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On the Relationships between Scott 
Domains, Synchronization Trees, 

and Metric Spaces 
WILLIAM C .  ROUNDS*  

Department of Electrical Engineering and Computer Science, 
University of Michigan, Ann Arbor, Michigan 48109 

We use Scott's idea of information systems to provide a complete partial order 
semantics for concurrency involving Milner's synchronization tree model. Several 
connections are investigated between different models; our principal technique in 
establishing these connections is the use of compact metric space methods. © 1985 
Academic Press, Inc. 

1. INTRODUCTION 

Scott's theory of information systems (Scott, 1982) is intended to provide 
an easy way to define partial order structures (domains) for denotational 
semantics. This paper illustrates the new method by considering a simple 
modal logic, due to Hennessy and Milner (1980), as an example of an 
information system. The models of formulas in this logic are the rigid syn- 
chronization trees of Milner (1980). We characterize the domain defined by 
the Hennessy-Milner information system as the complete partial order of 
synchronization forests: nonempty closed sets of synchronization trees. 
"Closed" means closed with respect to a natural metric distance on syn- 
chronization trees, first defined by de Bakker and Zucker (1982) and 
characterized by Golson and Rounds (1983). 

After notational preliminaries and background results, Section 3 treats 
the Hennessy-Milner information system. The background results 
(Brookes and Rounds, 1983; Golson and Rounds, 1983) are used as lem- 
mas in the characterization of the partial order. Section 4 then shows how 
to use metric space methods to extend certain natural tree operations to 
forests. These operations become continuous in the partial order sense 
when so extended, and therefore can be used to provide a denotational 
semantics for concurrency which allows the full power of least fixed point 
methods for recursion (Sect. 5). 
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From the results in this paper, we conclude that the information system 
approach to denotational semantics shows real promise. We began by 
investigating the Hennessy-Milner information system as a way to con- 
struct complete partial orders involving synchronization trees. The out- 
come was a surprisingly natural construction of such an order, which we 
might not have found without using the tool. 

2. NOTATION AND PREVIOUS WORK 

DEFINITION 2.1. Let _r be a finite alphabet. A ,E-tree is a tree graph on 
a nonempty finite or countable set of nodes, with arc labels from _r. No 
ordering on the arcs leaving a node is presumed, and more than one arc 
may have the same label. Nodes are unlabeled, although leaf nodes are 
considered to be the one-node tree nil. 

Z-trees are the rigid synchronization trees of Milner (1980). They corre- 
spond to "unfoldings" of state graphs for nondeterministic transition 
systems. Milner develops an algebraic system based on these trees and their 
generalizations, suitable for a semantics for communicating systems. Our 
purpose here is to show a way of associating a Scott order structure 
(domain) with _r-trees. First we need to recall some definitions. 

Notation. Suppose t is the _r-tree represented by 

t I tn 

We then write t=Y,  aiti. The same notation will suffice for a tree with 
countably many arcs from the root and other nodes. For  each a e Z  we 
define the binary transition relation ~ a  on the set Tz of all Z-trees by 
t~au  iff t = Z  ait~ for some i, and u = t ,  

DEFINITION 2.2 (Weak observational equivalence). Let a series Wk 
(k ~> 0) of equivalence relations on Tz be given as follows: 

t Wo u always; 

and vice versa. The weak observational equivalence W on Tz is given by 

t Wu~(Vk>~O)(t W~u). 
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EXAMPLES. Let Z =  {a, b, c}. Using the obvious notation, we have 

a b + a ( b + b )  Wab; 

a( b + c ) --7 I412 ab + ac. 

Hennessy-Milner logic (HML) appeared in (Hennessy and Milner, 
1980) as a language for describing synchronization trees or transition 
systems. 

DEFINITION 2.3. HML is the least class of formulas containing the 
Boolean constants tt and ff ,  and closed under the Boolean connectives A, 
v,  7 ,  and under the application of the (unary) modal operators ( a )  for 
each a e Z. 

EXAMPLES. ( a ) ( ( b )  tt ^ ( c )  tt), 7 ( a ) ( ( b )  tt v ( c )  tt). 

DEFINITION 2.4 (Semantics of HML). We define the binary relation 
between Tz and HML to be the smallest relation such that 

1. t e T z ~ t ~ O = t t ;  

2. t ~ b  and t~O=, t~q} /x  O; 

3. t ~ b  or t~O=*, t~O v O; 

4. not ( t ~ b ) ~ t ~ 7 ~ b ;  

5. (3u)(t ~a  U /X u ~ O ) ~ t ~ ( a )  O. 

This definition is read "t satisfies qt" or "t is a tree model of ~b." 

EXAMPLES. a ( b + c ) ~ O =  ( a ) ( ( b )  tt /x ( c )  tt); ab+ac~-70 .  

DEFINITION 2.5. The modal rank r(~) of a formula ~ e HML is defined 
inductively: 

1. r(tt)= r(f f)--O; 

2. r(~b v 0)= r(ff/x 0)= max(r(q~), r(0)); 

3. r(70)=r(O);  

4. r ( ( a )  O)=l+r(O).  

Let HMLk= {~eHMLlr(~)~<k}. 

DEFINITION 2.6. Define the equivalences Ek and E on Tz by 

t Ek u¢*- (¥~b e HMLk)(t~(~,~u~q~) 
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and 

t Eucz , (Vk)( t  Ek u). 

Finally we have the notion of logical equivalence. 

DEFINITION 2.7. 0 is logically equivalent to ~b iff Vt(t~Oc:,t~(~).  

The proofs of the following facts can be found in (Brookes and Rounds, 
1983; Golson and Rounds, 1983). Note that _r is finite. 

LEMMA 2.1. For all t, u ~ Tr,  and k >~ 0, t Wk u ¢:- t Ek u. 

As a corollary, W= E. 

LEMMA 2.2. Among the formulas of  HML~,  there are only finitely many 
logically distinct ones. 

LEMMA 2.3 (Master formula theorem for HML).  For each S-tree t and 
each k >~ 0 there is a formula (~(k, t) in H M L  k such that 

1. t ~ ( k ,  t); 
2. for all u, i f  u~(~(k, t) then u Wg t. 

LEMMA 2.4 (Compactness theorem for HML). Let F _ H M L .  I f  every 
finite subset of  F has a tree model, then so does F. 

Let Mod(F)  be the set of tree models of F; that is, 

M o d ( F )  = { t l (V~ e I3(t~ (~)}. 

The compactness theorem states that if for all finite F _  F, Mod(F):A ~ ,  
then M o d ( F ) ¢ ~ .  We note that Lemma 2.4 holds even for infinite Z'. 
Finally, we recall some facts aboput the Golson metric dw on Tz. 

DEFINITION 2.8. dw(t, u) =inf{2-n[  t Wn u}. 

This distance is actually a pseudo-metric because two trees may have 
distance zero without being identical. Clearly it is a metric on the set of 
W-equivalence classes. 

DEFINITION 2.9. The k-section t k of a tree t is defined to be the set of 
nodes at distance k from the root (counting number of arcs) and including 
the relevant arcs. The 0-section is then just the one-node root. 

LEMMA 2.5. t Wk uc~ t k W u ~. 

LEMMA 2.6. dw(t k, t) ~ 0 as k ~ ~ .  
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LEMMA 2.7. (Tz /W ,  dw) is a compact metric space. 

Recall that a compact space is one where every covering by open sets has 
a finite subcovering. For  a metric space it is equivalent to saying that every 
infinite sequence has a convergent subsequence. 

3. INFORMATION SYSTEMS AND HENNESSY-MILNER LOGIC 

First we recall the general definition of information systems from Scott 
(1982). 

DEFINITION 3.1. An information system is a structure (D, ~o, Con, F- ), 
where D is a set of "propositions," ~0~D is the least informative 
proposition, Con is a collection of finite subsets of D (the finite consistent 
sets), and ~ is the entailment relation, a subset of Con × D. The following 
axioms hold: 

1. F 6 C o n  and z l _ _ _ F ~ d 6 C o n ;  

2. {~} 6Con  for all ~ 6 D ;  

3. F ~ - ~  and F6Con=:.Fw{~}ECon;  

4. F E C o n = : , F ~  q~0; 

5. F 6 C o n  and q ~ F ~ F ~  qb; 

6. I f A ~ - 0 a n d F ~ f o r  a l l ~ z J  t h e n F ~ - 0 .  

An information system is a way of giving "facts," expressed in D, about 
abstract structures. The more "facts" we know, the more "well defined" the 
structure becomes. The set of propositions D allows us to express this idea 
(partial information about a structure) using just the subsets of D. 

DEFINITION 3.2. The ideal elements defined by the information system D 
are those subsets F of D satisfying 

1. F is consistent: Every finite subset of F is a member of Con; 

2. F is deductively closed: A ~_ F, zl ~ Con, and zl ~- 0 ~ 0 6 F. 

An ideal element F is total iff it is maximal respect to the inclusion order- 
ing on the collection I D of ideal elements of D, and is partial otherwise. 

LEMMA 3.1. The ideal elements ID of an information system D form a 
complete partial order (cpo) under ordinary inclusion. 

For our purposes, all we need to know about complete partial orders is 
that every chain Fi has a supremum I IF  i. In our case the union of the Fi 
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sets is the obvious supremum. It can be shown that the cpo's defined by 
information systems are exactly the consistently complete, algebraic cpo's. 
See (Scott, 1982) for details. 

H M L  provides a natural example of an information system describing 
"partial" S-trees. It turns out (Theorem 3.1) that a partial tree is represen- 
ted as a set of trees. 

DEFINITION 3.3. The H M L  information system is given by: 

1. D =  {~bsHML[(3 t ) ( t~b)} ;  

2. C o n =  {A___HML[A is finite and M o d ( A ) ¢ ~ } ;  

3. (Jo = tt; 

4. A ~ O , ~ ( V t ) [ ( V ~ E d ( t ~ ) ) = ~ t ~ O ] .  

Part (4) can be rephrased: if d = {0~ ..... 0,} then 01/x .. .  /x 0, ~ 0 is valid. 

We want to characterize the abstract cpo (IHML, ----- ) in terms of Z- 
trees. To do this we need two simple definitions. 

DEFINITION 3.4. Let E be an equivalence relation on Tz. A set K_c Tz 
is E-closed iff u 6 K and t E u implies t ~ K. 

DEFINITION 3.5. K _  T r is metric-closed iff ti ~ K and dw(ti, t) ~ 0 imply 
t W [ for some t-e K. 

Let Pc(Tz)  be the collection of all nonempty W-closed, metric-closed 
subsets of Ts. (The elements of this collection will be called X-forests.) 

THEOREM 3.1. ( /HML, ----- ) is isomorphic as a cpo to (Pc(Tz) ,  ~_ ). 

Proof Consider the map F ~  Mod(F)  from IHML to the collection of 
subsets of Ts. We verify that this map is the required isomorphism: 

(i) F G F ' ~ M o d ( F ) ~ _ M o d ( F ' ) .  The =~ direction is trivial. Con- 
sider the reverse implication. Suppose that Mod(F)~_Mod(F ' )  and let 
0 s F. By Definition 3.2.2, we need only find a finite d c F'  such that ~ ~ 0. 
Assume not: for every finite d _ F', we have --7 (d ~ 0). Then for each such 
d we have that A w {-70} has a tree model. Thus every finite subset of 
F'  w { -10 } has a tree model, and by compactness (Lemma 2.4) F'  w { --10 } 
has a tree model. If t is such a model, then by hypothesis t s Mod(F).  But 
O~F, and we conclude that t~O and t~--qO, a contradiction. This 
proves (i). 

(ii) Mod(F)  is metrically closed and W-closed. Certainly Mod(F)  is 
W-closed by the corollary to Lemma2.1. Let dw(tn, t)-+O where tn~ 
Mod(F).  Suppose that t is not W-equivalent to any u ~ Mod(F).  Then there 
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is some OeF such that tD70 .  Let p be the modal rank of -70. Choose n 
such that dw(tn, t ) < 2  -p. Then tnWpt, so by Lemma 2.1, tnEpt. But t ,~O 
and t~-70,  a contradiction. 

If K is metrically closed and W-closed, then for some F, K =  (iii) 
Mod(F). 

Let 

F =  {01 (Vt ~ K)(tDO)}. 

It is easy to check that F is consistent and deductively closed. Certainly 
K ~  Mod(F) by definition. We assert Mod(F)_~K. To show this we let 
t~Mod(F)  and construct a sequence (sn)  such that s, ,eK and 
dw(s,, t) ~ O. 

Fix n ~> 0. For each s e K let ~b(n, s) be the master formula in HMLn 
satisfied by s (Lemma 2.3.) By Lemma 2.2 there are only a finite number of 
logically inequivalent ~b(n, s) as s ranges over K. 

Let ~b, = Vs~k ~b(n, s). This is a finite disjunction, and for all s e K, S~n, 
so ~bn e F. Since t s Mod(F), we have t ~ b  n. By definition of ~bn, there is an 
Sn e K such that tD(~(n, Sn). The sn form the required sequence, since by 2.3 
t IV, sn and by 2.6 and 2.7, d(t, s,) ~ O. This proves (iii). 

Now (i) shows that the map F ~ M o d ( F )  is one-to-one and order- 
preserving, and (ii) and (iii) show that it is onto Pc(Tz). This completes the 
proof of the theorem. 

COROLLARY. The maximal elements of ( Pc( Tz), ~_ ) are the equivalence 
classes of single S-trees; the bottom element is the set Tr itself. 

It is an instructive exercise to show this corollary directly from the 
definition of (Ir~ML, - - ) .  

4. FORESTS AND OPERATIONS ON FORESTS 

DEFINITION 4.1. A S-forest is a metrically closed, W-closed subset 
of T z. 

We recall the notion of Hausdorff distance between closed subsets of a 
metric space. 

DEFINITION 4.2. Let (X, d )  be a metric space, and Y, Z closed subsets 
of X. 

dtt(Y, Z ) = m a x  fsup (d(y, Z)), sup (d(z, Y))t 
Ly~ Y z~Z J 
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where 

d(y, Z ) =  inf (d(y, z)). 
zEZ 

Intuitively, dH( Y, Z) is the maximum distance any point in Y must travel 
to enter Z, and vice versa. 

We would like to characterize dH when d is the Golson metric dw. To do 
this we extend the W~ and W relations to forests in the expected way. 

DEFINITION 4.3. Let H and H' be forests: 

1. H Wk H',**- (Vt ~ H)(qt'  ~ H')( t  Wk t') and conversely; 

2. H W H',*~ (Vt c H)(3t' ~ H')( t  W t') and conversely. 

LEMMA 4.1. H = H ' , * ~ H  W H '  *~(Vk)(H W~H').  

Proof The (=*,) directions are trivial. Let H WkH'  for each k. If t e l l ,  
then for each k there is a t k e H '  such that t W ktk. Thus dw(t~, t ) ~ O ,  
which implies t e H' because H' is a forest. Similarly H ' ~  H, completing 
the proof. 

LEMMA 4.2. H Wk H 'k, where H k = { tkl t ~ H )  and t k is the k-section of  t 
(Definition 2.9). 

Proof Routine. 

DEFINITION 4.4 (Golson metric on forests). 

dw(H, H') = inf{2-" I H IV. H' }. 

LEMMA 4.3. d w is a metric on forests. 

THEOREM 4.1. dw = d . .  

Proof (i). dn<~ dw. Let j be the largest integer k such that H Wk H' 
(possibly j = oe ). Then dw(H, H') = 2 J: 

(Vt 6 H)(3t' ~ n')(dw(t,  t') ~ 2-J)  

=*, (Vt~ n)(dw(t,  n ' )  ~ 2 - j )  

sup dw(t, H')  ~ 2 -L  
t ~ H  

Similarly 

sup dw( t', H) <. 2 - j 
t ' ~ H  

and the inequality holds, 
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(ii). dw <~ dH Again let dw(H, H') = 2 - j  with j as above. If j = oo 
there is nothing t~ show. Therefore j <  oo and not H Ws+IH'. This implies 

(St ~ H)(Vt' ~ H')(dw(t, t') > 2-/J+ 1)) 

or the same assertion with the roles of H and H' reversed. In the first case, 
which can be assumed without loss of generality, we have 

(q t6n) (v t ' eH' ) (d~( t ,  t')~>2 J) 

because d~ takes only discrete values. Therefore 

inf (de(t, t')) = dw(t, n ' )  >>. 2 -s 
t '  ~ H '  

and so 
sup (dw(t, H')) ~ 2 - i  
t ~ H  

and the inequality follows as in (i). This completes the proof of the 
theorem. 

The space Tz of trees admits a number of operations suitable for defin- 
ing semantics for concurrency, deBakker and Zucker, in particular, con- 
sider the operations of " sum"~o in ing  trees at the root; "shuffle"--in- 
terleaving trees nondeterministically; and "composition"--grafting one tree 
to terminating nodes of another. They prove these operations to be con- 
tinuous in the metric topology of Tz. We would like to extend these 
operations to forests in a manner analogous to extending string-valued 
functions to languages. There is a standard general theorem (Kuratowski, 
1966, p. 414) which allows this in any compact metric space. We present 
this theorem, and extend it to show that it characterizes continuity of the 
direct image mapping on forests with respect to the Hausdorff metric. 

In what follows, X is a compact metric space, and H and K are closed 
(hence compact) nonempty subsets of)(. 

LEMMA 4.4. I f  H, K ~ X, then there & a ko ~ K such that d(K, H)=  
d(ko, H). Also, for any k ~ K, there is an ho c H such that d(k, H) = d(k, ho). 

Proof Standard, using the property that infinite sequences in compact 
metric spaces have convergent subsequences. 

LEMMA 4.5. Let (Hi> be a decreasing chain of nonempty closed subsets 
of X and let hi6 Kifor each i. Then there is an hoe ~iHi and a subsequence 
< ho> ~ ho. 

Proof Again standard. 
Finally, we need a lemma on Hausdorff distances. 
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LEMMA 4.6. Let Hi be a decreasing chain of nonempty closed subsets of 
X, and H= OiHi . Then d(H i, H) --* O. 

Proof We show suph~Hi(d(h, H))--,O, from which the result follows. 
By Lemma 4.4, choose hie H such that suph~H~(d(h, H)) = d(h~, H). By 
Lemma 4.5 the hi have a convergent subsequence hij--* hoEH. Now let 
e > 0. Choose ik such that d(h~k, ho) < e. Then for any j ~> ik, 

But 

sup (d(h, H))<~ sup (d(h, H))= d(hik, H). 
h e H j  h e H i  k 

d(hik, H) <~ d(hik, ho) < 

which completes the proof. 

DEFINmON 4.5. Let f :  X--* Y. The direct image function is the map 
f [ . ] :  2 x ~ 2 r given by fEK] = { f (k)[k  ~ K}. 

THEOREM 4.2. Let f be a function from a compact metric space X to a 
metric space I7. The following are equivalent: 

1. f is continuous; 

2. fEH] is closed for all closed H, and fEN~H~] = OifEH~] for all 
decreasing chains Hi of closed nonempty subsets of X; 

3. f [ ' ]  is continuous in the Hausdorff metric. 

Proof We show ( 1 ) ~ ( 3 ) ~ ( 2 ) ~ ( 1 ) .  Note: ( 1 ) ~ ( 2 ) i s  the standard 
result from [K]. 

(1) =~(3). Let e>0 .  We find a h such that 

VH, H' :d(H, H')<f=>d(fEH], f[H'])<~e 

(i.e., f [ ' ]  is uniformly continuous.) Since X is compact and (1) holds, we 
know by a standard result that f is already uniformly continuous. 
Therefore, choose ~ such that 

Vh, h'(d(h, h') < 6 ~ d(f(h), f(h')) < 5. 

Assume that d(H, H') < 6: 

643/66/1 2-2 
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sup (d(h, H')) < 
h e H  

(Vh e g)(d(h, H') < 6) 

~ ( V h e H ) [  inf d(h,h')<6] 
h' ~ H '  

(Vh ¢ H)(3h' e H')(d(h, h') < ~) 

(Vh e H)(3h' e H')(d(f(h ), f(h')  ) < e) 

(Vh ~ H)[  inf d(f(h), f(h')) < e] 
h' ~ H '  

sup (d(f(h), f [ H ' ] ) )  ~< e. 
h E H  

(by 4.4) 

(by uniform continuity) 

Similarly 

sup (d(f[H],  f(h')) <~ e 
h ' ~ H '  

and (3) follows. 
(3) ~ (2). Let Hi be a decreasing sequence of nonempty closed subsets 

of X and let H =  niHi. Then by Lemma 4.6, d(H i, H) --* 0 as i ~  oo. By (3), 
d(f[Hi],  f [ H ] ) - - .  0. But f [H i ]  is again a decreasing sequence of closed 
sets, so d(f[Hi],  ( -b f [h i ] ) - .0  by Lemma4.6. This proves (2) because 
limits are unique. 

(2)~(1) .  Let d(tn, t)--*O. We must prove using (2) that 
d(f(t,), f(t)) ~ O. Define for k ~> 0, 

Sk = {uld(t, u)~ 1/(k+ 1)}. 

The sets Sk form a decreasing sequence of nonempty closed sets, and 
0~S~ = {t}. By (2) we have 

k 

Again by Lemma 4.6, s incef[Sk] decrease, d(f[Sk],  0kf [Sk ] )  ~ 0. Now 
let e > 0. Choose K such that 
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Then since t, ---, t, there is an NK such that for all n ~> NK, we have t, E SK 
and f ( t , )  ef[SK]. Thus for n >I NK, 

d(f(tn), f(t))=d(f(tn), f[{t}])=d(f(tn, ~ f[SK])) 

and by the above, this last quantity is less than e. This completes the proof 
of Theorem 4.2. 

In order to apply the results of Theorem 4.2 we present several tree 
operations. These can be used to define the semantics of appropriate com- 
binations of processes, as in (de Bakker and Zucker, 1982). We call on the 
lemmas of ibid., in fact, to establish that certain operations are metrically 
continuous. Theorem 4.2 then applies to show that the extensions to forests 
are sup-continuous, i.e., satisfy the condition of Theorem 4.2.2. We first 
define the operations for finite trees, and then extend them to infinite trees 
using the Cauchy limit technique from ibid. 

DEFINITION 4.6 (Alternative choice). Let s and t be trees. Then s + t is 
the result of joining s and t at the root. 

DEFINITION 4.7 (A-synchronized shuffle). Suppose A ___X. We want a 
tree operation which matches two trees (glues them together) at events in A 
and interleaves events outside A. The appropriate definition is inductive. 
Define 

n i l  II ~ s = s II ~ n i l  = s;  

Z aisill~ Z b j t j=u  + v + w 

where 

u = Z ai(sill~ tj); 
a i=  bj ~ ,d 

a i ~ A  

bjCa 

For  the purposes of the next definition, we change the definition of trees. 
(We did not do this at the beginning of the paper because it would have 
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complicated the simple intuition of a tree graph.) We would like to model 
two kinds of stopped processes: one which can continue because it has 
sucessfully terminated, and one which cannot because it has failed. We will 
use nil to model the second kind, and we introduce a new kind of leaf node 
or nullary tree called skip to model the first kind. We declare nil  a n d  sk ip  
to be Wo-inequivalent, and we introduce new propositional constants 
FAILED and D O N E  into HML,  and extend the definition of satisfaction 
so that 

t ~  FAILED ¢:> t = nil 

t D D O N E  ~=> t = skip. 

One can check that the lemmas of Section 2 still hold. We also need to 
modify the previous two definitions slightly. For  alternative choice we put 
nil + sk ip  = sk ip ,  and we add another base clause to the definition of syn- 
chronized shuffle with sk ip  r e p l a c i n g  nil in the existing clause. 

DEFINITION 4.8 (Sequential 
inductive for finite trees: 

composition). Again the definition is 

nil o t = nil 

sk ip  o t = t; 

DEFINITION 4.9 (Renaming). We wish to rename events so that, for 
example, they are removed from the synchronization alphabet. This is done 
by letting h be a map from Z to Z. Define 

h(n i l )  = nil; 

h ( s k i p )  = skip;  

h (~ aisi)= ~ h(ai) h(si). 
Now we extend these definitions to infinite trees. The definition of alter- 

native choice needs no change. For  the others, we take Cauchy limits as in 
(de Bakker and Zucker, 1982): 

s [I ~ t = lim s k II ~ tk; 
k ~ o o  

s o t = lira s k o t; 
k ~ o o  

h ( t ) =  lim h(tk). 
k ~ a o  
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We need to check that the above limits exist in the metric sense. This fact is 
a corollary of the next lemma, which can be used to show that the above 
sequences are Cauchy sequences. 

LEMMA 4.7. Let  s, s', t, and t' be finite trees, and M = m a x ( d ( s ,  s'), 
d(t, t')). Then 

1. d ( s + t ,  s '+ t ' )<~M;  

2. d(sll~ t, s 'L lA t ' )~m;  

3. d(s o t, s' o t') ~ M; and 

4. d(h(s), h(s')) <~ d(s, s'). 

Proof  de Bakker and Zucker show (1) and (3). They also show (2) 
when A = ~ .  The proof of (2) when A ~ ~ is a tedious but straightforward 
extension of their proof, and (4) is an easy exercise. We thus omit the 
details of the lemma. 

COROLLARY. The Cauchy limits above exist, modulo W-equivalence. 

LEMMA 4.8. The inequalities o f  Lemma 4.7 hold for  infinite trees. 

Proof  We show only 4.7.2 as the proof works the same way in the 
other cases. We also drop the 3 subscript on the parallel operator. Con- 
sider first a special case: dw(s, s') = 0. Then we must show 

dw(sllt, s'llt') ~< dw( t, t'). 

Incidentally, this shows that W is a congruence with respect to II. 
We know that for each k 

d(skllt ~, s'kll t 'k) ~< d( t k, t 'k ) 

because s~Ws k for each k. As k --* o% we have d(t ~, t 'k) ~ d(t, t'), and the 
left side of the above inequality approaches d(sllt, s'l[t'). Therefore the 
desired inequality holds. 

We can now assume that s 7  Ws', and similarly for t and t'. Let e >0.  
Choose k so large that 

d(s k, s 'k) = d(s, s'); 

d(t k, t 'k) = d(t, t'); 

d(sll t, skll ? )  ~< e/2 

and 

d(s'kll t'k, s'll t') ~ e/2. 
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Then by the triangle inequality 

d(sllt, s'Ht') <<. d(sllt, Skllt k) q- d(skNt k, s'kll t 'g) + d(s'kllt'kllt 'k, s']] t') 

~< e/2 + e/2 + max {d(s k, s'k), d(t k, t'k)} 

= e + max(d(s, s'), d(t, t')). 

But e was arbitrary so the lemma follows. 

COROLLARY. The various operators are (jointly) continuous in the dw 
metric. 

COROLLARY. The extended operators are sup-continuous on forests, by 
Theorem 4.2. 

Unfortunately, the sequential composition operator is not quite the right 
one to lift to forests. That is, 

G o H =  { tou l t eG ,  u e H }  

requires that the same tree u be substituted for occurrences of skip in t. If 
the root nodes of trees in a forest represent possible initial states of a 
process, then to capture a full notion of nondeterminism, we should allow 
the process H to start in any of its possible initial states whenever the 
process G has successfully terminated. Thus we want an operator which 
will allow substitution of any tree from H for skip nodes in trees of G. 

We give a special definition for the operator G o H. We begin with 

DEFINITION 4.10. 
is given inductively: 

Let G be a forest and t be a finite tree. The forest t o G 

nil  o G = nil; 

s k i p  o G = G; 

It is easy to check that t o G is closed for each t. Now let 

t o G =  lim t koG 
k ---* o o  

for infinite t. Again we need to check that this limit exists. 

LEMMA 4.9. For finite t and u 

t Wku=~ toG WkuoG 

where Wk is given by Definition 4.3. 
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P r o o f  We use induction on k. The case k = 0 is easy. By 4.3 we need to 
check that (in the inductive case) if t W k  +lu ,  then for all w e t o G there is a 
z e u o G  such that w W k + l z .  Let w = Z a i w ~ E t o G ,  and w ~ a i w i .  By 
definition wi e t o G, where t = Z ait~. Therefore t ~ a i  ti ' and since t W k + l u ,  

we have u -~a' u~ for some u~ Wkt~. If w = Z aiw~, let z = Z aiz~ for each such 
a~, where z~e u~o G is chosen so that z ~ W k w  ~ (this is possible by the induc- 
tion hypothesis and the fact that u~Wkt~). Then z Wk+ ~w as desired. The 
reverse implication is similar, completing the proof. 

COROLLARY. d(t  o G, u o G) <~ d(t, u), where the H a u s d o r f f  me t r ic  is used 

on the left,  and  t and u are f i n i t e  trees. 

P r o o f  Apply Theorem 4.1 and the definitions at the beginning of Sec- 
tion 4. 

COROLLARY. The l imit  t k o G ex i s t s  as k --* ~ .  

DEFINITION 4.11. Let G and H be forests: 

H O G - -  ~ toG.  
t ~ H  

Our objective is to prove that ,~GH. H o G is sup-continuous in G and in 
H. This will be established by a series of independently interesting lemmas. 
We begin with 

LEMMA 4.10. The map  )~t.t o G is metr ica l ly  cont inuous in t. 

P r o o f  By the triangle inequality, for any k ~> 0, 

d(t  o G, u o G) <~ d(t  o G, t k o G) + d(t  k o G, u k o G) + d(u k o G, u o G). 

Let e > 0. Choose k large enough so that 

d(t  o G, t k o G) < ~/3 

d(t  k o G, u k o G) <~ d( t  k, u k) <<. d(t ,  u) + e/3; 

d(u ~ o G, u o G) < e/3. 

Then d(t  o G, u o G) <~ d(t, u) + e, which implies that d(t  o G, u o G) <<. d(t,  u) 

since e was arbitrary. The result follows directly. 
Next, we prove 

LEMMA 4.11. l f  t is f in i te ,  then 

to 0 Gi = (to ci); 
i i 

that  is, f o r  f i n i t e  trees t, the map  2G. t o G is sup-cont inuous  in G. 
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P r o o f  We use induction on t. The result is clear if t = skip or t = nil. 
Also, the left side is clearly included in the right side. Thus let t = Z j  ajtj,  
and let w be any tree in the r ight-hand set. Then w = Z j  ajwj,  where for 
each i, wj ~ tj o Gi. By induction hypothesis, wj ~ tj o O~Gi. Thus w ~ t o OiG~, 
completing the proof. 

Our  aim is to extend Lemma 4.11 to infinite t. This can be done directly 
using the definitions, but  it is still interesting to take a roundabou t  
approach.  

LEMMA 4.12. For f in i te  t, arbitrary closed G, and all n > O, 

( t o G ) ~ = t n o G )  ". 

P r o o f  This will be established by induction on n. First we need an 
inductive definition of  the n-section of a finite tree t: 

Case (1) n = O. (skip) ° = skip; (nil) ° = nil; (Z  aiti)  ° = nil. 

Case (2) n > O. (skip) n = skip; (nil) n = nil; (52 aiti)  n = Z ai(ti) n 1. 
When n = O, the lemma is clear. Assume it for all values less than n, and 

consider the case n: 

( s k i p  o G )  n = G n = s k i p  n o G ) n ;  

( n i l o  G )  n = { n i l }  = (n i ln  o a ) n ;  

~ aiun 1 uiEtioG} 

~ ,a iu7  1 u i e t T - ' o G }  

={( aiui) n 1o } 

= uie t  n l o G  

by induction hypothesis, 

as desired. 
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We would like to establish Lemma 4.12 for infinite t. To do this we recall 
a familiar fact about  continuous functions. 

LEMMA 4.13. Let f and g be continuous functions from a metric space X 
to a metric space Y. I f  f and g agree on a dense subset of X, then they coin- 
cide everywhere. 

As a corollary, we get 

LEMMA 4.14. The conclusion of  Lemma 4.12 holds for infinite t. 

Proof The map t-~ t og  is metrically continuous (Lemma 4.10). The 
map F ~  F ~, where F is a forest and F ~ = {tn[t ~ F}, is also metrically con- 
tinuous. (Proof. 2t. t n is obviously m.c., so by Theorem 4.2 ,~F.F ~ is m.c.) 
Composing these two maps, we get an m.c. map t--* (to G)L Similarly the 
map t --, (t n o G)" is m.c., and by Lemma 4.12 these maps agree on the dense 
subset of finite trees. This completes the proof. 

LEMMA 4.15. Lemma 4.11 holds for arbitrary trees t. 

Proof Let G~ be a decreasing chain. We claim for each i 

To see that the result follows from the claim, notice that the sequence t o Gi 
is also closed and decreasing. By Lemma4.6,  d(toGi, Ni toGi)--,O as 
i-~ oe. But we also have, by the claim, d(toG~, to N s G i ) ~ 0 .  Therefore 
to N iG~= Nit o Gi by uniqueness of limits. 

Proof of Claim. For any k/> 0, 

by properties of W-equivalence on forests. Let Fi = t o Gi. Then 

d ( F ~ , ( t o n G i ) k ) = d ( F ~ , ( t k o n G ~ )  k) by4.14 

by 4.11 for finite trees 

by sup-continuity of 2F.F n 

by 4.14. 
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Now as k --, o% F ~ ~ F, and d is continuous. Thus for any s, we can choose 
a k such that 

Therefore 

The inequality of the claim follows since ~ was arbitrary. This completes the 
proof of the lemma. 

We are almost ready to show that the sequential composition operator 
on forests is sup-continuous. This will be a consequence of another general 
fact about  metric spaces. 

LEMMA 4.16. Let f be a metrically continuous function from the compact 
space X to the space Pc(Y) endowed with the Hausdorff metric from Y. 
Define for closed H c_ X: 

f * [ H ]  = U f(x).  
xE/ ' /  

Then f * :  Pc(X) ~ Pc(Y) is sup-continuous. 

Proof We leave to the reader the proof that f * [ H ]  is closed. We then 
must show: 

The inclusion of the left side in the right is obvious. Let y ~ O i f * [ H i ] .  
Then for each i, there is an xi~Hi such that ye f (x i ) .  The xi have a con- 
vergent subsequence x~k approaching some xo~ 0~H~ by 4.5. We want 
y ~f(xo). But d(f(xik), f(xo)) ~ 0 as k ~ o% and d(y, f(xo)) <~ d(f(xik), 
f(xo)) for each k. So d(y, f(Xo) ) = 0. Thus y ~f(xo) since f(Xo) is closed. 
This completes the proof. 

As a corollary, 

THEOREM 4.3. The map 2GH. Ho G is sup-continuous in both arguments. 

Proof Recall that Ho G = U,~ ~/t o G. Sup-continuity in H follows from 
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Lemmas 4.10 and 4.16. Sup-continuity in G is a simple calculation using 
Lemma 4.15 and the distributive law for intersection over union. 

To close the section, we notice that the operation of union of two forests 
is a sup-continuous operation, by the distributive law. 

5. APPLICATIONS AND CONCLUSIONS 

The operator of Section 4 can be used to give a denotational semantics 
to a CSP-like language, with two versions of nondeterminism. (See 
Brookes, Hoare, and Roscoe, 1984, for the reasons to consider these two 
versions.) We consider two syntactic operators: the "fat-bar" operator • of 
Dijkstra, and the "nondeterministic or" operator [-] from op. cit. The 
operator D will be interpreted as + on forests. When applied to singleton 
forests of the form 

{at} and {bu} 

it produces the forest 

{at + bu}. 

On the other hand, the operator ~ will be interpreted as union of forests. 
When applied to the above two singletons, it produces 

{at, bu} 

which can be thought of as a "tree" 

{ eat + ebu } 

with fictitious e arcs joining the two roots. In a sense the [-] operator 
introduces a hidden choice as in CCS. It should not be confused with 
Milner's use of the silent transition 3, however. For example, in our seman- 
tics 

a(et + au) = {at, au} = eat + eau 

but for Milner 

a(vt + vu) ~ vat + vau 

where ~ is the silent transition. 
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Consider the CSP-like language L, where S is a statement or command: 

( S )  := (s tmtvariable)Iskiplfai l l  a -  S 

181; S21S1 [3 S2 ISll]S21Si lidS= Ih(S)l ~xS  

( s tmtvar iab le)  : = x  lYl z... 

where in the construct a ~ S we let a range over S; in the construct h(S), h 
is a given renaming on X, and in the construct #xS, x is a statement 
variable in S. 

We interpret L in the space of maps [Env ~ Pc(Tz)] ,  where 

Env = [Stmtvariable ~ Pc(Tz)]  

is the set of environments, or assignments of forests to free statement 
variables. Let the metavariable p range over environments. We define the 
semantic map M from L to [Env ~ P, (Tz ) ]  inductively: 

1. M~-x~ p = p(x) for x a statement variable; 

2. MEskip~ p = {skip}; 

3. M~fail] p = {nil}; 
4. M~a-*  S~ p = (a.skip)o (M~S~ p); 

5. M ~ S  1 ; $2~ p = M[FS,~ p o MES2~ p; 

6. M ~ S  1 [3 $2] p = M~S11 p + M~S2~ p; 

7. M~S,[]S2] p = M~S,~ p u MWS2~ p; 

8. MESa I1~S2] P = M ~ S ~  p lieges2] p; 
9. M~h(S)I  p = h[M~S] p];  

10. M~#xS~ p = least fixedpoint of~b 

where ¢ is the map 2K. M~S~ p(K/x), and p(K/x)  is the same as p except 
that x is assigned the forest K. 

EXAMPLE. Consider 

#x( a ~ x [3 b ~ x ). 

The interpretation of this expression is given by the familiar formula 

n~>O 

where i = Tr ,  and ¢" is the nth iterate of 

¢(K) = aK + bK. 
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The first two iterates of ~b are 

~bl( l)=al  + b_l_ = {at+bult, u~Tz}; 

~bz(L)=a(a_l_ + bl)+b(a_l_ + bl).  

The least fixedpoint is therefore the singleton set consisting of the full 
infinite binary tree over {a, b}. 

EXAMPLE. Two more syntactic constructs can be introduced into L by 
definition. Let S be a statement expression not containing x as a free 
statement variable. Then we define 

and 

s ~ = , x ( S ;  x )  

S* = #x((S; x) ~ skip). 

These operators give the infinite and indefinite repetition of S, respectively. 

In conclusion, we have shown how the information system approach 
leads to a natural cpo for the semantics of concurrency. This cpo is closely 
related to the metric spaces introduced in (de Bakker and Zucker, 1982), 
and also to the structures explored in (de Bakker, Bergstra, Klop, and 
Meyer, 1983), where the cpo of closed languages is used as a linear time 
semantic structure. The work of (Bergstra and Klop, 1982) on projective 
limits gives another approach, although in this work no use is made of cpo 
methods. 

It should be remarked that our theory is connected closely to the work 
of Coureelle (1983). The contrast here is that we work with unordered trees, 
and with countably branching trees. However, our metric space (Tz, dw) 
can probably be obtained as a quotient of the free F-magma studied in op. 
cit. We have seen that compactness plays a key role for the definition of 
operators on our space Pc(Tz), which seems to be a natural candidate for 
further study. One interesting problem is to relax the hypothesis of finite 
alphabet and still obtain cpo continuity properties. 
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