
Electronic Notes in Theoretical Computer Science 82 No. 1 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 18 pages

On Expressivity and Compositionality in
Logics for Coalgebras

Corina Ĉırstea 1,2

Computing Laboratory
University of Oxford

Oxford, UK

Abstract

This paper attempts to unify some of the existing approaches to defining modal log-
ics for coalgebras, from the point of view of constructing the languages employed by
these logics. An abstract framework for defining languages for coalgebras from so-
called language constructors, corresponding to one-step unfoldings of the coalgebraic
structure, is introduced, and a method for deriving expressive languages for coalge-
bras from suitable choices for the language constructors is described. Moreover, it
is shown that the derivation of such languages by means of language constructors
is well-behaved w.r.t. various forms of composition between coalgebraic types.

1 Introduction

Existing modal logics for coalgebras can be classified into three categories,
depending on the types of coalgebraic structures they refer to, as well as on
the degree of abstraction of the modal operators they employ. The first cate-
gory consists of logics which are generic in the types of coalgebraic structures
they are able to capture, and whose associated languages are derived directly
from the coalgebraic types under consideration [7,2]. While both natural and
expressive, these logics employ modal operators of an abstract nature, and as
a result are difficult to use for actual specification. Moreover, these logics lack
compositionality as far as the languages they employ are concerned, in that
the languages induced by functor compositions are not directly derivable from
the languages induced by the functors being composed. The second category
of logics concerns inductively-defined classes of coalgebraic structures [9,5].
The specific nature of the types considered here is reflected in the associated
languages, which employ concrete modal operators derived from the inductive

1 Research supported by St. John’s College, Oxford
2 Email: corina@comlab.ox.ac.uk

c©2003 Published by Elsevier Science B. V.

110

CC BY-NC-ND license. Open access under

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82433032?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Ĉırstea

definitions of the underlying types. While restrictive from the point of view of
the coalgebraic types they cover, these logics are intrinsically compositional
as far as the definition of the corresponding languages and of their semantics
is concerned. Finally, the third category of logics aims to combine some of
the benefits of the previous two categories, by providing reasonably concrete
languages for arbitrarily general coalgebraic structures [8]. However, this is
achieved at the expense of losing the naturality of the logics: rather than be-
ing determined by the coalgebraic types under consideration, the languages
employed by such logics are based on (semantically-defined) modal operators
which have to be provided explicitly. Thus, the structure of the underlying
types is not, in general, reflected in the resulting languages. Furthermore,
additional constraints on the collection of modal operators are necessary to
guarantee that the resulting logics are expressive, and these constraints are not
well-behaved w.r.t. type composition – it is not, in general, possible to derive
expressive logics for compositions of coalgebraic types from expressive logics
for the types being composed. This is simply because the class of endofunctors
for which expressive logics of this kind exist is not closed under composition.
An example in this sense is provided by (coalgebras of) the functor P ◦ P,
with P denoting the powerset functor – while expressive logics exist for both
P and P ◦ P (see e.g. [7] or [9]), an expressive logic of the kind considered in
[8] exists for P , but not for P ◦ P.

The aim of this work is to investigate the existence of generic logics for
coalgebras, which are both expressive and compositional w.r.t. the underlying
types. Our approach is based on a generalisation of the technique used in [9]
to derive languages for inductively-defined endofunctors, to arbitrary endo-
functors. We use an abstract notion of language constructor, corresponding
to a one-step unfolding of the coalgebraic structure, to capture one inductive
step in the definition of a language for coalgebras; and through repeated appli-
cations of language constructors (to a propositional language to begin with),
we derive languages able to formalise properties involving arbitrary unfoldings
of the coalgebraic structure. The definition of these languages resembles the
approach in [8], in that it uses transfinite induction along the final sequence
of an endofunctor. If the language constructor underlying such a definition
preserves expressivity (in a sense made precise in what follows), an expres-
sive language for coalgebras is eventually obtained. Furthermore, combining
expressivity preserving language constructors for different coalgebraic types
yields expressive languages for (coalgebras of) various forms of composition
between those types. All the previously-mentioned approaches to defining
modal logics for coalgebras are covered by the resulting approach.

The paper is structured as follows. Section 2 recalls some coalgebraic con-
cepts which are used in subsequent sections, and at the same time outlines two
existing approaches to defining modal logics for coalgebras. Section 3 intro-
duces the notion of language constructor for an endofunctor, and shows how
instances of this notion are retrieved in existing modal logics for coalgebras.

111

Ĉırstea

Section 4 defines languages for coalgebras of endofunctors , and uses transfi-
nite induction to derive such languages from language constructors. Suitable
choices for the language constructors are shown to yield expressive languages
for coalgebras. Section 5 shows how to derive expressive logics for various
forms of functor composition from expressive logics for the functors being
composed. Finally, Section 6 outlines some possible directions for future work.

2 Preliminaries

The setting we shall be working in is that of coalgebras of endofunctors on
Set. Given such an endofunctor T : Set → Set, a T-coalgebra is given by
a pair 〈C, γ〉 with C a set (the carrier of the coalgebra) and γ : C → TC
a function (the coalgebra map). Also, a T-coalgebra homomorphism between
T-coalgebras 〈C, γ〉 and 〈D, δ〉 is given by a function f : C → D additionally
satisfying Tf ◦ γ = δ ◦ f . The category of T-coalgebras and T-coalgebra
homomorphisms is denoted Coalg(T).

Given T-coalgebras 〈C, γ〉 and 〈D, δ〉, two states c ∈ C and d ∈ D are
called T-behaviourally equivalent if there exist a T-coalgebra 〈E, η〉 and T-
coalgebra homomorphisms f : 〈C, γ〉 → 〈E, η〉 and g : 〈D, δ〉 → 〈E, η〉 with
f(c) = g(d). In the presence of a final T-coalgebra, T-behavioural equivalence
is given by equality under the unique homomorphisms into the final coalgebra
(see e.g. [8, Theorem 3.4]).

A T-bisimulation between T-coalgebras 〈C, γ〉 and 〈D, δ〉 is a relation
〈R, π1, π2〉 on C ×D, with R carrying a (not necessarily unique) T-coalgebra
structure ρ : R → TR that makes π1 : R → C and π2 : R → D T-coalgebra
homomorphisms. The largest T-bisimulation between 〈C, γ〉 and 〈D, δ〉 (ob-
tained as the union of all such T-bisimulations) is called T-bisimilarity .

If two states are T-bisimilar, then they are also T-behaviourally equivalent.
And if, in addition, T preserves weak pullbacks 3 , then the converse is also true.

The class of weak pullback preserving endofunctors is sufficiently general
to account for most known examples of coalgebraic types. And although
preservation of weak pullbacks is not required by our approach, the fact that a
given endofunctor preserves weak pullbacks is an advantage, in that the logics
we obtain in this case are expressive not only w.r.t. behavioural equivalence
but also w.r.t. bisimilarity.

Preservation of weak pullbacks will, however, be required by one particular
instance of our approach. The next observation will prove useful in that case.

Remark 2.1 Weak pullback preserving endofunctors also preserve weak lim-
its of w-shaped diagrams. This follows from weak limits for such diagrams
being obtained from weak pullbacks for their left and right (v-shaped) subdi-
agrams, by subsequently constructing another weak pullback.

3 Weak pullbacks are defined similarly to standard pullbacks, except that the mediating
arrows are not required to be unique.

112

Ĉırstea

Bisimilarity and behavioural equivalence are two slightly different ways of
capturing the observational indistinguishability of states. Additional obser-
vational equivalence relations between the states of coalgebras can be defined
via the final sequence of the endofunctor in question.

Definition 2.2 ([10]) Let T : Set → Set. The final sequence of T is an
ordinal-indexed sequence of sets (Zα) together with a family (pα

β)β≤α of func-
tions pα

β : Zα → Zβ, satisfying:

• Zα+1 = TZα

• pα+1
β+1 = Tpα

β for β ≤ α

• pα
α = 1Zα

• pα
γ = pβ

γ ◦ pα
β for γ ≤ β ≤ α

• if α is a limit ordinal, the cone Zα, (p
α
β)β<α for (pβ

γ)γ≤β<α is limiting.

The final sequence of T is uniquely defined by the above conditions. In
particular, Z0 = 1, with 1 = {0} denoting a final object in Set.

Remark 2.3 The final sequence of T can be used to construct a final T-
coalgebra. Specifically, if the final sequence of T stabilises at α (that is, if
pα+1

α is an isomorphism), then Zα is the carrier of a final T-coalgebra (see [3,
Theorem 1.3], or [1, Theorem 5]). Various constraints on T can be used to
ensure that its final sequence stabilises at a specific α. In particular, if T is
ωop-continuous, its final sequence stabilises at ω. Also, if T is κ-accessible, with
κ a regular cardinal, its final sequence stabilises at κ·2 (see [10, Theorem 10]).

Remark 2.4 The elements of the final sequence provide approximations of
notions of observable behaviour. Given a T-coalgebra 〈C, γ〉, one can define
an ordinal-indexed sequence of functions (γα), with γα : C → Zα, as follows:

• γα = Tγβ ◦ γ, if α = β + 1;

• γα is the unique function satisfying pα
β ◦ γα = γβ for each β < α, if α is a

limit ordinal.

The functions γα take states of the coalgebra to their partial observable be-
haviours, as defined by Zα.

Remark 2.5 A notion of observational equivalence between states of coalge-
bras can then be defined as equality of certain partial observable behaviours.
Specifically, if α is a regular cardinal and 〈C, γ〉 and 〈D, δ〉 are T-coalgebras,
then two states c ∈ C and d ∈ D are called α-observationally equivalent if
γα(c) = δα(d). Taking α = ω yields a notion of observational equivalence
which only takes into account the finitary behaviour of states [6]. Also, if T is
κ-accessible, taking α = κ yields a notion of observational equivalence which
is the same as behavioural equivalence (see [8, Theorem 3.4]).

We now recall two existing approaches to deriving modal logics for coalge-
bras of endofunctors on Set.

113

Ĉırstea

Definition 2.6 ([7]) Let T : Set → Set denote a κ-accessible, weak pullback
preserving endofunctor. The language LT of (T-)coalgebraic logic is the
carrier of the initial algebra of the functor X �→ PX + TX. We write

∧
:

PLT → LT and respectively ∇ : TLT → LT for the two coproduct injections
arising from the definition of LT.

Given a T-coalgebra 〈C, γ〉, the satisfaction relation |= between elements
of C and formulae of LT is defined inductively as follows:

• c |= ∧
Φ iff c |= ϕ for all ϕ ∈ Φ

• c |= ∇ψ iff γ(c) (T|=)ψ 4

for c ∈ C, Φ ∈ PLT and ψ ∈ TLT.

The language of coalgebraic logic is sufficiently expressive to characterise
the elements of final coalgebras, but at the same time sufficiently weak not
to distinguish between bisimilar states (see [7], and also [8, Section 5] for an
alternative proof of this statement).

Definition 2.7 ([8]) Let T : Set → Set. A predicate lifting for T is a
natural transformation λ : P̂ ⇒ P̂ ◦ T (with P̂ : Set → Set denoting the
contravariant powerset functor).

Now let Λ denote a set of predicate liftings for T, let σ denote a regular
cardinal, and let Pσ : Set → Set denote the functor taking a set X to the set
of subsets of X of cardinality smaller than σ. The (modal) language Lσ(Λ)
is defined inductively by:

ϕ ::=
∧

Φ | ¬ϕ | [λ]ϕ , Φ ∈ Pσ(Lσ(Λ)) , ϕ ∈ Lσ(Λ) , λ ∈ Λ

In addition, one defines
∨

Φ ::= ¬∧
ϕ∈Φ

¬ϕ for Φ ∈ Pσ(Lσ(Λ)), and 〈λ〉ϕ ::=

¬[λ]¬ϕ for λ ∈ Λ and ϕ ∈ Lσ(Λ).

Given a T-coalgebra 〈C, γ〉, the satisfaction relation |= between elements
of C and formulae of Lσ(Λ) is defined by structural induction on formulae:

• c |= ∧
Φ iff c |= ϕ for all ϕ ∈ Φ

• c |= ¬ϕ iff c �|= ϕ

• c |= [λ]ϕ iff γC(c) ∈ λC(�ϕ�γ), with �ϕ�γ being given by {c ∈ C | c |= ϕ}.

A set of predicate liftings Λ is said to be separating if, for any set X, the
map t ∈ TX �→ {λX(Y) | λ ∈ Λ, Y ∈ PX,λX(Y) � t } is monic.

It is shown in [8] that the language Lσ(Λ) is adequate (i.e. behavioural
equivalence implies logical equivalence); and if, in addition, T is κ-accessible
and Λ is separating, then there exists a cardinal σ, depending only on κ and
on card(Λ), such that Lσ(Λ) is also expressive (i.e. logical equivalence implies
behavioural equivalence).

4 As noted in [7], T |= induces a relation on TC × TLT, defined via Tπ1 and Tπ2 (with
π1 : |=→ C and π2 : |=→ LT defining the relation |=). Given t ∈ TC and ψ ∈ TLT, we
write t (T|=)ψ if there exists w ∈ T|= such that (Tπ1)(w) = t and (Tπ2)(w) = ψ.

114

Ĉırstea

3 Language Constructors

We now fix a regular cardinal σ. In what follows, we shall consider languages
which are closed under conjunctions of cardinality smaller than σ, as well as
under negation. Such languages will be regarded as algebras of the functor
Bσ = Pσ + Id : Set → Set, with the two components of the algebra maps taking
sets of formulae Φ of cardinality smaller than σ to their conjunction

∧
Φ,

and respectively single formulae ϕ to their negation ¬ϕ. The free Bσ-algebra
over a set A will be denoted A∧,¬, while the unique extension of a function
f : A → B to a Bσ-algebra homomorphism will be denoted f∧,¬ : A∧,¬ → B∧,¬.
Also, given a function g : A → C, with A a set and C (the carrier of) a Bσ-
algebra, the Bσ-algebra homomorphism arising from the freeness of A∧,¬ will
be denoted g# : A∧,¬ → C.

We now define languages whose formulae are interpreted over given sets.

Definition 3.1 Let X be a set. An X-language is a pair 〈L, d〉 with L a
set carrying Bσ-structure and d : L → PX a function which preserves the
Bσ-structure 5 . A map between X-languages 〈L, d〉 and 〈L′, d′〉 is a function
l : L → L′, itself preserving the Bσ-structure, such that d′ ◦ l = d.

In particular, a 1-language is given by a Bσ-algebra L together with a
Bσ-algebra homomorphism d : L → P1.

Remark 3.2 An X-language 〈L, d〉 induces a satisfaction relation |=⊆ X×L
given by:

x |= ϕ iff x ∈ d(ϕ) , for x ∈ X and ϕ ∈ L
Equivalently, the cone defined by |= over the diagram defined by 1X , d and
the two projections defining the membership relation is (weakly) limiting:

|=

��
�
�
�

����
���

�

X

1X
��

L
d
��

∈
����� �����

X PX
A map between X-languages defines a Bσ-structure preserving as well as

denotation preserving translation between the given languages. The category
of X-languages and maps between them is denoted X-Lang.

Proposition 3.3 X-Lang has colimits.

Proof (Sketch). The L-component of the colimit in X-Lang of a diagram D
is given by the colimit in Alg(Bσ) of the diagram relating the L-components
of languages in D. The d-component of the colimit is obtained by exploiting
the couniversality of the L-component. ✷

5 The set PX can be naturally endowed with Bσ-algebra structure, namely by interpreting∧
as intersection and ¬ as complement.

115

Ĉırstea

In particular, the L-component of an initial object in X-Lang contains �
(defined as

∧ ∅) and ⊥ (defined as ¬�), for any set X.

The mapping X �→ X-Lang can be extended to a contravariant functor
L : Set → Cat by letting, for f : X ′ → X, L(f) : X-Lang → X ′-Lang be given
by L(f)(〈L, d〉) = 〈L, P̂f ◦ d〉 6 and L(f)(l) = l for l : 〈L, d〉 → 〈L′, d′〉.

More generally, relationships between languages for different sets can be
captured using the notion of cofibration 7 . Let Lang denote the category whose
objects are given by pairs 〈X, 〈L, d〉〉 with X a set and 〈L, d〉 ∈ |X-Lang|, and
whose arrows from 〈X, 〈L, d〉〉 to 〈X ′, 〈L′, d′〉〉 are given by pairs 〈f, l〉 with
f : X ′ → X a function and l : L → L′ a function preserving the Bσ-structure,
such that P̂f ◦ d = d′ ◦ l:

L
d

��

l ��L′

d′
��

PX P̂f
��PX ′

Also, let E : Lang → Setop denote the functor taking 〈X, 〈L, d〉〉 to X and
〈f, l〉 : 〈X, 〈L, d〉〉 → 〈X ′, 〈L′, d′〉〉 to f op.

Proposition 3.4 E is a cofibration.

Proof (Sketch). The coreindexing functor f∗ : X-Lang → X ′-Lang induced
by a function f : X ′ → X takes 〈X, 〈L, d〉〉 to 〈X ′, 〈L, P̂f ◦ d〉〉. ✷

Proposition 3.5 Lang has colimits.

Proof (Sketch). Colimits in Lang are constructed from limits in Set and
colimits in the corresponding cofibres (see Proposition 3.3). The fact that the
coreindexing functors preserve colimits is also used. ✷

Definition 3.6 An X-language 〈L, d〉 is called expressive if there exists a
function i : X → L such that d ◦ i = { }X :

L
d
��

X { }X

��

i
���

�
�

� PX
with the natural transformation { } : Id ⇒ P being given by { }S(s) = {s}
for s ∈ S and S ∈ |Set|.
Remark 3.7 Since { }X is injective, any function i satisfying the condition
in Definition 3.6 is itself injective. Also, if 〈L, d〉 is expressive and x, y ∈ X
are logically equivalent, then x = y. For, in this case, y |= i(x), and hence
y ∈ {x}.

The notion of language constructor which we now introduce aims to cap-
ture one inductive step in the definition of languages for T-coalgebras.

6 Note that, for f : X ′ → X, the function P̂f : PX → PX ′ preserves the Bσ-structure.
7 See [4] for an introduction to the theory of fibrations.

116

Ĉırstea

Definition 3.8 Let T : Set → Set. A language constructor for T is a
fibred functor 8 F : Lang → Lang over Top. Thus, E ◦ F = Top ◦ E:

Lang

E
��

F �� Lang

E
��

Setop Top
�� Setop

That is, language constructors for T take X-languages to TX-languages.
Furthermore, language constructors preserve relationships between languages,
as captured by arrows in Lang.

The existence of coproducts in the categories X-Lang with X ∈ |Set| (see
Proposition 3.3) and Lang (see Proposition 3.5) makes it possible to define a
join operator

⊎
on language constructors.

Definition 3.9 Let (Fi)i∈I denote a family of language constructors for T.
Then, the language constructor

⊎
i∈I

Fi : Lang → Lang for T takes an X-

language 〈L, d〉 to the TX-language
∐
i∈I

Fi〈L, d〉 9 . The action of
⊎
i∈I

Fi on

arrows in Lang is determined by the couniversality of coproducts in Lang.

One way of defining a language constructor for T is to consider, for an
X-language L, the least TX-language containing TL. This language con-
structor mirrors the construction of the language of coalgebraic logic, as given
in Definition 2.6.

Example 3.10 Let T : Set → Set denote a κ-accessible, weak pullback pre-
serving endofunctor. A language constructor FT for T is given by the functor
taking 〈X, 〈L, d〉〉 to 〈TX, 〈L′, d′〉〉, with L′ = (TL)∧,¬ and d′ = (εX ◦ Td)#:

L
d
��

TL
Td
��

L′

d′
��PX TPX εX ��PTX PTX

where the natural transformation ε : T ◦ P̂ ⇒ P̂ ◦ T is given by:

εX(Y) = { t ∈ TX | t (T∈) Y } for X ∈ |Set| and Y ∈ TPX.(1)

With the above definition, the satisfaction relation |=⊆ TX ×L′ induced
by 〈L′, d′〉 (see Remark 3.2) coincides with (T|=)∧,¬, where |=⊆ X × L de-
notes the satisfaction relation induced by 〈L, d〉, and where (T|=)∧,¬ denotes
the natural extension of T|= to formulae containing conjunctions and nega-
tions. To see this, note that the preservation by T of weak limits of w-shaped
diagrams (see Remark 2.1) results in the cone defined by T|= over the diagram
defined by T1X , Td and the images under T of the two projections defining

8 See [4] for a definition of fibred functors.
9 This coproduct is constructed in TX-Lang.

117

Ĉırstea

the membership relation being weakly limiting:

|=

��
�
�
�

����
���

� T|=

��
�
�
�

��� �
		��

X

1X
��

L
d
��

TX

T1X
��

TL
Td
��

∈

			 ��

T∈
����� ���

X PX TX TPX
Hence, t (T|=) ψ is equivalent to t (T∈) (Td)(ψ), which, in turn, is equivalent
to t ∈ d′(ψ), for any t ∈ TX and any ψ ∈ TL. The particular definition of
the denotation map d′ was driven precisely by the need to ensure that the
satisfaction relations induced by d and d′ are related as above. As a result,
FT captures one step in the definition of the language used in [7], the only
difference being that here negation is also present.

Before defining the action of FT on arrows in Lang, we need to verify that
ε as defined by (1) is, indeed, natural. For this, let f : C → D ∈‖ Set ‖.
Then, the naturality of ε w.r.t. f reduces to:

(Tf)(t) (T∈) Y iff t (T∈) (TP̂f)(Y)

for any t ∈ TC and any Y ∈ TPD. This, in turn, follows from the limiting
cones of the following diagrams defining the same relation on TC × TPD:

TC

Tf

��

TPD
1TPD

��

TC

1TC

��

TPD
TP̂f
��

T∈
�� ���

T∈
�� ���

TD TPD TC TPC
The previous statement follows e.g. from the existence of weakly limiting cones
for the two diagrams, cones which, in addition, coincide on the arrows into TC
and TPD respectively. The last statement is a consequence of the existence
of limiting cones with a similar property for the following two diagrams:

C

f
��

PD
1PD

��

C

1C
��

PD
P̂f
��

∈

��� ��

∈

��� ��

D PD C PC
and of the fact that T takes limits of w-shaped diagrams to weak limits of the
images under T of those diagrams (see Remark 2.1).

We can now define the action of FT on arrows in Lang. Specifically, an
arrow 〈f, l〉 : 〈X1, 〈L1, d1〉〉 → 〈X2, 〈L2, d2〉〉 is taken by FT to 〈Tf, (Tl)∧,¬〉 :
〈TX1, 〈(TL1)∧,¬, (εX1 ◦ Td1)

#〉〉 → 〈TX2, 〈(TL2)∧,¬, (εX2 ◦ Td2)
#〉〉:

L1
d1

��

l ��L2
d2
��

TL1
Td1

��

Tl �� TL2
Td2
��

P̂X1 P̂f
�� P̂X2 TP̂X1

ε
X1

��

TP̂f
�� TP̂X2

ε
X2

��

P̂TX1
P̂Tf

�� P̂TX2

We conclude this example by noting that the preservation of weak pull-
backs by T played a crucial rôle in the definition of FT.

118

Ĉırstea

If some information about the structure specified by T is available, e.g. in
the form of a set of predicate liftings for T, then language constructors for T
can be derived based on this information.

Example 3.11 Let T : Set → Set, and let Λ denote a set of predicate lift-
ings for T. A language constructor FΛ for T is given by the functor taking
〈X, 〈L, d〉〉 to 〈TX, 〈L′, d′〉〉, where L′ = { [λ]ϕ | λ ∈ Λ, ϕ ∈ L}∧,¬, and where
d′ : L′ → PTX is given by d′([λ]ϕ) = λX(d(ϕ)), d′(

∧
Φ) =

⋂
ϕ∈Φ

d′(ϕ), and

d′(¬ϕ) = d′(ϕ) 10 . The action of the language constructor on an arrow 〈f, l〉 :
〈X1, 〈L1, d1〉〉 → 〈X2, 〈L2, d2〉〉 in Lang is given by 〈Tf, l′〉 : 〈TX1, 〈L′

1, d
′
1〉〉 →

〈TX2, 〈L′
2, d

′
2〉〉, with l′ : L′

1 → L′
2 being given by l′([λ]ϕ) = [λ]l(ϕ), l′(

∧
Φ) =∧

ϕ∈Φ
l′(ϕ), and l′(¬ϕ) = ¬l′(ϕ).

Alternatively, one can define a language constructor Fλ for T for each
λ ∈ Λ (by taking Λ = {λ} in the above), and then define FΛ as

⊎
λ∈Λ

Fλ. The

resulting language constructor is, up to a natural isomorphism, the same as
the previously-defined one.

In the case of inductively-defined endofunctors, as considered e.g. in [9,5],
language constructors can be derived from the structure of the endofunctors.

Remark 3.12 Given a set A, a language constructor FA for the constant
functor X �→ A takes 〈X, 〈L, d〉〉 to 〈A∧,¬, 〈A, ({ }A)#〉〉. Also, a language
constructor FId for Id takes 〈X, 〈L, d〉〉 to itself. Finally, language constructors
F1 ⊗ F2, F1 ⊕ F2, (F1)A and PF1 for F1 × F2, F1 + F2, (F1)

A and P ◦ F1 can
be derived from language constructors Fi for Fi, with i = 1, 2. Say Fi takes
〈X, 〈L, d〉〉 to 〈FiX, 〈Li, di〉〉. Then, F1 ⊗ F2, F1 ⊕ F2, (F1)A and PF1 are
defined as follows:

• F1⊗F2 takes 〈X, 〈L, d〉〉 to the coproduct of (π1)∗〈L1, d1〉 and (π2)∗〈L2, d2〉
in (F1X × F2X)-Lang 11 , with πi : F1X × F2X → FiX for i = 1, 2 denoting
the product projections. We write [πi]ϕi for ιi(ϕi), where ιi : (πi)∗〈Li, di〉 →
(π1)∗〈L1, d1〉 + (π2)∗〈L2, d2〉 is the ith injection, ϕi ∈ Li, and i ∈ {1, 2}.

• F1 ⊕ F2 takes 〈X, 〈L, d〉〉 to the coproduct of 〈(L1)∧,¬, ((e1)X ◦ d1)#〉 and
〈(L2)∧,¬, ((e2)X ◦ d2)#〉 in (F1X + F2X)-Lang, where, for i ∈ {1, 2}, the
natural transformation ei : P ◦ Fi ⇒ P ◦ (F1 + F2) is given by (ei)X(Y) =
(Pιi)(Y)∪ (Pιj)(FjX) for X ∈ |Set| and Y ∈ PFiX, with {i, j} = {1, 2} 12 .
We write [κi]ϕi for ιi(ϕi), where ιi is the ith injection defining the previously-
mentioned coproduct, ϕi ∈ Li, and i ∈ {1, 2}. Also, we write 〈κi〉ϕi for
¬[κi]¬ϕi, for i ∈ {1, 2}.

10Hence, d′(〈λ〉ϕ) = λX(d(ϕ)), and d′(
∨
Φ) =

⋃
ϕ∈Φ

d′(ϕ).

11 See Proposition 3.4 for the definitions of (π1)∗ and (π2)∗.
12Note that, since 〈L1, (e1)X ◦ d1〉 and 〈L2, (e2)X ◦ d2〉 do not qualify as languages, it
is necessary to perform a closure under ∧ and ¬ before constructing the coproduct in
(F1X + F2X)-Lang.

119

Ĉırstea

• (F1)A takes 〈X, 〈L, d〉〉 to 〈(F1X)A,
∐
a∈A

(πa)∗〈L, d〉〉, with πa : (F1X)A →
F1X taking f : A → F1X to f(a) for a ∈ A, and with the coproduct being
constructed in (F1X)A-Lang. We write [a]ϕ for ιa(ϕ), where ιa is the ath
injection into

∐
a∈A

(πa)∗〈L, d〉, and ϕ ∈ L1.
• PF1 takes 〈X, 〈L, d〉〉 to 〈PF1X, 〈(L1)∧,¬, (d′1)

#〉〉, with d′1 : L1 → PPF1X
taking ϕ ∈ L1 to Pd1(ϕ) ∈ PPF1X

13 . We write [P]ϕ for the formula of
the resulting language which corresponds to ϕ ∈ L1, and 〈P〉ϕ for ¬[P]¬ϕ.

The preceding definitions mirror the construction of modal languages for
Kripke polynomial endofunctors , as described in [9,5].

Definition 3.13 A language constructor F for T preserves expressivity if
whenever the language 〈X, 〈L, d〉〉 is expressive, so is the language F〈X, 〈L, d〉〉.

That is, F preserves expressivity if whenever one starts with a language
which is characterising for a set X, by applying F one obtains a language
which is characterising for the set TX.

Example 3.14 The language constructor defined in Example 3.10 preserves
expressivity. For, if the left triangle below commutes, so does the top-right
triangle.

L
d
��

TL
Td
��

X { }X

��

i

���
�

�
� PX TX T{ }X

��

Ti
���

�
�

�
�

{ }TX ����
��

��
��

� TPX
εX

��PTX

Also, the bottom-right triangle commutes. For, t′ ∈ εX((T{ }X)(t)) translates
to t′ (T∈) (T{ }X)(t). But the fact that the left diagram below is weakly lim-
iting together with the preservation by T of weak limits of w-shaped diagrams
(see Remark 2.1) result in the right diagram below also being weakly limiting:

X

��
�
�
�1X

		 1X
���� TX

��
�
�
�1TX

��� � 1TX
��

X

1X
��

X

{ }X

��

TX

T1X
��

TX

T{ }X

��

∈

			 �����

T∈
�����

���

X PX TX TPX
Thus, t′ (T∈) (T{ }X)(t) is equivalent to t′ = t. Hence, εX((T{ }X)(t)) = {t}.

Example 3.15 If T : Set → Set is κ-accessible and Λ is a separating set of
predicate liftings for T, then the language constructor FΛ defined in Exam-
ple 3.11 preserves expressivity (for a suitable choice of σ). For, if i : X → L

13Again, since 〈L1, d
′
1〉 does not qualify as a language, a closure under ∧ and ¬ has to be

performed.

120

Ĉırstea

satisfies the condition in Definition 3.6, one can define i′ : TX → L′ by:

i′(t) =
∧

λ ∈ Λ
Y ∈ PX

λX(Y) � t

[λ]ϕY ∧
∧

λ ∈ Λ
Y ∈ PX

λX(Y) � t

〈λ〉ϕY , t ∈ TX

with ϕY being given by
∨

y∈Y

i(y) for any Y ∈ PX 14 15 . It then follows imme-

diately from the definition of d′ and from the fact that d(ϕY) =
⋃

y∈Y

d(i(y)) =
⋃

y∈Y

{y} = Y for any Y ∈ PX, that t ∈ d′(i′(t)). Now assume t′ �= t. Then, by

Λ being saturated, one of the following is true:

(i) there exist λ ∈ Λ and Y ∈ PX such that t ∈ λX(Y) but t′ /∈ λX(Y);

(ii) there exist λ ∈ Λ and Y ∈ PX such that t′ ∈ λX(Y) but t /∈ λX(Y).

Depending on which of these holds, either [λ]ϕY or 〈λ〉ϕY does not hold in t′,
while t ∈ λX(Y) and respectively t ∈ λX(Y) holds. Hence, t′ �∈ d′(i′(t)). This
concludes the proof of the fact that FΛ preserves expressivity.

Example 3.16 A slightly less general setting than the one in Example 3.11 is
provided by sets of predicate liftings Λ subject to the additional constraint that
λX : PX → PTX preserves intersections (and hence has a left adjoint λ∗

X :
PTX → PX) for any X ∈ |Set| and any λ ∈ Λ. Such natural transformations
are known to arise from natural transformations µ : T ⇒ P (see e.g. [8,
Proposition 6.3]). For t ∈ TX, the elements of λ∗

X({t}) can be regarded as
T-successors of t. In this case, i′ : TX → L′ can alternatively be defined by:

i′(t) =
∧

λ∈Λ
([λ](

∨

x∈λ∗
X({t})

ϕx) ∧
∧

x∈λ∗
X({t})

(〈λ〉ϕx)) , t ∈ TX

with ϕx being given by i(x) 16 . Then, replacing the requirement that Λ is
separating with the (slightly stronger) condition that, for any X ∈ |Set|,
t1 �= t2 implies λ∗

X({t1}) �= λ∗
X({t2}) for some λ ∈ Λ, one obtains an al-

ternative proof of the fact that FΛ preserves expressivity (in this more re-
stricted setting). For, the definitions of d′, d and λ∗

X yield t ∈ d′(i′(t)). Also,
for t′ �= t, the condition on Λ yields λ ∈ Λ and x′ ∈ X such that either
x′ ∈ λ∗

X({t}) \ λ∗
X({t′}) or x′ ∈ λ∗

X({t′}) \ λ∗
X({t}). Depending on which of

these holds, either t′ �∈ d′(〈λ〉ϕx′) (as d(ϕx′) = {x′} and x′ �∈ λ∗
X({t′})) while

x′ ∈ λ∗
X({t}), or t′ �∈ d′([λ](

∨
x∈λ∗

X({t})
ϕx)) (as x′ �∈ d(

∨
x∈λ∗

X({t})
ϕx) = λ∗

X({t})). Hence,

t′ �∈ d′(i′(t)). This definition of i′ provides simpler characterising formulae.

14 It is shown in [8, Section 7] that both the disjunctions defining the ϕY s and the two
conjunctions defining i′(t) can be brought down to a size which does not exceed some fixed
σ, with σ depending only on κ and on card(Λ).
15Note that the closure of L under ∧

and ¬ (and hence also under ∨
) gives ϕY ∈ L, and

therefore i′(t) ∈ L′.
16Note the resemblance between i′(t) and the characterising formulae of infinitary modal
logic, as defined e.g. in [7, Section 2.1].

121

Ĉırstea

Finally, the following result holds for the language constructors considered
in Remark 3.12.

Proposition 3.17 FA and FId preserve expressivity. Also, if F1 and F2 pre-
serve expressivity, then so do F1 ⊗F2, F1 ⊕F2, (F1)A and PF1.
Proof (Sketch). The first statement follows immediately from the definitions
of FA and FId. Now let i1 : F1X → L1 and i2 : F2X → L2 satisfy the condition
in Definition 3.6, and define:

• i⊗ : F1X × F2X → (L1 + L2)∧,¬, (f1, f2) �→ [π1]i1(f1) ∧ [π2]i2(f2)

• i⊕ : F1X + F2X → (L1+L2)∧,¬, ιj(fj) �→ [κj]ij(fj)∧ [κl]⊥, {j, l} = {1, 2}
• iA : (F1X)A → (

∐
a∈A

L1)∧,¬, f �→ ∧
a∈A

[a]i1(f(a))

• iP : PF1X → (L1)∧,¬, Y �→ [P](
∨

f1∈Y

i1(f1)) ∧
∧

f1∈Y

〈P〉i1(f1)

Some straightforward calculations show that these functions also satisfy the
condition in Definition 3.6. ✷

4 Expressive Languages for Coalgebras

We are now ready to define languages for coalgebras of endofunctors.

Definition 4.1 Let T : Set → Set. Also, let U : Coalg(T) → Set denote the
functor taking T-coalgebras to their carrier. A language for T-coalgebras
is a pair 〈L, d〉 with L a set carrying Bσ-structure and d : L ⇒ P̂ ◦ U a
natural transformation 17 such that dγ : L → PC preserves the Bσ-structure
for each T-coalgebra 〈C, γ〉. Given a T-coalgebra 〈C, γ〉 together with c ∈ C
and ϕ ∈ L, one writes c |= ϕ for c ∈ dγ(ϕ). A map between languages 〈L, d〉
and 〈L′, d′〉 for T-coalgebras is a function l : L → L′, itself preserving the
Bσ-structure, such that d′

γ ◦ l = dγ for each T-coalgebra 〈C, γ〉. The category
of languages for T-coalgebras and maps between them is denoted CLang(T).

Given a language 〈L, d〉 for T-coalgebras, the naturality of d amounts to the
denotations of formulae being reflected by T-coalgebra homomorphisms. As
a result, the denotations of formulae are invariant under behavioural equiv-
alence: given T-coalgebras 〈C, γ〉 and 〈D, δ〉, if c ∈ C and d ∈ D are be-
haviourally equivalent, and hence identified by some T-coalgebra homomor-
phisms f : 〈C, γ〉 → 〈E, η〉 and g : 〈D, δ〉 → 〈E, η〉, then c ∈ dγ(ϕ) if and
only if f(c) = g(d) ∈ dη(ϕ) if and only if d ∈ dδ(ϕ), for any ϕ ∈ L. In the
terminology of [8], any language for T-coalgebras is adequate. Furthermore,
in the presence of a final T-coalgebra 〈Z, ζ〉, 〈L, d〉 is fully determined by dζ :
if !γ : 〈C, γ〉 → 〈Z, ζ〉 denotes the unique T-coalgebra homomorphism from a

T-coalgebra 〈C, γ〉 to the final one, then dγ = P̂U!γ ◦ dζ .

17Here L is also used to denote the constant functor X �→ L.

122

Ĉırstea

Remark 4.2 One can also define a category CLang of languages for coalge-
bras, whose objects are given by pairs 〈T, 〈L, d〉〉 with 〈L, d〉 ∈ |CLang(T)|,
and whose arrows from 〈T, 〈L, d〉〉 to 〈T′, 〈L′, d′〉〉 are given by pairs 〈η, l〉,
with η : T′ ⇒ T and l : L → L′ being such that P̂η ◦ d = d′ ◦ l. Moreover, one
can show that the functor taking 〈T, 〈L, d〉〉 to T and 〈η, l〉 to ηop is a cofibra-
tion. The coreindexing functors η∗ : CLang(T) → CLang(T′) provide canonical
translations of languages for T-coalgebras into languages for T′-coalgebras.

Following [8], we define expressivity of a language for coalgebras as being
the ability of the language to capture behavioural equivalence.

Definition 4.3 Let T : Set → Set. A language 〈L, d〉 for T-coalgebras is
called expressive if, for any T-coalgebras 〈C, γ〉 and 〈D, δ〉 and any c ∈ C
and d ∈ D, (c |= ϕ if and only if d |= ϕ, for any ϕ ∈ L) implies c and d are
T-behaviourally equivalent.

Remark 4.4 For each regular cardinal α, one can derive a language 〈L, d〉
for T-coalgebras from a Zα-language 〈L, d〉 by letting dγ = P̂γα ◦ d:

L
d

��PZα
P̂γα ��PC

for each T-coalgebra 〈C, γ〉, with the maps γα : C → Zα being as in Re-
mark 2.4. The languages which interest us are those obtained by taking α = κ,
where T is κ-accessible. For, in this case, if the Zκ-language 〈L, d〉 is expres-
sive, then so is the induced language 〈L, d〉.
Proposition 4.5 Let T : Set → Set denote a κ-accessible endofunctor, and
let 〈L, d〉 denote an expressive Zκ-language. Then, the induced language 〈L, d〉
for T-coalgebras is also expressive.

Proof. Let 〈C, γ〉 and 〈D, δ〉 denote T-coalgebras, and let c ∈ C and d ∈ D
be such that c |= ϕ if and only if d |= ϕ, for any ϕ ∈ L. By the definition of
〈L, d〉, c |= ϕ holds precisely when γκ(c) ∈ d(ϕ). Hence, c |= i(γκ(c)), with
i : Zκ → L being as in Definition 3.6. But then d |= i(γκ(c)), or equivalently,
δκ(d) ∈ d(i(γκ(c))) = {γκ(c)}. Thus, δκ(d) = γκ(c). It then follows from
the definition of Zκ together with Remark 2.5 that c and d are behaviourally
equivalent. ✷

The remainder of this section is devoted to deriving an expressive Zκ-
language, and hence an expressive language for T-coalgebras, in the case when
T is κ-accessible. By building on the construction of the final sequence of T, we
define an ordinal-indexed sequence of languages, whose κth element induces
an expressive language for T-coalgebras.

Definition 4.6 Let T : Set → Set, and let F denote a language construc-
tor for T. The language sequence induced by F is given by the initial

123

Ĉırstea

sequence 18 of F : Lang → Lang.

That is, the language sequence induced by F is an ordinal-indexed sequence
of languages (〈Zα, 〈Lα, dα〉〉), together with a family (〈pα

β , ι
α
β〉)β≤α of maps

〈pα
β , ι

α
β〉 : 〈Zβ, 〈Lβ, dβ〉〉 → 〈Zα, 〈Lα, dα〉〉 between languages, satisfying:

• 〈Zα+1, 〈Lα+1, dα+1〉〉 = F〈Zα, 〈Lα, dα〉〉
• 〈pα+1

β+1, ι
α+1
β+1〉 = F〈pα

β , ι
α
β〉 for β ≤ α

• 〈pα
α, ι

α
α〉 = 1〈Lα,dα〉

• 〈pα
γ , ι

α
γ 〉 = 〈pα

β , ι
α
β〉 ◦ 〈pβ

γ , ι
β
γ〉 for γ ≤ β ≤ α

• if α is a limit ordinal, then the cocone 〈Zα, 〈Lα, dα〉〉 , (〈pα
β , ι

α
β〉)β<α for

(〈pβ
γ , ι

β
γ〉)γ≤β<α is colimiting 19 .

Then, it immediately follows that the Set-sequence underlying the language
sequence induced by F coincides with the final sequence of T.

Proposition 4.7 Let (〈Zα, 〈Lα, dα〉〉), (〈pα
β , ι

α
β〉)β≤α denote the language se-

quence induced by F . Then, (Zα), (pα
β)β≤α is the final sequence of T.

Proof (Sketch). The fact that F is fibred over T yields Zα+1 = TZα for
any α, as well as pα+1

β+1 = Tpα
β for any β ≤ α. Also, the fact that colimits of

diagrams in Lang are constructed using the limits of the underlying diagrams
in Set (see Proposition 3.5) results in the cone Zα, (p

α
β)β<α for (pβ

γ)γ≤β<α being
limiting. ✷

Remark 4.8 The existence of maps 〈pα
β , ι

α
β〉 : 〈Zβ, 〈Lβ, dβ〉〉 → 〈Zα, 〈Lα, dα〉〉

amounts to the commutativity of diagrams of form:

Lβ

dβ
��

ιαβ ��Lα

dα
��PZβ P̂pα

β

��PZα

with β ≤ α.

Our main result concerns the expressivity of the languages belonging to
the language sequence induced by a language constructor.

Theorem 4.9 Let T : Set → Set, and let F : Lang → Lang denote a language
constructor for T which preserves expressivity. Then, the Zα-language 〈Lα, dα〉
is expressive, for any α ≤ σ.

Proof (Sketch). We use transfinite induction to prove the above statement.

If α = β+1, the fact that 〈Lβ, dβ〉 is expressive together with the fact that
F preserves expressivity result in 〈Lα, dα〉 = F〈Lβ, dβ〉 being expressive.

18The initial sequence of an endofunctor is defined dually to its final sequence (see Defini-
tion 2.2).
19Recall from Proposition 3.5 that Lang has colimits.

124

Ĉırstea

If α is a limit ordinal, one can define iα : Zα → Lα by:

iα(x) =
∧

β<α

ιαβ(iβ(pα
β(x))) , x ∈ Zα

once each iβ : Zβ → Lβ with β < α has been defined 20 21 . Then, the fact
that dα ◦ iα = { }Zα follows from the expressivity of 〈Lβ, dβ〉 for each β < α,
together with Remark 4.8, the preservation by dα of the Bσ-structure, and the
universal property of Zα, (p

α
β)β<α. ✷

Taking 〈L, d〉 = 〈Lκ, dκ〉 in Remark 4.4 yields a language for T-coalgebras.

Definition 4.10 Let T : Set → Set denote a κ-accessible endofunctor, and
let F : Lang → Lang denote a language constructor for T. The language
induced by F is given by 〈Lκ, dκ〉.
Example 4.11 The language induced by the language constructor in Exam-
ple 3.10 is the language of coalgebraic logic [7] enriched with negation.

Example 4.12 The language induced by the language constructor in Exam-
ple 3.11 coincides with the language used in [8].

Example 4.13 If K is a Kripke polynomial endofunctor, and if FK is defined
by induction on the structure of K using the rules in Remark 3.12, then the
language induced by FK coincides with the language used in [9,5].

By combining Theorem 4.9 and Proposition 4.5 we obtain the following
result (which holds for any choice of σ such that σ ≥ κ).

Corollary 4.14 Let T : Set → Set denote a κ-accessible endofunctor, and
let F : Lang → Lang denote a language constructor for T which preserves
expressivity. Then, the language induced by F is expressive.

5 Compositionality

The question of deriving expressive languages for (coalgebras of) functor com-
positions from expressive languages for (coalgebras of) the functors being
composed has not, to our knowledge, been treated systematically in exist-
ing approaches to defining modal logics for coalgebras 22 . The present section
provides a general solution to this question, based on combining language
constructors for different endofunctors.

Proposition 5.1 If F1 is a language constructor for T1 and F2 is a lan-
guage constructor for T2, then F2 ◦ F1 is a language constructor for T2 ◦ T1.
Furthermore, if F1 and F2 preserve expressivity, then so does F2 ◦ F1.
20 In particular, i0 ≡ �.
21Note that, since α ≤ σ, the size of the conjunction used to define iα does not exceed σ.
22An exception to this is perhaps the approach in [9,5], where compositionality is implicit
in the definition of the languages.

125

Ĉırstea

Proof. The first part of the statement follows immediately from the commu-
tativity of the left and right squares of the following diagram:

Lang

E
��

F1 �� Lang

E
��

F2 �� Lang

E
��

Setop
Top

1

�� Setop
Top

2

�� Setop

The second part of the statement is a direct consequence of the definition of
expressivity preserving language constructors. ✷

Corollary 5.2 Let F1 and F2 be as in Proposition 5.1. If F1 and F2 preserve
expressivity, then the language induced by F2 ◦ F1 is expressive.
Example 5.3 By combining an expressivity preserving language constructor
F for P with itself, one obtains an expressive language for P ◦ P-coalgebras.
Possible values for F are obtained: (a) by taking T = P in Example 3.10; (b)
by considering the single predicate lifting λ : P̂ ⇒ P̂◦P given by λC(X) = PX
for X ∈ PC in Example 3.11; and (c) by considering the language constructor
PFId defined in Remark 3.12.

Remark 5.4 If F1, F2 and F are the language constructors for T1, T2 and
T2 ◦ T1 obtained using the approach described in Example 3.10, then the
language for T2 ◦ T1-coalgebras induced by F2 ◦ F1 is equivalent to (though
larger than) the language induced by F .

Another form of compositionality concerns endofunctors of form F1 × F2,
F1 + F2, (F1)

A or P ◦ F1, as considered in Remark 3.12 and Proposition 3.17.
In this case, Theorem 4.9 yields the following.

Corollary 5.5 Let F1 and F2 be as in Proposition 3.17. Then, the languages
induced by FA, FId, F1 ⊗F2, F1 ⊕F2, (F1)A and PF1 are expressive.

6 Future Work

We plan to study relationships between language constructors for arbitrary
endofunctors on Set, as suggested (independently) by Definition 3.9 and Re-
mark 3.12. Such relationships could be formalised within a category of lan-
guage constructors indexed by endofunctors, a category which we expect to be
cofibred over [Set, Set]. Colimits in this category are also worth investigating.
Another possible direction for future work is to generalise our approach to
endofunctors on arbitrary categories.

Acknowledgement

Thanks are due to Alexandru Baltag for comments on a draft of this paper, and
to an anonymous referee for suggestions on simplifying the results presented.

126

Ĉırstea

References

[1] J. Adámek and V. Koubek. On the greatest fixed point of a set functor.
Theoretical Computer Science, 150:57–75, 1995.

[2] A. Baltag. A logic for coalgebraic simulation. In H. Reichel, editor, Coalgebraic
Methods in Computer Science, volume 33 of Electronic Notes in Theoretical
Computer Science, 2000.

[3] M. Barr. Algebraically compact functors. Journal of Pure and Applied Algebra,
82(3):211–231, 1992.

[4] C.A. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis,
University of Edinburgh, 1993.

[5] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study.
Theoretical Informatics and Applications, 35:31–59, 2001.

[6] A. Kurz and D. Pattinson. Definability, canonical models, compactness for
finitary coalgebraic modal logic. In L.S. Moss, editor, Coalgebraic Methods in
Computer Science, volume 65.1 of Electronic Notes in Theoretical Computer
Science, 2002.

[7] L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317,
1999.

[8] D. Pattinson. Expressive logics for coalgebras via terminal sequence induction.
Technical report, LMU München, 2002.

[9] M. Rößiger. Coalgebras and modal logic. In H. Reichel, editor, Coalgebraic
Methods in Computer Science, volume 33 of Electronic Notes in Theoretical
Computer Science, 2000.

[10] J. Worrell. On the final sequence of an accessible set functor. To appear in
Theoretical Computer Science.

127

