COMMUNICATION

A NON-INVOLUTORY SELFDUALITY

Stanislav JENDROĽ
Department of Geometry and Algebra, P.J. Šafárik University, Jesenná 5, 04154 Košice, Czechoslovakia

Received 1 November 1988
Communicated by B. Grünbaum

Two polyhedra P_{1} and P_{2} are said to be duals of each other provided there exists a bijection δ from the family of vertices and faces of P_{1} to the family of vertices and faces of P_{2} which reverses inclusion. If there exists a duality map δ from a polyhedron P to itself, we say that P is selfdual (see, for example, [1-5]). In this case the selfduality map is a permutation on the set of vertices and faces of P. The rank $r(\delta)$ of a selfduality map δ is defined as the smallest positive integer n such that δ^{n} is the identity. The rank $r(P)$ of a selfdual polyhedron P is the minimum value of $r(\delta)$ over all selfduality maps δ of P (see [2]).

Grünbaum and Shephard have asked (in [2, Problem 1]) whether every selfdual convex polyhedron P has rank 2 or, equivalently, whether every selfdual P admits an involutory selfduality map.

In this note we give an example of a polyhedron which provides the negative answer to the above problem. We assert:

Theorem. There exists a selfdual convex polyhedron P with rank $r(P)=4$.

Proof. A graph of such a polyhedron P is given by the Schlegel diagram shown in Fig. 1. A selfduality map of P is given by the permutation $\delta=$ $(A a B b)(C c D d)(E e F f)(G g H h)(J j K k)(L l M m)(N n O o)$, and clearly $r(\delta)=4$. To prove that $r(P)=4$ we shall show that the assumption that P admits a selfduality ρ with $r(\rho)=2$ leads to a contradiction. Indeed such a permutation ρ would have to be the product of 14 pairs, each consisting of a vertex and a face. It is easy to see that the vertex A could occur only in either $(A a)$ or $(A b)$.

In the former case, by considering that the permutation ρ maps the set of faces $\{f, g, j\}$ to the set of vertices $\{E, H, K\}$ we see that, because of the valences of the vertices and faces adjacent to these, the pair (Ef) has to occur in ρ. Then, by similar arguments, the pair ($D c$) is forced to appear, and after that the pair ($A b$)-which contradicts the assumption. On the other hand, if $(A b)$ is assumed to occur, the same reasoning in zeverse order leads first to ($D c$), thenin to (Ef) and finally to ($A a$)-hence again to a contradiction.

This completes the proof of the theorem.
0012-365X/89/\$3.50 © 1989, Elsevier Science Publishers B.V. (North-iioiiand)

Fig. 1.

Remarks. 1. The graph in Fig. 1 can be realized by a polyhedron which has a plane of reflective symmetry (containing the vertices A, B, C, D, E, F) as well as an axis of two-fold rotational symmetry (bisecting the edges $L M$ and $N O$).
2. As mentioned in [2], if a polyhedron P has a selfduality δ such that $r(\delta)=2^{i} k$ where k is odd, then $r(P) \leqslant 2^{i}$. It is not known whether for every $n=2^{i}$ there exists selfdual polyhedron P with $r(P)=n$.
3. For other properties of selfdual convex polyhedra see $[1,3,4,5]$.

Acknowledgement

The author gratefully acknowledges the support by a grant from the International Research \& Exchanges Board and the hospitality of the University of Washington. He is indebted to B. Grünbaum for stimulating discussions on the problem of this note.

References

[1] B. Grünbaum, Convex Polytopes (Interscience, London, 1967).
[2] B. Grünbaum and G.C. Shephard, Is selfduality involutory? Amer. Math. Monthly 95 (1988) 729-733.
[3] E. Jucovič, Selfconjugate K-polyhedra (in Russian, with German summary) Mat.-Fyz. Časopis SAV 12 (1962) 1-22.
[4] E. Jucovič, Characterization of the p-vector of a self-dual 3-polytope, Combinatorial Structures and their Applications, R. Guy et al., eds. (Gordon and Breach, New York, 1970) 185-187.
[5] E. Jucovič, Convex Polyhedra (in Slovak) (Veda, Bratislava, 1981).

