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Abstract There are two types of tRNA 3 0 processing endoribo-
nucleases (tRNase Z): a short form (tRNase ZS) and a long form
(tRNase ZL). Although the human genome contains both genes,

little is known about the physiological role of tRNase ZS. We
found that the human tRNase ZS gene expression appears to
be post-transcriptionally regulated. Additionally, analyses for
cis-regulatory elements for the tRNase ZS gene transcription
suggested that transcription factors that bind to five different
sites on the promoter work together to potentiate the transcrip-
tion initiation. Furthermore, we found that tRNase ZS is pre-
dominantly present in the cytosol and hardly in the nucleus.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

tRNase Z (EC 3.1.26.11) is one of the tRNA processing en-

zymes, which removes a 3 0 trailer from pre-tRNA [1–5], and

can be categorized into two groups: a short form (tRNase

ZS) that consists of 300–400 amino acids and a long form

(tRNase ZL) that contains 800–900 amino acids [6]. Bacteria

and archaea genomes contain a tRNase ZS gene only, while

eukaryotic genomes encode either only tRNase ZL or both

forms. The human genome contains both tRNase ZS and tRN-

ase ZL genes. This raises an interesting question whether the

short and long forms of tRNase Z play different roles in the

cells.

The long form of tRNase Z has the following interesting

physiological properties. Caenorhabditis elegans tRNase ZL

has been shown to play a role in germline proliferation [7],

while human tRNase ZL has been suggested to play a role in

mitosis as a modulator of centrosome through physically inter-

acting with the c-tubulin complex [8]. Three missense changes

in the human tRNase ZL gene have been reported to be signif-

icantly associated with the occurrence of prostate cancer [9],

although this conclusion is controversial [10]. Human tRNase

ZL can function as a four-base-recognizing RNA cutter

(termed RNase 65) through a relatively stable complex with

a 3 0-truncated tRNA [6,11].
Abbreviations: tRNase ZS, a short form of tRNase Z; tRNase ZL,
a long form of tRNase Z
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In contrast, little is known about the physiological role of

human tRNase ZS, although the recombinant enzyme has been

shown in vitro to have the tRNA 3 0 processing activity and the

endoribonuclease activity that cleaves unstructured RNAs

[2,12]. Notably, recombinant human tRNase ZS shows a weak-

er activity on pre-tRNA substrates than recombinant human

tRNase ZL [13]. In addition, the human tRNase ZS gene is

not essential for a cell to survive because the genome of the

lung cancer cell line Ma29 has a region of homozygous dele-

tion on chromosome 18 that contains the whole tRNase ZS

gene [14]. On the other hand, the Drosophila melanogaster

tRNase ZL gene, which is juvenile hormone-inducible, appears

to be indispensable because its knockdown by RNA interfer-

ence impairs the tRNA 3 0 processing in both nuclei and mito-

chondria [15,16]. This implies that the human tRNase ZL gene

on chromosome 17 would be also indispensable.

Here, we began a voyage to elucidate the physiological role

of human tRNase ZS. We first examined if the tRNase ZS gene

is really expressed at the protein level, and then analyzed cis-

regulatory elements for the tRNase ZS gene transcription. Fur-

thermore, we examined the subcellular localization of human

tRNase ZS.
2. Materials and methods

2.1. Cell culture and luciferase assay
Cell culture and the luciferase reporter assays were performed basi-

cally as described before [17].

2.2. Western analysis
Whole cell extracts dissolved in a buffer (50 mM Tris–HCl pH 6.8,

2% SDS, 10% glycerol, 100 mM dithiothreitol) or the subcellular frac-
tions described below were separated by SDS/7.5–15% polyacrylamide
gel electrophoresis, and transferred to a nitrocellulose membrane. The
membrane was probed with antibodies raised to recombinant human
tRNase ZS, or antibodies against the standard proteins calpain, porin,
c-jun, and vimentin using the ECL Western Blotting Detection System
(GE Healthcare).

2.3. Northern analysis
Total RNA (20 lg per lane), extracted from each cell line with ISO-

GEN (Nippon Gene), was separated by formaldehyde/1% agarose gel
electrophoresis, and transferred to a nitrocellulose membrane. Hybrid-
ization with digoxigenin-labeled RNA probes and detection were per-
formed according to the manufacturer�s protocol (Roche Diagnostics).
The glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) mRNA
level was used as an internal standard.
2.4. Plasmid construction
A 2 kbp putative promoter DNA region for the human tRNase ZS

gene transcription was PCR-amplified from a human genomic BAC
clone (Invitrogen), and cloned between the NheI and HindIII sites of
the luciferase reporter plasmid pGL3-Basic (Invitrogen) to generate
blished by Elsevier B.V. All rights reserved.
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pGL/trzs/full. The downstream deleted promoters were generated by
PCR from pGL/trzs/full, and cloned between the NheI and XhoI sites
of pGL3-Basic to generate pGL/trzs/Dd1–pGL/trzs/Dd7. For example,
pGL/trzs/Dd4 contains a promoter that lacks the region from the prox-
imal end to the putative HNF-1 binding site inclusive (see Section 3).
The upstream deleted promoters were PCR-generated from pGL/trzs/
full, and cloned between the XhoI and HindIII sites of pGL3-Basic to
generate pGL/trzs/Du1–pGL/trzs/Du7. The plasmids pGL/trzs/mp1–
pGL/trzs/mp7 containing the multipoint mutant promoters were con-
structed based on the pGL/trzs/Dd and pGL/trzs/Du series.

2.5. Subcellular fractionation
The cytosolic, membrane/organelle, nuclear, and cytoskeletal frac-

tions were prepared from each cell line by using a ProteoExtract Sub-
cellular Proteome Extraction Kit (Merckbiosciences).
3. Results and discussion

3.1. Human tRNase ZS gene expression and post-transcriptional

regulation

To examine whether tRNase ZS is really expressed in human

cells, we performed western analysis for tRNase ZS in various

human culture cells. The Western blot for total protein sam-

ples from A549 epithelial lung adenocarcinoma cells, HeLa

cells, IMR90 lung fibroblasts, and embryonic kidney 293 cells

was probed with polyclonal antibodies raised to recombinant

human tRNase ZS. All these cells expressed tRNase ZS with

one exception of 293 cells (Fig. 1A).

To see a possibility of post-transcriptional regulation in 293

cells, we also carried out Northern analysis for the tRNase ZS

mRNA in the four human cells. The mRNA was detected in all

cell lines including the 293 cells, and its level in HeLa cells was

the lowest although the tRNase ZS protein level was the high-

est (Fig. 1B). Together, these observations suggest that the hu-

man tRNase ZS gene expression may be regulated post-

transcriptionally. Several miRNAs such as miR-136, miR-

422a, miR-488, and miR-802 may be involved in the post-tran-

scriptional regulation, which were predicted to bind to the 3 0

untranslated region of the human tRNase ZS mRNA (http://

microrna.sanger.ac.uk).

3.2. Cis-regulatory elements for the human tRNase ZS gene

transcription

To elucidate cis-regulatory elements for the human tRNase

ZS gene transcription, which appears to be activated in every

cell, we cloned a 2 kbp region upstream of the putative tran-

scription initiation site into the luciferase reporter plasmid

pGL3-Basic and dissected this region, which we tentatively call

transcriptional promoter (Fig. 2; http://dbtss.hgc.jp). Notably,

this promoter does not contain the TATA box. Based on pGL/

trzs/full containing the full-length promoter region, we con-
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Fig. 1. Human tRNase ZS gene expression in A549 epithelial lung
adenocarcinoma cells, HeLa cells, IMR90 lung fibroblasts, and
embryonic kidney 293 cells. (A) Western analysis. (B) Northern
analysis.
structed derivatives that contain seven downstream deletions

(pGL/trzs/Dd1–pGL/trzs/Dd7), seven upstream deletions

(pGL/trzs/Du1–pGL/trzs/Du7), or seven multipoint mutations

(pGL/trzs/mp1–pGL/trzs/mp7). pGL/trzs/Dd1–pGL/trzs/Dd7

contain promoters that lack the regions from the proximal

end to the putative binding sites for transcription factors,

Nkx2-5, FOXD3 (distal), FOXD3 (proximal), HNF-1, Pax-

4, Hand1/E47, and HNF-3b, respectively (Fig. 3A; http://

www.gene-regulation.com). For example, pGL/trzs/Dd4 con-

tains a promoter (�2000 to �1082) that lacks the region from

the proximal end to the putative HNF-1 binding site inclusive

(Figs. 2 and 3A). pGL/trzs/Du1–pGL/trzs/Du7 contain pro-

moters that lack the regions from the distal end to the putative

binding sites for transcription factors, Nkx2-5, FOXD3 (dis-

tal), FOXD3 (proximal), HNF-1, Pax-4, Hand1/E47, and

HNF-3b, respectively (Fig. 3A). pGL/trzs/mp1–pGL/trzs/

mp7 have full-length promoters that contain 2–5 point muta-

tions in the putative binding sites for transcription factors,

Nkx2-5, FOXD3 (distal), FOXD3 (proximal), HNF-1, Pax-

4, Hand1/E47, and HNF-3b, respectively (Fig. 3A).

We performed luciferase reporter assays for these plasmids

in HeLa cells. None of the downstream or upstream deleted

promoters led to transcription with two exceptions of Du4

and Du7 (Fig. 3B). The deletion promoter Du7 was 1.6-fold

more active than the full-length one, while the Du4 activity

was only 40%. In the multipoint mutant series, only two pro-

moters, mp4 and mp7, showed the transcription activity, which

were nearly the same as and 20% higher than that of the full-

length intact promoter. Similar results of the luciferase assays

were obtained with respect to 293 cells, but the relative tran-

scription activities of Du4, Du7, mp4, and mp7 were weaker

than those in HeLa cells and the downstream deletion promot-

ers Dd1 and Dd2 showed 5% and 8% activities, respectively

(Fig. 3C).

Taken together, these observations indicate that the �430 bp

proximal region is essential for a promoter activity, that the

putative HNF-3b binding site is dispensable, and that the

putative HNF-1 binding site is dispensable in HeLa cells but

important in 293 cells. The substantial activity of the deletion

promoter Du7 suggests that there may be the equivalent of a

TATAA element within the proximal region. Indeed, we found

similar sequences, TATTA (�256 to �252), TATGA (�296 to

�292), and TATGA (�384 to �380), which might work as a

minimal promoter. More interestingly, each one of the five

putative factor binding sites (Nkx2-5, FOXD3 (distal),

FOXD3 (proximal), Pax-4, and Hand1/E47) is indispensable

for a strong promoter activity in the context of the full-length

promoter, suggesting that transcription factors that bind to

these five sites work together to potentiate the transcription

initiation.
3.3. Human tRNase ZS does not exist in the nuclei

To elucidate a subcellular distribution of human tRNase ZS,

we fractionated the HeLa cells to their components through

differential centrifugation and performed western analysis for

tRNase ZS in each subcellular component. We separated the

cells into cytosolic, membrane/organelle, nuclear, and cyto-

skeletal fractions, and assessed the integrity of the fraction-

ation by western assays for subcellular specific standard

proteins, calpain for the cytosolic fraction, porin for the mem-

brane/organelle fraction, c-jun for the nuclear fraction, and

http://microrna.sanger.ac.uk
http://microrna.sanger.ac.uk
http://dbtss.hgc.jp
http://www.gene-regulation.com
http://www.gene-regulation.com


Fig. 2. The whole sequence of the human tRNase ZS gene promoter. The potential transcription factor binding sites are underscored. The boxed
sequences were replaced with the XhoI recognition sequence 5 0-CTCGAG-3 0 in the process of mutant plasmid construction. The putative
transcription initiation site is numbered as 1.
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vimentin for the cytoskeletal fraction. The western analysis for

the standard proteins suggested that our fractionation proce-

dure was carried out properly (Fig. 4A).

Surprisingly, we found that tRNase ZS exists primarily in the

cytosolic fraction (Fig. 4A). A much less amount of tRNase ZS
was found in the membrane/organelle fraction, whereas it was

not detected in both nuclear and cytoskeletal fractions. Similar

distribution patterns were observed with respect to human

IMR90 lung fibroblasts (Fig. 4B) and A549 epithelial lung ade-

nocarcinoma cells (Fig. 4C). The observation that tRNase ZS



A B C

Fig. 3. Cis-regulatory elements for the human tRNase ZS gene transcription. (A) Schematics of the tRNase ZS gene transcriptional promoter and its
derivatives. Boundaries between downstream and upstream deletions are indicated by vertical broken lines. The potential transcription factor binding
sites are shown. (B) and (C) Luciferase reporter assays in HeLa cells (B) and 293 cells (C). The cells were transiently co-transfected with the luciferase
reporter and b-galactosidase reference plasmids (0.2 lg/ml each). Luciferase activity shown is normalized against b-galactosidase activity. Data
represent the means ± SD of three independent experiments.
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Fig. 4. Western analyses for human tRNase ZS in the subcellular fractions. (A) HeLa cells. (B) IMR90 lung fibroblasts. (C) A549 epithelial lung
adenocarcinoma cells. The cytosolic, membrane/organelle, nuclear, and cytoskeletal fractions were prepared from each cell line. Subcellular specific
standard proteins used were calpain for the cytosolic fraction, porin for the membrane/organelle fraction, c-jun for the nuclear fraction, and vimentin
for the cytoskeletal fraction.
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exists predominantly in the cytosol and hardly in the nuclei

was totally unexpected, and indicates that tRNase ZS is not in-

volved in the nuclear tRNA 3 0 processing. The physiological

relevance of the cytosolic tRNase ZS is unknown.

3.4. What is the physiological role of human tRNase ZS?

Although human tRNase ZS in the mitochondria may play a

role in the mitochondrial tRNA 3 0 processing, the dispensabil-

ity of its gene in the lung cancer cell line Ma29 and the pres-

ence of tRNase ZL in the mitochondria (unpublished data)

would make this possibility unlikely. Because human tRNase

ZS has the activity to cleave unstructured RNAs [12], tRNase

ZS in the cytosol might work for processing and/or degrada-

tion of cytosolic unstructured RNAs to fine-tune gene expres-
sion. Alternatively, the cytosolic tRNase ZS might be involved

in a completely different cellular process such as signal trans-

duction. Interestingly, human tRNase ZL was reported to

potentiate TGF-b/Smad signaling through physically interact-

ing with Smad2 to function as a transcription factor [18], and

the human tRNase ZS gene exists adjacent to the Smad4 gene

on chromosome 18 [14]. This may be just a coincidence, or the

cytosolic tRNase ZS might interact somehow with Smad4. In

any case, the existence of human tRNase ZS in the cytosol is

a new enigma.
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