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The aim of the paper is to establish some new integral inequalities involving two 
functions and their first order and higher order derivatives. Our results in the 
special cases yield the well-known Opial inequality and some of its 
generalizations. ‘c 1986 Academic Press, Inc. 

1. INTRODUCTION 

In 1960, Opial [6] proved the following interesting inequality: 

Let f(x) be of class C’ on 0 <x < h, and satisfy f(O) =f(h) = 0, f(x) > 0 
on (0, h). Then 

The constant h/4 is best possible. 

Integral inequalities of the form (1) have an interest in their own right 
and also have important applications in the theory of ordinary differential 
equations and boundary value problems (see [S, 8, 91). Over the last 
twenty years a large number of papers have been appeared in the literature 
which deals with the simple proofs, various generalizations and discrete 
analogues of Opial inequality and its generalizations, see, for example [7; 
4, pp. 154-1621 and the references given therein. In [lo] Yang has 
established some interesting generalizations of the Opial’s inequality by 
using the Mallows method [3] of the proof of inequality (1). In the present 
paper we establish a number of new integral inequalities involving two 
functions and their first order and higher order derivatives which in the 
special cases yield the well known Opial inequality (1) and some of its 
generalizations given by Das [2] and Yang [lo]. The method employed in 
the proofs of our results depends on the modification of the method used 
by Yang in [lo]. 
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2. STATEMENT OF RESULTS 

In this section we state our main results on the integral inequalities to be 
proved in this paper. Theorems 14 deal with the integral inequalities 
involving two functions and their first order derivatives. 

THEOREM 1. Let p(x) he positive and continuous function on a finite or 
infinite interval a < x < b such that sip-‘(x) dx < co. Zf u(x) and v(x) are 
absolutely continuous functions on (a, b) and u(a) = u(b) = 0, u(a) = u(b) = 0, 
then 

s b [14x) v’(x)1 + Iv(x) u’(x)ll dx u 

~$4 bp(~)[W(x)12 + Iu’(x)121 dx, 
s (I 

(2) 

where 

A= ‘pP’(x)dx=jhpP’(x)dx, 
I (I 

Equality holds in (2) if and only if 

u(x) = u(x) = M 1’ p ~ ‘(t) dt, 
u 

u(x)=u(x)=MjhpP1(t)dt, 
r 

where M is a constant. 

a<c<b. (3) 

a<x<c, 

c<xdb, 

Remark 1. In the special case when u(x) = u(x), Theorem 1 reduces to 
the inequality established by Yang [ 10, Theorem 1 ] which in turn contains 
as a special case the Opial inequality (1). 

THEOREM 2. Let p(x) be positive and continuous function on an interual 
a<x<c, with j:pP1(x)dx< Go, and let q(x) be bounded positive, con- 
tinuous, and nonincreasing function on a <x < c. If u(x) and v(x) are 
absolutely continuous functions on a < x < c and u(a) = u(a) = 0, then 

s ’ dx)Clu(x) v’(x)l + lo(x) u’(x)ll dx u 

<T ’ j”’ p-‘(x) dx s’ p(x) &)Clu’(x)12 + lv’b)121 dx, (4) a 0 

with equality zf and only zf q(x) = constant and u(x) = v(x) = M szpP ‘(t) dt 
for a <x < c, where A4 is a constant. 
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THEOREM 3. Let p(x) be positive and continuous function on an interval 
c<x< 6, with jtp-‘(x) dx< 00, and let q(x) be bounded positive, con- 
tinuous and nondecreasing function on c 6x 6 b. If u(x) and v(x) are 
absolutely continuous functions on c 6 x 6 b and u(b) = u(b) = 0, then 

s b dx)Club) v’(x)1 + I@) u’(x)1 1 dx < 

Gt ibrlb) dx [bp(x) s(x)Clu’(x)12 + lv’(x)121, (5) 

with equality if and only tf q(x) = constant and u(x) = v(x) = A4 jt p ~ ‘(t) dt 
for c < x < b, where A4 is a constant. 

Remark 2. We note that Theorem 1 is a special case of the com- 
bination of Theorems 2 and 3 when q = constant. In the special case when 
U(X) = u(x), Theorems 2 and 3 reduces to Theorems 3 and 3’ given in [lo] 
which deals with the simplified proofs of the results established by Beesack 
[ 1 ] and at the same time generalizations of the results established in [ 11. 

THEOREM 4. Zf u(x) and v(x) are absolutely continuous functions on 
a 6 x 6 b with u(a) = u(b) = 0, u(a) = v(b) = 0, then 

s b lu(x) 4x)l”Cl4x) v’(x)1 + Iv(x) u’(x)11 dx 0 

[Iu’(x)I~(~+‘)+ Iu’(x)12’“+‘)] dx, (6) 

where m 3 0 is a constant. Equality holds in (6) tf and only if 

u(x) = u(x) = M(x - a), a<x<c, 

u(x) = v(x) = M(b -x), cdxdb, 

where M is a constant. 

Remark 3. It is interesting to note that in the special case when 
u(x) = v(x) and 2m + 1 = n, our Theorem 4 reduces to the inequality 
established by Yang in [lo, Theorem 41 which in itself contains as a 
special case the Opial inequality when n = 1, a = 0, and b = h. 

Our next two theorems deals with integral inequalities involving pair of 
functions and their nth order derivatives. 
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THEOREM 5. Let u, u E C”’ -- I’ [a, b] be such that u”‘(a) = u”‘(a) = 0 for 
i = 0, l,..., n- 1, where n> 1. Let u(nP”, v’~- ” be absolutely continuous and 
f: Iu’n’(~)12dx<~, 12 Iu’“‘(x)l*dx< CD. Then 

i ’ [lu(x) dn’(x)I + lo(x) u’“‘(x)l] dx 
CI 

d B(b-a)” i” [lu’“‘(x)12 + lu’“‘(x)l*] dx, 
” 

(7) 

where 

1 n 

( 1 

I/* 

‘=2(n!) 2n-1 (8) 

Equality holds in (7) if and only if n = 1 and u”“(x) = u’“‘(x) = A4, where A4 
is a constant. 

THEOREM 6. Let u, v E C[a, b] and u’,..., ucnP I’, u’,..., v(+ ” are piecewise 
continuous, ~4’~ I’, ucn ~ ” are absolutely continuous with lt Iu’~‘(x)I* dx < 00, 
j; Iv”“(x)12 dx< co, u”‘(a) = u”‘(b) = 0, v”‘(a) = v(j)(b) = 0 for i = 0, l,..., 
n- 1, where n b 1, then 

s h [lu(x) u’“‘(x)l + Iv(x) u”“(x)l] dx 
0 

[Iu”“(x)l*+ /u”“(x)/*] dx, 

where B is as giuen in (8). Equality holds in (9) if and only if’ n = 1 and 

u(x) = u(x) = M(x - a)“, 
a+b 

adxd- 
2 ’ 

a+b 
u(x)=u(x)=M(b-x)“, ?<x<b, 

where M is a constant. 

(9) 

Remark 4. We note that in the special case when we take u(x) = v(x), 
in our Theorems 5 and 6 we get the integral inequalities established by Das 
in [2, Theorem 1 and Remark on p. 2591 which in turn contains as a 
special case the Opial inequality (1) and the sharper version of the 
inequality established by Willet in [9]. 
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3. PROOFS OF THEOREMS l-4 

Let c E [a, 61 and define 

Y(X) = i‘-’ b’(t)1 dt, 
a 

z(x) =I’ Iv’(t)1 dt, 
u 

for adxdc and 

r(x) = - I b lu’(t)l dt, 
zi 

for cdxd b, then we have 

Y’(X) = lu’(x)l, 

for a<x<c and 

r’(x) = lu’(x)l, 

for c<x6 6. We note that 

u(x) = j-‘ u’(t) dt, 
(I 

for a<x<c and 

I 
b 

u(x) = - u’(t) dt, 
li 

(10) 

w(x) = -1” Iv’(t)1 dt, 
.r 

(11) 

z’(x) = Iu’(x)l, (12) 

w’(x) = Iu’(x)l (13) 

u(x) = j‘ u’(t) dt, 
(I 

(14) 

b 

u(x) = - u'(t) dt, (15) 
Y 

for cdx<b. From (14) and (10) and (15) and (11) we observe that 

l4x)l GY(X), lo( ~z(x), (16) 

for a<x<c and 

W)l6 -4x), Idx)l G -w(x), (17) 

for c<x< b. Now from (16), (12), and upon using the elementary 
inequality 

a/3 < &c’ + 8’1 for CI, fi reals, (18) 

the definitions of y(x) and z(x) given in (10) and Schwarz inequality we 
have 
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I (’ Cl+) u’(x)1 + 14~) u’(x)1 1 dx ” 

< I (’ [y(x) z’(x) + 4x) y’(x)] dx cl 

= s ;g [Y(X) z(x)1 dx 

= Y(C) z(c) 
d gy2(c) + z’(c)] 

4 ’ U/&i?) J’i?? lu’(x)l 
2 -1 dx ” 

2 

+ 1; (l/d%?) &i? lo’(x)l dx )I 
6 ; I”p - ‘(x) dx I”p(x)[ lu’(x)12 + Iu’(x)l’] dx. 

u 0 (19) 

Similarly, from (17), (13) and on using the elementary inequality (18), the 
definitions of Y(X) and w(x) given in (11) and Schwarz inequality we have 

s h t-b@) u’(x)1 + b(x) u’(x)1 1 dx C’ 

61 ’ j’p-l(n) dx jhp(x)[ld(x)12+ Iu’(x)12] dx. 
‘ < 

(20) 

From (19), (20) and the definition of A given in (3), the desired inequality 
in (2) follows. This completes the proof of Theorem 1. 

Let c E [a, 61 and define 

Y(X) = j‘ ,j%j lu’(t)l 4 4~) = joy m lu’(f)l & (21) 
u 

for adx<c and 

r(x)= - j” J% lu’(th & w(x) = - j” &?I lv’(f)l & (22) x x 

for cdxd b, then we have 

Y’(X) = Jm lU’(X)l> z!(x) = Jm Iu’(x)l, (23) 
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for ~6x6~ and 

r’(x) = J23 lU’(X)l? w’(x) = &3 Iu’(x)l, (24) 

for ~6x6 b. Now from (14), (21), nonincreasing character of q(x) on 
a<x< c and (15), (22), nondecreasing character of q(x) on c<x< b we 
observe that 

l4x)l 6 u/Jm Y(X), b(x)l 6 u/&i Z(X)> (25) 

for a<x<c and 

l4x)l G - (l/&m) 4x), lo( G -w&m w(x), (26) 

for c 6 x d 6, respectively. Now the proofs of Theorems 2 and 3 follows by 
closely looking at the proof of Theorem 1 given above with suitable 
modifications. We omit the further details of the proofs of Theorems 2 
and 3. 

From (12), (16), and upon using the elementary inequality (18), the 
definitions of y(x) and z(x) given in (lo), Schwarz inequality and Holder’s 
inequality we have 

I (’ I+) 4x)l”[W) u’(x)l + I+) u’b)ll dx 0 

< 1” y”(x) z”(x)Cy(x) z’(x) + 4x1 Y’(x)I dx 
JY 

m+‘(X) Zm+’ (4) dx 

1 
=- m+‘(c)zm+yC) 

m+l Y 

1 
‘2(m+ 1) C(Y”’ ‘W)‘+ (zm+‘(c))21 

(s : Iu’(x)l dl 

pa)*“+’ c 
s 2(m+l) u 

[~u’(x)l”“+“+ lu’(~)l~‘“+~)] dx. 

2 m+l 
91 1 

(27) 

Similarly, from (13) (17) and upon using the elementary inequality (18), 
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the definition of I(X) and w(x) given in (11) Schwarz inequality and 
Holder’s inequality we obtain 

s b b(x) G)l” Club) u’(x)1 + 14~) u’(x)1 1 dx ‘ 

<(h-C)2”+’ 
s 
’ 

2(m+l) < 
[lu’(x)12(m+l)+ IU~(X)12(m+1)] dx (28) 

Now taking c = (a + 6)/2, we obtain the desired inequality in (6) from (27) 
and (28). This completes the proof of Theorem 4. 

4. PROOFS OF THEOREMS 5 AND 6 

First, we note that in view of the assumptions on U, u for any XE [a, b] 
we have 

1 
u(x)= (n- l)! s ’ (x - t)“- ‘u’“‘(t) dt, (29) (1 

1 
u(x)=(fl-l)! ~ s ‘; (x - t)” ‘dn)( t) dt. (30) 

Now multiplying (29) and (30) by u(“)(x) and U(~)(X), respectively, and 
upon using Schwarz inequality we obtain 

< IU(n)(X)I (x--.)n-m(1’2) 
b(x) u(“)(x)1 ’ (n _ l)! (Zn _ 1)W 

-r lu(“)(t)12 dt I’* 
0 ~ > ’ 

(31) 

I@)(x)I (x-a)“- (‘12) 
I+) u(%)I d(n (2n- 1j1,2 

112 

(32) 

From (31) and (32) we obtain 

s b [[u(x) dn)(x)I + Iv(x) u’“‘(x)l] dx 
u 

1 
s 

b 

yn- I)! (&-1)“P (x-a) ’ ~ a (l/*) [ Iu(“)(x)I (j-l lu(“‘(t)l* dt)‘12 

dx. (33) 
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Now, first applying Schwarz inequality and then upon using the elementary 
inequalities (tl + fl)‘< 2(a2 + p”) and t11’2f11’2 6 $(a + /?), CI, /I > 0 (for LX, /? 
reals), to the right hand side of (33) we obtain 

s b [lu(x) u’~‘(x)[ + Iv(x) u’“‘(x)l] dx 
il 

112 
2(fl-(l/2)) dx 

x (lab [,o’“‘(x), (c ,u(“)(t),2 dt)li2 

+ lu’“‘(x)l (6 (u(“)(t),2 dt)“2]2 dx)‘:’ 

1 
G (n- l)! (2n- 1)“2 (2n)“2 

-(2.f [,~(~)(x)‘(j:,ii’“l(t)l’dt 

+ IzP)(x)[~ (1; ,u(“)(t),2 dt)] dx)“l 

js (b-u)* 
= (n - l)! (2n - 1)1’2(241’2 

I” (b-a)” 1” [lu’“‘(x)j’+ l0’“‘(x)1~] dx. 
0 

(34) 

This completes the proof of Theorem 5. 
The proof of Theorem 6 follows immediately on using (7) once on [a, 

(a + b)/2] and again on [(a + b)/2, b], where on the iatter interval, in view 
of the assumptions on U, u we use 

(-1)” b 
4x)=(n-l)! I x (t-x)“- ’ zbn)( t) dt, 

(-1)” b 
u(x)=(~--~! s 

T (t-x)“p’u(“)(t)dt. 

The details are omitted. 

409/l20.:2- I I 
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In concluding we note that it does not seem to be possible to extend the 
analysis of Sections 3 and 4 to obtain the general versions of Theorems 5 
and 6 in [lo] and Theorem 2 given in [2] in the framework of the general 
setup of our results involving two functions and their derivatives. The fact 
that in this case repeated applications of Holder inequality with suitable 
indices leads to difficulties which will not overcome by following the 
analysis in Sections 3 and 4. 

REFERENCES 

1. P. R. BEESACK, On an integral inequality of Z. Opial, Trans. Amer. Math. Sot. 104 (1962), 
47W75. 

2. K. M. DAS, An inequality similar to Opial’s inequality, Proc. Amer. Math. Sot. 22 (1969). 
258-261. 

3. C. L. MALLOWS, An even simpler proof of Opial’s inequality, Proc. Amer. Math. Sot. 16 
(1965), 173. 

4. D. S. MITRINO~, “Analytic Inequalities,” Springer-Verlag, Berlin/Heidelberg/New York, 
1970. 

5. J. MYJAK, Boundary value problems for nonlinear differential and difference equations of 
the second order, Zeszyty Nauk. Uniw. Jagiellon. Prace Mat. 15 (1971), 113-123. 

6. Z. OPIAL, Sur une inegaliti, Ann. Polon. Math. 8 (1960), 29-32. 
7. D. T. SHUM, On a class of new inequalities, Trans. Amer. Math. Sot. 204 (1975), 299-341. 
8. J. TRAPLE, On a boundary value problem for systems of ordinary differential equations of 

second order, Zeszyty Nauk. Uniw. Jagiellon. Prace Mat. 15 (1971). 159-168. 
9. D. WILLETT, The existence-uniqueness theorem for an nth order linear ordinary differen- 

tial equation, Amer. Math. Monthly 75 (1968) 1744178. 
10. G. S. YANG, On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966), 78-83. 


