by 30±2%. NAC, GFX, RBX, and MG132
significantly increased IRS1 proteins by 51±7, 39±3,
12±5, and 54±4%, respectively (Figure 8d). For NO
production in RGECs, insulin induced its production by
4.9±0.7-fold. When incubated with high glucose, NO release
was inhibited by 45±11% compared with low glucose
condition (Po0.001, Figure 8e). NAC, GFX, and RBX
increased NO production in RGECs exposed to high glucose
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level by 41±8, 40±7, and 23±7%, respectively (Po0.05,
Figure 8e).

DISCUSSION

This is the first comparative analysis of insulin signaling and
cellular actions between renal glomeruli and tubules in
control, insulin-resistant, and diabetic states. The results
demonstrated that the renal tubules are protected from the
loss of insulin action as a consequence of metabolic
abnormalities induced by insulin resistance or diabetes. In
contrast, insulin signaling and actions in the renal glomeruli
are significantly inhibited in a selective manner, similar to the
endothelium of all the other vascular tissues exposed to
insulin resistance and diabetes.23,24 Our findings of the
selective loss of insulin action in the glomeruli but not in the
tubules in both diabetes and insulin resistance has suggested
a biochemical explanation for the glomerular pathologies
shared by both of these pathological conditions.25,26

Resistance to insulin signaling and actions in the renal
glomeruli is also selective for the activation of the IRS1/PI3K/
Akt cascade, whereas the activation of the Erk/MAPK
pathway by insulin remained fully active. This pattern of
selective loss of insulin signaling in insulin-resistant and
diabetic states has been reported in many vascular beds, such
as in the microvessels from adipose tissues and the aorta.13,24

The diminution of eNOS activation induced by insulin
suggests the presence of glomeruli endothelial dysfunction
and is consistent with previous reports regarding decreasing
NO production in the renal cortex of ZF rats and diabetic
rodents.16,17 The loss of insulin-induced eNOS activation and
endothelial dysfunction in the glomeruli can contribute to
changes in glomerular blood flow and loss of antioxidative
and inflammatory actions of NO.12 Our results have also
shown for the first time that there is also a parallel selective
loss of insulin’s inhibitory actions on GSK3a, limited to the
glomeruli. Our data have demonstrated that this decrease in
GSK3a phosphorylation is limited to the glomeruli and is

partially related to the loss of insulin action, which is known
to inhibit GSK3a activities by increasing its phosphoryla-
tion.19 The increases in GSK3a activity in the glomeruli can
be equally important as the diminution of eNOS activation,
as GSK3a can regulate multiple critical actions in renal
cells,27,28 such as increases in oxidative stress via the
activation of NF-kB and regulation of endothelial cell29 and
podocyte apoptosis via Wnt signaling.26,30

For Erk1/2 phosphorylation, the basal levels are increased
in both diabetes and insulin resistance, which is consistent
with previous reports.24,31,32 The increase of basal p-Erk in
these pathological states is probably because of the activation
of PKC,33 which is known to increase MAPK.15 Insulin-
induced increased ratio of p-Erk in diabetic SD rats and ZF
rats are decreased because the basal p-Erk level is increased.
However, their maximal effects induced by insulin are similar
in control and diabetic mice.24

In diabetes, our results clearly suggest that hyperglycemia
can induce a decrease in the protein level of IRS1, selectively,
but not in IRS2, in parallel with the loss of insulin action. The
suggestion of enhanced degradation of IRS1 induced by
hyperglycemia is supported by the increased association of
polyubiquitination with IRS1, which was observed in both
the glomeruli of diabetic rats and RGECs exposed to high
concentrations of glucose. These findings indicate that
hyperglycemia by an unknown mechanism increases IRS1
being targeted for proteasomal degradation.

Several mechanisms, such as the activation of PKC, have
been identified to induce the selective inhibition of the IRS/
PI3K/Akt pathway of insulin in the endothelial cells.15 The
selective loss of IRS1 but not IRS2 is interesting, but has also
been reported in macrophages and adipocytes in association
with diabetes.34,35 The potential mechanism for the selective loss
of insulin’s activation of IRS/PI3K/Akt/eNOS pathways appears
to be the activation of PKC, possibly by the b-isoform. The
results indicated that hyperglycemia activated several PKC
isoforms, including b to selectively inhibit the IRS/PI3K

Figure 5 | NF-jB activation and effect of RBX, PKCb inhibitor on p-Akt, p-eNOS, and p-GSK3a in the glomeruli of diabetic SD rats and
ZF rats. (a) Representative immunoblots of NF-kB (p65) from nuclear proteins of glomerular and tubular fractions. Data from three
experiments were quantitated by densitometry; n¼ 6 in each group, **Po0.001. (b) Transcriptional binding activity assay of NF-kB in
glomerular and tubular fractions; n¼ 6 in each group, **Po0.001. (c, d) Representative immunoblots of p-Akt from glomerular fractions.
Data from three experiments were quantitated by densitometry. (c) Cont. vs Cont.þ RBX vs DM vs DMþ RBX; n¼ 6 in Cont., Cont.þ RBX,
and DM; n¼ 5 in DMþ RBX, **Po0.001 vs Cont./insulin(�)/RBX(�). ##Po0.001 vs Cont./insulin(þ )/RBX(�). wwPo0.001 vs DM/insulin(þ )/
RBX(�). (d) ZL vs ZLþ RBX vs ZF vs ZFþ RBX ; n¼ 6 in each group, **Po0.001 vs ZL/insulin(�)/RBX(�). ##Po0.001 vs ZL/ insulin(þ )/RBX(�).
wPo0.05 vs ZF/insulin(þ )/RBX(�). (e, f) Representative immunoblots of p-eNOS from glomerular fractions. Data from three experiments
were quantitated by densitometry. (e) Cont. vs Cont.þ RBX vs DM vs DMþ RBX; n¼ 6 in Cont., Cont.þ RBX, and DM; n¼ 5 in DMþ RBX,
**Po0.001 vs Cont./insulin(�)/RBX(�). ##Po0.001 vs Cont./insulin(þ )/RBX(�). wwPo0.001 vs DM/insulin(þ )/RBX(�). (f) ZL vs ZLþ RBX vs ZF
vs ZFþ RBX n¼ 6 in each group, **Po0.001 vs ZL/insulin(�)/RBX(�). ##Po0.001 vs ZL/ insulin(þ )/RBX(�). wwPo0.001 vs ZF/insulin(þ )/
RBX(�). (g, h) Representative immunoblots of p-GSK3a from glomerular fractions. Data from three experiments were quantitated by
densitometry. (g) Cont. vs Cont.þ RBX vs DM vs DMþ RBX; n¼ 6 in Cont., Cont.þ RBX, and DM; n¼ 5 in DMþ RBX, **Po0.001 vs
Cont./insulin(�)/RBX(�). ##Po0.001 vs Cont./insulin(þ )/RBX(�). wwPo0.001 vs DM/insulin(þ )/RBX(�). (h) ZL vs ZLþ RBX vs ZF vs ZFþ RBX;
n¼ 6 in each group, **Po0.001 vs ZL/insulin(�)/RBX(�). ##Po0.001 vs ZL/ insulin(þ )/RBX(�). wwPo0.001 vs ZF/insulin(þ )/RBX(�).
These data are expressed as means±s.d. Cont., control rats; Cont.þ RBX, control rats treated with ruboxistaurin; DM, STZ-induced diabetic rats;
DMþ RBX, STZ-induced diabetic rats treated with ruboxistaurin; G, glomeruli; NF-kB, nuclear factor-kB; NS, not significant; PCNA, proliferating
cell nuclear antigen; p-eNOS, phosphorylated endothelial nitric oxide synthase; p-GSKa, phosphorylated glycogen synthase kinase 3a;
PKCb, protein kinase C-b; T, tubules; ZF, Zucker fatty rats; ZFþ RBX, Zucker fatty rats treated with ruboxistaurin; ZL, Zucker lean rats;
ZLþ RBX, Zucker lean rats treated with ruboxistaurin.
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Figure 6 | Effect of RBX on IRS1 and NO synthesis in the glomeruli of diabetic Sprague-Dawley (SD) rats and ZF rats.
(a, b) Representative immunoblots of tyrosine phosphorylation of IRS1 from glomerular and tubular fractions. Solubilized glomeruli and tubular
fractions were isolated and subjected to immunoprecipitation followed by immunoblotting. Data from three experiments were quantitated by
densitometry. (a) Cont. vs Cont.þ RBX vs DM vs DMþ RBX; n¼ 6 in Cont., Cont.þ RBX, and DM; n¼ 5 in DMþ RBX, **Po0.001 vs Cont./
insulin(�)/RBX(�). ##Po0.001 vs Cont./insulin(þ )/RBX(�). wwPo0.001 vs DM/insulin(þ )/RBX(�). zPo0.001 vs DM/insulin(�)/RBX(�). (b) ZL vs
ZLþ RBX vs ZF vs ZFþ RBX ; n¼ 6 in each group, **Po0.001 vs ZL/insulin(�)/RBX(�). ##Po0.001 vs ZL/ insulin(þ )/RBX(�). wwPo0.001 vs ZF/
insulin(þ )/RBX(�). (c) Solubilized glomeruli fractions were immunoprecipitated with antibodies against ubiquitin and subsequently
immunoblotted with anti-IRS1 antibodies. Data from three experiments were quantitated by densitometry; n¼ 6 in Cont., Cont.þ RBX, and DM;
n¼ 5 in DMþ RBX, **Po0.001 vs Cont./RBX(�), wwPo0.001 vs DM/RBX(�). (d, e) The effect of RBX on NO synthesis in the glomeruli of diabetic SD
rats and ZF rats. Isolated glomeruli from each group were incubated with insulin (100 nM for 30 min). After being homogenized and centrifuged,
supernatants were collected. NO levels in the supernatant were measured with the Nitric Oxide Colorimeric Assay Kit. The results were derived
from three separate experiments. (d) **Po0.001 vs Cont./insulin(�)/RBX(�). ##Po0.001 vs Cont./insulin(þ )/RBX(�). wPo0.05 vs DM/insulin(þ )/
RBX(�). (e) **Po0.001 vs ZL/insulin(�)/RBX(�). ##Po0.001 vs ZL/insulin(þ )/RBX(�). wPo0.05 vs ZF/insulin(þ )/RBX(�). These data are expressed
as means±s.d. Cont., control rats; Cont.þ RBX, control rats treated with ruboxistaurin; DM, STZ-induced diabetic rats; DMþ RBX, STZ-induced
diabetic rats treated with ruboxistaurin; IRS1, insulin receptor substrate-1; NO, nitric oxide; ZF, Zucker fatty rats; ZFþ RBX, Zucker fatty rats treated
with ruboxistaurin; ZL, Zucker lean rats; ZLþ RBX, Zucker lean rats treated with ruboxistaurin.
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pathway, resulting in the loss of eNOS and GSK3a actions. The
target of PKC activation could be IRS1, which has been reported
to be phosphorylated by PMA in nonvascular cells.36 The
finding that the inhibition of PKCb can improve glomerular
endothelial function and insulin actions is consistent with
previous reports of RBX being able to improve endothelial
dysfunction in diabetes and insulin-resistant states.13,15

Like diabetes, insulin resistance can also induce the
selective loss of insulin action through the IRS/PI3K/Akt

pathway.37 However, the mechanism of this selective loss of
insulin action in the glomeruli by insulin resistance appears
to be different from diabetes, as no decreases in IRS1 protein
or mRNA were found. This lack of change of IRS1 protein in
the glomeruli and endothelial cells is consistent with other
vascular beds that exhibit endothelial dysfunction.15,36,38

In obesity, free fatty acid is known to be elevated and can
activate PKC.39 Our results indicate that abnormal metabolic
factors, such as hyperglycemia and free fatty acids, can induce
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Figure 7 | Effect of glucose levels on the association of insulin receptor substrate (IRS)1/2 with ubiquitin and glucose levels on the
activation of Akt, endothelial nitric oxide synthase (eNOS), extracellular signal-regulated kinase (Erk)1/2, and overexpression of IRS1 in
rat glomerular endothelial cells (RGECs). (a) Time course for the effect of high glucose levels on mRNA gene expression for IRS1 and IRS2 as
measured by real-time reverse transcriptase-PCR (RT-PCR). RGECs were incubated with low glucose (5.5 mmol/l) or high glucose (20 mmol/l) as
indicated. One of three independent experiments is shown. (b) Time course for the effect of high glucose levels on the protein expression of IRS1
and IRS2. RGECs were incubated with low glucose (5.5 mmol/l) or high glucose (20 mmol/l) as indicated. Data from three experiments were
quantitated by densitometry. *Po0.05, **Po0.001. (c) Immunoprecipitation with antibodies against ubiquitin and subsequent immunoblotting
analyses of the precipitate with anti-IRS1 or anti-IRS2 antibodies showed increased amounts of polyubiquinated IRS1 in high glucose condition.
Data from three experiments were quantitated by densitometry. **Po0.001. (d–f) Time course of phosphorylation of (d) Akt, (e) eNOS, and
(f) Erk1/2 by insulin. RGECs were incubated with 100 nmol/l insulin for the indicated time. One of three independent experiments is shown.
**Po0.001, wwPo0.001, zzPo0.001 vs 0 min. (g–i) Effect of IRS1 overexpression on RGECs on insulin-stimulated (g) p-Akt, (h) phosphorylated eNOS
(p-eNOS), and (i) phosphorylated glycogen synthase kinase 3a (p-GSK3a). After RGECs were infected with Ad-green fluorescent protein (GFP) or
with Ad-IRS1, cells were stimulated with insulin (100 nmol/l, 30 min) as indicated in low glucose (5.5 mmol/l) or high glucose (20 mmol/l). One of
three independent experiments is shown. *Po0.05, **Po0.001. These data are expressed as means±s.d.
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Figure 8 | Effect of NAC, GFX, RBX, and proteasome inhibitor on insulin signaling and degradation of insulin receptor substrate-1
(IRS1) in rat glomerular endothelial cells (RGECs). (a–c) After 48 h of exposure to low glucose (5.5 mmol/l) or high glucose (20 mmol/l),
RGECs were stimulated with insulin (100 nmol/l, 30 min) with or without an antioxidant, N-acetyl-L-cystein (NAC, 10 mmol/l), or a protein
kinase C (PKC)-specific inhibitor, GF109203X (GFX, 5 mM), or PKCb-specific inhibitor, LY333531 (RBX, 20 nM). One of three independent
experiments is shown. **Po0.001 vs low/insulin(�)/NAC(�)/GFX(�)/RBX(�). ##Po0.001 vs Low/insulin(þ )/NAC(�)/GFX(�)/RBX(�).
wPo0.05 vs High/insulin(þ )/NAC(�)/GFX(�)/RBX(�). zPo0.05 vs High/insulin(þ )/NAC(�)/GFX(�)/RBX(�). zPo0.05 vs High/insulin(þ )/
NAC(�)/GFX(�)/RBX(�). (a) P-Akt, (b) phosphorylated endothelial nitric oxide synthase (p-eNOS), and (c) phosphorylated glycogen synthase
kinase 3a (p-GSK3a). (d) RGECs were cultured in low glucose (5.5 mmol/l) or high glucose (20 mmol/l) media for 72 h with or without
NAC (10 mmol/l), GFX (5mM), RBX (20 nM), or proteasome inhibitor, MG132 (25mM). One of three independent experiments is shown. ##Po0.001
vs 0 h/High/NAC(�)/GFX(�)/RBX(�)/MG132(�). wPo0.001 vs 72 h/High/NAC(�)/GFX(�)/RBX(�)/MG132(�). zPo0.001 vs 72 h/High/NAC(�)/
GFX(�)/RBX(�)/MG132(�). zPo0.001 vs 72 h/High/NAC(�)/GFX(�)/RBX(�)/MG132(�). yPo0.001 vs 72 h/High/NAC(�)/GFX(�)/RBX(�)/
MG132(�). (e) After 48 h of exposure to low glucose (5.5 mmol/l) or high glucose (20 mmol/l), RGECs were stimulated with insulin (100 nmol/
l, 30 min) with or without NAC (10 mmol/l), GFX (5 mM), or RBX (20 nM). Nitric oxide (NO) levels in the culture media were measured with the
Nitric Oxide Colorimeric Assay Kit. **Po0.001 vs Low/insulin(�)/NAC(�)/GFX(�)/RBX(�). ##Po0.001 vs Low/insulin(þ )/NAC(�)/GFX(�)/
RBX(�). wPo0.05 vs High/insulin(þ )/NAC(�)/GFX(�)/RBX(�). zPo0.05 vs High/insulin(þ )/NAC(�)/GFX(�)/RBX(�). zPo0.05 vs High/
insulin(þ )/NAC(�)/GFX(�)/RBX(�). These data are expressed as means±s.d.
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selective insulin resistance in the renal glomeruli, probably
because of different mechanisms between diabetes and
obesity. The pathophysiological significance of the findings
suggests that glomerular endothelial dysfunction alone will
not cause glomerulopathy as observed in diabetes. This is
reflected by the lack of significant pathologies in the renal
glomeruli in the ZF insulin-resistant rats and the reduced
level of nephropathy in obese and insulin-resistant popula-
tion without diabetes. However, the contribution of glomer-
ular endothelial dysfunction may contribute significantly to
the initiation and progression of glomerular lesions in
diabetes when it is combined with abnormalities in the
mesangial cells and podocytes.

In summary, these observations have identified glomeruli
as the site of insulin resistance in diabetic, obese, and other
insulin-resistant states. Furthermore, these findings suggest
that increasing IRS1 levels or inhibiting PKCb action as a
possible therapeutic target could prevent or improve renal
function in diabetic and insulin-resistant states.

MATERIALS AND METHODS
Animal studies
All protocols for animal use were approved by the animal care
committee of the Joslin Diabetes Center and were in accordance
with the National Institutes of Health guidelines. We used age-
matched male SD (Harlan, Indianapolis, IN) and ZF rats and their
lean matched controls, ZL rats. Diabetes was induced in 6-week-old
SD rats by a single intravenous injection of STZ (55 mg/kg body
weight; Sigma, St Louis, MO) in 0.05 mol/l citrate buffer (pH 4.5) or
citrate buffer for controls. Blood glucose levels, determined 2 days
after the injections by glucose analyzer (Yellow Spring Instruments,
Yellow Springs, OH) and levels 416.7 mmol/l, were defined as
having diabetes. The rats were randomly divided into eight groups:
Control, Control with the PKCb-selective inhibitor RBX (LY333531)
(Lilly, Indianapolis, IN) treatment, STZ-induced diabetic (DM),
DM with RBX treatment, ZL, ZL with RBX treatment, ZF, and
ZF with RBX treatment. RBX was given orally using mixed chow
(5 mg/kg body weight per day) from the age of 7–14 weeks. Rats
were anesthetized with 100 mg/kg of sodium pentobarbital injected
introperitoneally 8 weeks after diabetes or at 14 weeks of age for ZF
and ZL. Regular human insulin (10 mU/g; Lilly) or diluents were
injected into the inferior vena cava for studying insulin signaling
and action. After 10 min of injection, kidneys were harvested and all
the procedures were performed within 30 min.

Cell culture
Glomeruli were isolated from the kidneys of SD rats at 6 weeks of
age under sterile conditions. The digested glomeruli were filtered
through a 100 mm cell strainer (BD Biosciences, San Jose, CA) twice.
After centrifugation, the cells were mixed with sheep anti-rat IgG
beads (Invitrogen, Carlsbad, CA) coated with anti-ICAM2 antibody
or with streptavidin-coupled beads (Invitrogen) with biotin
anti-CD31 (BD Biosciences) at the antibody concentration of 3 mg
for 1� 107 beads in 1 ml Dulbecco’s modified Eagle’s medium
containing 0.1% bovine serum albumin. After 1 h, RGECs were
isolated using a MPC-50 magnet (Dynal, Hamburg, Germany).40

The cells were cultured in 10 cm dishes precoated with rat collagen I
(5 mg/cm2; BD Biosciences) at 37 1C in a humidified 5% CO2

atmosphere. On days 5–7 after seeding, outgrowths of individual

glomeruli were detached by trypsin-EDTA (Invitrogen) and were
washed with Dulbecco’s modified Eagle’s medium and subsequently
treated with 0.1% collagenase type I (Worthington, Lakewood, NJ)
in Dulbecco’s modified Eagle’s medium containing 0.1% bovine
serum albumin at 37 1C for 1 h. Endothelial cell purity 490% was
assessed by immunofluorescence staining with CD31.

Real-time PCR analysis
IRS1/2 mRNA were assayed by real-time PCR and normalized to 18S
rRNA as described previously41 (Table 2).

Data analysis
The data are expressed as mean±s.d. Comparison among more
than two groups was performed by one-way analysis of variance
followed by the post hoc analysis with paired or unpaired t-test to
evaluate statistical significance between the two groups. Statistical
significance was defined as Po0.05.

Additional methodology
Reagents; measurement of urinary albumin; isolation of glomeruli
and tubules; mesangial cell, podocyte, and RPTEC culture;
adenoviral vector infection; immunoblot analysis; quantification of
NO; NF-kB activation; and immunohistochemistry are described in
the Supplementary Methods online.
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