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We prove a necessary and sufficient condition for the solution of the time-
invariant Riccati differential equation to converge towards the strong solution of
the corresponding algebraic Riccati equation, when the system is stabilizable,
without assuming that the Hamiltonian matrix has no eigenvalues on the imagi-
nary axis (or equivalently that there are no critical unobservable modes). The
condition is a generalization of an earlier one established by Callier and Willems.
Our proof revises an earlier one by Faurre, Clerget, and Germain, leading to
additional information of what can be assumed without loss of generality in our
context. It is also shown that the convergence is not always exponential and that
the presence of critical unobservable modes may slow down but does not prevent
the convergence of the solution of the Riccati differential equation. The impact of
the condition on linear—quadratic optimal control is briefly discussed. © 1995

Academic Press, Inc.

{. INTRODUCTION

A necessary and sufficient condition for the solution of the time-invari-
ant Riccati differential equation to converge towards the strong solution
of the corresponding algebraic Riccati equation is derived when the sys-
tem is stabilizable and the Hamiltonian matrix may have eigenvalues on
the imaginary axis. The rigorous presentation of the main steps of a com-
plete proof makes precise what may be assumed without loss of generality
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in our context and reveals that the presence of unobservable modes on the
imaginary axis may slow down but does not prevent the convergence of
the solution of the Riccati differential equation. As a byproduct of this
analysis the impact of the convergence condition on linear—quadratic
(LQ) optimal control is briefly discussed.

We study the time-invariant Riccati differential equation (RDE) arising
from LQ-optimal control, i.e.,

P(1) = A*P(7) + P(1)A — P(r)BB*P(7) + C*C (1a)
PO) = S, (1b)

where A € R, B € R**", and C € RP*", and 7 = t; — t = 0 (implying
that ¢ € [0, t;] with horizon ¢, € R and time ¢ € R); furthermore, S € R
is a symmetric positive semi-definite matrix and so is P(7) forall r = 0. We
assume now that

(A, B) is stabilizable. 2)

It is known that, under this condition, the corresponding algebraic Riccati
equation (ARE)

A*P + PA — PBB*P + C*C =0 3)

has a unique strong solution P = P, where P, = P% = 0, such that all the
eigenvalues of A, := A — BB*P, have nonpositive real parts; see e.g. [6]
and the references therein.

We investigate under which condition on the penalty matrix S will P(7)
converge to P, as 7 tends to infinity. This question is important in LQ-
optimal control and (using duality) in LQG-estimation problems: it estab-
lishes the existence of a limit cost (or a limit estimation error variance)
associated with the best possible stability properties for the closed-loop
state (or estimation error) dynamics. Here the optimal state trajectories
are not always exponentially stable since they may contain critical modes
(not necessarily bounded); these critical modes may be unwanted and
then the problem of finding a near optimal stabilizing feedback law be-
comes important. It is expected that our analysis should be useful for
choosing a well-motivated tradeoff between performance, i.e. optimality,
and stability.

The attraction of P(7) towards P, has already been studied under more
restrictive conditions than (2) in, e.g., [1, Sect. IV; 2, Theorems 4.1 and
4.2; 3, Theorem 3; 4, p. 111; and 5, Proposition 5.3, pp. 100-103] and the
references therein. It is the objective of this paper to present a necessary
and sufficient condition for attraction when (2) only holds. For under-
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standing this condition the following abbreviations, notions, and nota-
tions are used throughout: RDE, ARE, w.l.g., resp., p.s.d., p.d., n.s.d.,
exp., and +, which mean respectively the Riccati differential equation,
the algebraic Riccati equation, without loss of generality, respectively,
positive semi-definite, positive definite, negative semi-definite, exponen-
tially, and the direct sum of subspaces.

For any real matrix P, P* denotes its transpose, while P = P* = (
means that P is symmetric p.s.d. For any square matrix A € R™", £7(A),
$9%A), and £*(A) denote resp. the A-invariant subspaces of R” spanned
by the (generalized) eigenvectors of R” corresponding to the eigenvalues A
of A such that Re A < 0, Re A = 0, and Re A > 0 (these are the so-called
exp. stable, critical, and exp. antistable subspaces of R*). Furthermore,
we use PO (A) := PYA) + L (A) and £ (A) ;= LY A) + L7 (A); more-
over, the property £7(A) = R" is denoted Re A(A) < 0 (meaning that all
eigenvalues of A have negative real parts); Re A(A) = 0, Re A(A) = 0,
Re A(A) = 0, and Re A(A) > 0 have an obvious similar meaning. For any
matrix U, we denote by R(U) and N(U) its range and null space. For any
constant matrix pair (A, B) where A € R"*" and B € R**™, we denote by
C(A, B) and S(A, B) resp. the (A, B)-controllable and -stabilizable sub-
spaces of R", where

C(A, B) := R(B; AB; ...; A" 'B})) (4)
and
S(A, B) := £ (A) + C(A, B). (5)

Moreover, (A, B) is said to be controllable, resp. stabilizable, iff
C(A, B) = R", resp. S(A, B) = R". For any constant matrix pair (C, A)
where C € R and A € R™", we denote by NO(C, A) and NO**(C, A)
resp. the (C, A)-unobservable and -undetectable subspaces of R”, where

n—1

NO(C, A) = q N(CAY) (6)

i =
and

(7)
NOY(C, A) := NO(C, A) N F**(A).

Moreover, (C, A) is said to be observable, resp. detectable, iff
NO(C, A) = {0}, resp. NO**(C, A) = {0 }. In the following we shall also
be involved with the subspaces
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NO*(C, A), NOYC, A), and NO*~(C, A) (8)

obtained from (7) by replacing £ (A) resp. by £*(A4), L A), and L°-(A).
We assume that the reader is familiar with the properties of S(A, B) and
NOY*(C, A) as in e.g. [7] and [1].

Consider now symmetric solutions P = P* € R"™" of the ARE (3).
Among these, two solutions are very important. We call the strong solu-
tion of the ARE (3) the solution P, = P¥ = 0 such that, with

A, := A — BB*P., 9)
Re A(A,) = 0. (10)

Similarly, we call the antistrong solution of the ARE (3) the solution
P_ = P* = 0 such that with

A_:=A - BB*P_, (1n
Re AMA_) = 0. (12)

We consider also the Hamiltonian matrix H € R?7*27 given by
A —BB*
H= . (13)
—C*C —A*
We have then (see e.g. [6] and the references therein)

Fact 1. Consider the ARE (3). Then the following holds:

(a) There exists a unique strong solution P, iff (A, B) is stabilizable.

(b) There exists a unique antistrong solution P_ iff (—A, B) is stabi-
lizable.
(c) P. and P_ exist uniquely iff (A, B) is controllable.

(d) If P, exists, then

N(P,) = NO°~(C, A). (14)
(e) If P_ exists, then

N(P.) = NO°*(C, A). (15)
(fy If (A, B) is stabilizable, then

NOYUC, A) := NO(C, A) N Y(A) = LUA.) (16)
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and
NOYXC, A) ={0} a7
iff
LUH) ={0}. (18)
(g) If (A, B)is controllable, then
NOYC, A) = $UA,) = LAY = N(P, — P), (19)

where P, — P_ is the so-called gap. |

Observe that, in Fact 1(f) above, P, is stabilizing, i.e., Re A(A,) < 0, iff
NOYC, A) = { 0}. It is the purpose of this paper to prove

THEOREM 1. Consider the RDE (1) where
(A, B) is stabilizable. 20)

Then, for a given P(0) = § = §* = 0,

lirB P(r) = P, (21)
iff
N(S) N NO*(C, A) ={0}. (22)

Comments. 1 (a) Theorem 1 is a generalization of Callier and Wil-
lems [1, condition (32)] whereby the same condition holds when (2) holds
and NOYC, A) = {0}, i.e., $H) ={0}.

(b) An incomplete proof of Theorem | was presented in {5, pp. 101~
103] when (A, B) is controllable; moreover, their condition reads (see
below)

N(S) N NO*(C, A) C NO(C, A),

which is equivalent to (22) if N(§) N NO%*(C, A) is A-invariant but not
otherwise.

(c) The essential contribution of this paper is the rigorous presenta-
tion of the main steps of a complete proof making precise what may be
assumed without loss of generality under (2) and (22), namely that (A, B)
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is controllable and the rank of § — P_ is minimal; i.e., dim(N(5) N
NO™(C, A)) = dim(NOYC, A)). See below.

The paper is organized as follows. Section 1 is the present introduction.
In Section 2 it is shown that the condition of Theorem 1 is necessary. In
Section 3 we show that w.l.g. in Theorem 1 the assumption ‘*(A, B) is
stabilizable’’ may be replaced by *‘(A, B) is controllable.’’ In Section 4 it
is shown that the condition of Theorem 1 is sufficient. Section 5 contains
conclusions with the impact of Theorem 1 on LQ-optimal control theory.

2. NECESSITY oF CONDITION (22)

THEOREM 2. Consider the RDE (1) and let assumption (2) hold. Then,
for a given P(Q) = § = §* = 0,

ling P(r) = P, 2D

implies
N(S) N NO*(C,A) ={0}. (22)

Proof. Suppose for a contradiction that there exists a nonzero x in
N(S) N NO*(C, A). We know that, for all 7 = 0,

XaP(T)xg = l“l(‘lf {f;(HCx(I)HZ + Nu(Opy dr + x(’r)*Sx('r)}, 23)

subject to

X(1) = Ax(?) + Bu(1), x(0) = xg

u(+) 1s continuous.
For all 7 = 0 consider now normalized backtraced initial conditions
x(0, 7) := exp(—AT)x) - (lexp(—A7)x)[) . (24)
Since NO*(C, A) is A-invariant, one has
x(0, 7y € NO(C, A) forall r = 0. (25)

Set u(t) = 0 and observe that the solution of x = Ax + Bu due to x(0) =
x(0, 1) 1s x(¢) = exp(Ar) - x(0, 7). It is clear that x(r) € NO(C, A), whence
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Cx(t) = 0 and Sx(r) = Sx; - (lexp(—=Ar)x)|)~! = 0. It follows that, for
x(0) = x(0, 7), the cost above is zero, hence minimal, such that

x(0, 7)*P(r)x(0, 7) = 0 for all 7 = 0.

Now consider a sequence (7,) C R, such that 7, — = and observe that, by
(24), | x(0, 7,))) = 1 for all n. Now, using the compactness of the unit sphere
in R?, we may assume w.l.g. that the sequence (x(0, 7,)) converges to xg €
R with || x| = 1. Moreover, by (25), xo € NO*(C, A). On the other hand,
since P(7) — P,, we have also

lim (0, 7,)*Pr,)x(0, 7) = x§ Poxy = 0.

So, using Fact 1, xg E N(P.) = NO®(C, A). Hence, finally x,is in NO*(C,
A) N NO°(C, A) = {0};i.e., xop =0, which contradicts ||lx,| = 1. §

Remark 1. The idea of the proof above stems from [5, Necessity Proof
of Proposition 5.3, p. 103].

3. WiTHOUT Loss oOF GENERALITY (A, B) Is CONTROLLABLE

The purpose of this section is to show that in Theorem 1, assumption
(2), i.e. ““(A, B) is stabilizable,”” may w.l.g. be replaced by ‘‘(A, B) is
controllable.”” In words, we mean that when using a decomposition of the
state space in controllable and uncontrollable states, then, under assump-
tion (2), the convergence (21) and condition (22) hold iff these conditions
hold for the controllable part of the problem under investigation. More
precisely, use the decomposition

R" = C(A, B) + NO(B*, A*), (26)

where, by assumption (2), NO(B*, A*) C £ (A*). We get w.l.g., with
controllable items indexed by 1 and dim C(A, B) = k,

Ay Ap B,
A= , B = , C = [Cy G5, (27a)
0 A, 0
Py, Pp S S
P = . , S = N . (27b)
n P 2 5

Here A} € R**, A = Alcca. 8, Re AM(A2) < 0, and P () € R*** satisfies a
reduced controlluble RDE under P(0) = §, = ST = 0 (obtained from (1)
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by indexing all symbols by 1). We note hereby that w.l.g. any state x € R”
is decomposed according to

HEN
x = + , (27¢)
0 X2

x
C(A, B) = [[01] x € R"}. @7d)
We have then that, in Theorem 1, w.l.g. (A, B) is controllable if, for a
given P(0) = § = S* =0,
(@ N(S) N NOHC, A) ={0}iff N(S)) N NOT(C,, A)) ={0}, and
(b) lim.x P(r) = P, iff lim. P\(7) = P.,,

where

where P, is the strong solution of a reduced ARE with (A,, B,) controlla-
ble. Assertions (a) and (b) above are proved in Lemmas | and 3 below.
These lemmas are established under the assumptions of Theorem 1 and
the relations (27).

LEMMA 1. There holds
N(S) N NOH(C,A)={0} iff N(§) N NO*(Cy, A)) ={0}. (28)
Proof. Note that (A, B) is stabilizable iff L°*(A) C C(A, B). Hence,
under (2),
NO™(C, A) C C(A, B), (29)

whence
NOT(C, A) N C(A, B) = NO*(C, A). 30)

Claim (28) follows now easily using (30) and (27d). 1

The following result is well known from LQ-theory (see e.g. |7, p. 336])
and used in Lemma 3. Here P(r) means the solution of the RDE (1), which
is also the optimal quadratic cost matrix of a finite horizon LQ-optimal
control problem.

LEMMA 2. If (A, B) is stabilizable and P(0) = § = S* = 0, then the
symmetric p.s.d. matrix function P(7) is bounded on v = 0; more pre-
cisely, there exists k > 0 such that, for all x, € R,

xo P(t)xo < k - || x0] ont=0.
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LEMMA 3. For a given P(0) = § = §* = 0 one has

lirB P(r) =P, iff I,Lna} Pi1) = P4y, (31)

Proof. We handle only sufficiency since necessity is obvious. For this
purpose we use the decomposition (26) leading to the relations (27) and
study the difference

D=

D, Dy
DY, D,

:l =P - P, (32)

Note that we have lim,... D\(7) = 0 and we are done if D»(7) and D,(7)
tend to zero as 7 tends to infinity. Now standard manipulations using the
RDE (1) and an ARE solved by P. give, with

A, := A — BB*P,, 9)
D(r) = A*D(r) + D(1)A, — D(r)BB*D(1), (33a)
D) =S — P.. (33b)

Moreover, using the ARE and relations (27) one gets, with
P+l P+12
P+ = * ’
Pin Pi;
A A — BBYP, A, — BB{P.) Ay A
’ 0 As 0 A

] ,  (33¢)

where Re AM(A 1) = 0 and Re A(A,) < 0. Note here that these relations
imply (see e.g. [7, p. 185]):

(a) for any £ > 0 there exists a constant M, > 0 such that
llexp(AL; )| = M, - exp(er) ont=0; (33d)
(b) there exist constants o; > 0 and M, > 0 such that
lexp(A7)|| = M; - exp(—o3r) ontT=0. (33e)

Now, using (32), (33a), and (33¢), we have (omitting the dependence
upon 7)

Dy, = A%\Dy; + DjA, + F, (33f)
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where
F:=D, - (A.; — BiBIDyp), (33g)
and
D, = AiD, + DA, + G (33h)
where
G := A%Dy, + DA\, — DSEBBIDy,. (33i)

We show now that D,(7) tends to zero as 7 — . From (33f) and (33b)
we get

Diy(7) = exp(AXi7) - (S — Pi)i2 » exp(Aar)

. (34a)
+ [T exp(A%i(r — ) F@) exp(Astr — §) de.

Use now (33d) and (33¢e) where £ > 0 is chosen sufficiently small such
that u := o, — £ > 0. It follows then that

1D = My My (IS = Pl exp(—pn) + [[ IF@) exp(—putr - &) de.
(34b)

Note here that the function F(7) given by (33g) is a continuous bounded
function that tends to zero as r— = (this holds because D(r) is bounded by
Lemma 2 and D(7) tends to zero as 7 — =). Now the first term on the
right-hand side (RHS) of (34b) tends to zero as 7 — > and so does the
second term. Indeed, the latter is the convolution of exp(—ur) with the
function ||F(7)|| (see e.g. [7, Proof of Theorem 7.2.75, p. 192]). Hence

lir{cl D7) = 0. (35)

We show now that the same holds for D,(1). Observe that, by (33h) and
(33b),

Di(7) = exp(A3r) - (S — P.): - exp(A,7)

+ fo’ exp(Adr = &) G(&) exp(Aqr — §)) dE.
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Hence, by (33e),

1D = IS = Pl exp(=2027) + [ |G exp(~20(r = &) de).
(36)
Note here that, by (35), the function G(7), given by (33i), is a continuous
bounded function that tends to zero as T — «. Note also that op > 0.

Hence, using observations similar to those above, the RHS of (36) tends
to zero as 7 — . So

lim Dy(7) = 0. 1 37

Remark 2. It follows from the proof of LLemma 3 that, if D(7) tends to
zero exponentially (exp.) as 7 — =, then so do D;(7) and D,(7). Thus that
P\(7r) — P, exp. as 7 — » implies P(r) — P. exp. as T — . In addition,
the inequalities (34b) and (36) provide quantitative estimates of the speed
of convergence of P(r) towards P., provided that one has previously
obtained computable characteristics of the convergence of P (7) towards
P,

4. SUFFICIENCY OF CONDITION (22)

We prove now

THEOREM 3. Consider the RDE (1) where
(A, B) is controllable. (38)
Let P(O) = § = §* = 0 be given. Then that
N(©S) N NOT(C, A) ={0} (22)
implies
1513 P(r)y = P,. 2
DiscussioN. Our method will proceed partially along the lines of the

proof of [S, Prop. 5.3, pp. 101-103]. Here, with P_ = 0 the symmetric
n.s.d. antistrong solution of the ARE, weuse B, S — P_,and A_ := A —
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BB*P_instead of G, A, and —F, resp. in [5]. We shall also use differences
with respect to P_ = 0, namely

Alr) ;= P(r) — P_ =0, (39)
where A(7) solves the RDE
A(r) = A*A(r) + A(A- — A(D)BB*A(r), 71 =0, (402)
with
AO)y=S§S—-P_=0. (40b)
It follows that A(r) satisfies the standard evolution formula

A(T) = exp(A*7) A(0) {1 + exp(A_7) M(1) exp(A*1) A0)] ! exp(A 7)
(41a)

on 7 = 0, where
M(7) := f; exp(—A_¢) BB* exp(—A™¢) d¢ (41b)

is the p.d. controllability grammian of the pair (—A_, B), with
Re AM(A_) = 0.
Note that after some manipulations one gets [5, Formula (5.11), pp.
101-102}, i.e.,on 7 > 0,
A(r) = M(r)"' — B(n)!,
where
B(1) := M(r) + M(7) exp(A*r) (S — P_) exp(A_71) M(7).

Note also that we are done if

lim A(r) =P, — P_. (42)

The method attempted in [5, pp. 102-103] is to show that

(a) liril M) '=pP, - P_. (43)
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and
(b) condition (22), or equivalently (52) below, implies

lim B(m)~! = 0.
The latter assertion however is not explained on {5, p. 103] and is not
obvious. Hence a more detailed analysis is needed. For this purpose our

method will use the well-known comparison principle of the RDE (40a);
see e.g. [3].

LEMMA 4. Let Ly and L, be two square n X n symmetric p.s.d. matri-
ces and let A(r, L)) denote the solution of (402) due to A(0) = L;, i = 1, 2.
Then

Ly =L, (44)
implies
Alr, L) = A(r, L,) ont=0. 1 45)

Now using this lemma we shall find below that, for any given A(0) =
S — P_=0,A(r, S — P.)is bounded above and below by two expressions
which tend to P, — P_ as 7 —> %, As a consequence (42) holds and we are

done. We are now ready to build up the proof of Theorem 3. This will be
the goal of the decomposition and Lemmas 5 to 7 below.

As in [5, p. 102] we decompose R" as

. X1 0
Rt = YA + $UA), = [0 ] + [ ] (46)

X2
where A_ meets (11) and (12). Moreover, by Fact 1(g),
PYA) = NP, — P_) = N(P,) N N(P_) = NOUC, A). (47)

Hence, in these coordinates,

ISP
A= R B = , (48a)
0 A—z BZ

P_‘ 0 Sl SYZ
pP_= , S = , (48b)
0 0 sh S
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with
Re A(A_) >0 and ReAA_)) =0 (48¢)

(A_, is exp. antistable and A_; is critical). Moreover,

[(P+ - P 0]
P, -P = =0, (49a)
0 0

with
(P, — P.)>0. (49b)

Finally, the solution A(7), (39), and the grammian M(r), (41b), read

A| Alz Ml MIZ
A= , M= . (50)
ATZ AZ ’lk?. MZ

Using the considerations above we have now

LEMMA 5. Let (A, B) be controllable. Then, with § = §* = 0,

N(S) N NO*(C, A) = {0} (22)
if
S — P_ is positive definite on £1(A ),
ie.,
NS - P)NZEHAL) = {0}, 1
or equivalently
(§—P) >0 (52)

Proof. The last equivalence (51)-(52) follows by (46) and (48b) with
S — P_ =0, because S = 0and P_ = 0. For the first equivalence (22)-(51)
observe that, by (15),

N(P_) = NO°*(C, A)
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and that
NPHYNL(A) = NO*(C, A).

The latter holds because

x € NO*(C, A)
iff
P_x =0, and
li,'l]_m exp(At)x = li,rf,l_x exp(A_nx = 0,
ie., iff
XENWFP)NL(A).
Hence

NS — PN PHAL) = NS)NNP)NLHA)
= N(S) N NO*(C, A). |

Remark 3. Faurre et al. [5, p. 103] use condition (52) denoted as Ay, >
0 in the proof of their Proposition 5.3. They conclude in their condition
(5.9) that this is equivalent to

N(S) N NO* (C, A) = N(S) N N(P_) = N(§S -~ Py C N(P, — P-()53)
= NOYC, A).

In view of the decomposition (46)—-(47), it is easy to see that this condition
is equivalent to condition (22) if N(S) N NO°*(C, A) is A-invariant, but
not otherwise. As such their condition implies (52), but the reverse is not
necessarily true.

For example, set A = diag[1, 0], B = I, and C = 0. Then the antistrong
solution of the ARE (3) is P_ = 0, whence A = A. Observe also that the
decomposition (46)—(47) holds with

1 0
L*(A_) = Span ([0]) and EYA) = NOXC, A) = Span ([1])
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[4 2]
S=85-P_= ;
2 1

1
N(§S — P_) = N(§) = Span ([ 2])

Clearly we have that N(§ — P_) N £*(A_) = {0}, or equivalentiy, by
Lemma 5, (22) holds; however, N{§ — P_)is not contained in NOXC, A).

Now take

obviously

The following lemma is a sharpening of (43) needed for proving Theo-
rem 3.

LEMMA 6. Let (A, B) be controllable. Then the (—A _, B)-controllabil-
ity grammian M(7), given by (41b), satisfies:

(a) M)~ is a supremal solution on (0, ©) of the RDE (40a), in the
sense that, for all A(0) = A(0)Y* = 0,

Alr, A0) = M(r)"*  on7>0. (54)
(b) im M()"' =P, - P (gap). (43)

(¢) Using the decomposition (46) with M(7) partitioned as in (50),
we have

lim My(7) = (P. - P.);" (55a)
51_12 My(r) = My, (55b)
lfl_ll]c My(7) = - [. (55¢)

Proof. (a) Observe that, by (41b), M(7) meets, on 7 = 0,
M(r) = —A_M(1) - M(:)A* + BB*,  M(0) = 0.

Now (A, B) is controllable, hence so is (—A _, B). Thus, on 7 > 0, M(7) is
invertible and satisfies

% (M(r)"'] = A*M~' + M 'A_ — M"'BB*M"! (56)
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with

M) = [
Now, for any A(0) = 0, for u > 0 sufficiently large,

AO) = p - I ' (57)

whence, by Lemma 4,
Alr, A0)) = A(r, ul) onrt =0 (58)
Moreover, using the explicit formula (41a), on 7 > 0,

A(r, ul) = exp(A*7) [T + exp(A_T)M(7) exp(A*7)] ! exp(A_7)
=< exp(A*7)lexp(A_T)M(7) exp(A *)]1 ! exp(A_7) (59)
= M(r)~L.

Hence, by (56) and (58)—(59), (54) holds.

(b) Note that, by (41b), M(r) increases as T increases, whence
M(7)"! decreases. Since M(r)~! > 0, it follows that M(7)~! converges as
T — », Since M(7)~! is a supremal solution of the RDE (40a), it must
converge to the maximal solution P, — P_ of the corresponding ARE;
i.e., (43) holds.

(c) This follows using (41b), (48), (43), and (49). 1
Remark 4. (a) A finer analysis shows that M(r) and My (r) converge

exp. fast to resp. M, := (P, — P_);' > 0 and M,, as v — . Moreover,
M,(7) diverges at a polynomial rate, i.e.

M,(7) = 0(r2m*h) as T— © (60)

for some m = 0.

(b) Another fine analysis shows that M(r)~! converges to P, — P_
as 7 — oo, as O(r ~@m*D) i.e., not exp. fast (because My(r) = 0(z**")) if
NOYC, A) = $%A ) # {0}. This convergence is exponential iff the system
has no critical unobservable modes, i.e., NO%C, A) = {0}.

We have now the following crucial result.
LEMMA 7. Let (A, B) be controllable. Let (§ — P_.), be p.d. as in

Lemma 5. Then there exists a symmetric p.s.d. matrix L such that

L=S-P. (61)
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for which

lim A(r, L) = P, — P_ exp. fast, (62)

T—>

where A(r, L) is the solution of the RDE (40a) due to A(0) = L.
Proof. Consider the decomposition (46) and the relations (47)-(50),

where in particular
AS,  ASp,
S — P_ = , (63)
ASY, AS,

where, by assumption, (§ — P_); = AS| > 0. Define now

AS] ASlZ
L = . (64)
ASH ASKHAS) 'AS),

Then, since § — P_ = 0 with AS, > 0,
L=S-P_ (61)

(indeed here S — P_ = 0iff AS, — ASTH(AS)'AS ), = 0); moreover, there
is a square nonsingular matrix D, and a matrix D, such that

AS,; = DD, and ASy; = DTD,. (65)
Hence, with
D := D Dy, (67)
we get
L = D*D. (68)

Now, using the explicit formula (41a) and Eq. (68), we get that A(r, L)
satisfies

A(r, L) = exp(A*7)D*[I + D exp(A_7)M(7) exp(A*7)D*]"'D exp(A-7).
(69)
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Consider now the partitioning (50) induced by the decomposition (46);
le.,

A, L) = [A'(T) A”(T)]. (70)
A1) Axr)
Then, using (64)-(70) and (48a), it follows that the properties
AO)=A5 = -P ) >0 (71a)
and
A)0) = ASYH [AS|]7 AS, = ARO0) [A(0)]'A1x(0) (71b)
hold for all 7 = 0, i.e.,
Afm) >0 onTt =0, (72a)
and
Ax7) = Af(T) [AD] ! A7) ont = 0. (72b)
Define now
Ji(7) 1= Ay(r)7! (73)
and
Ji(7) := [A(D]7 Ap(a), (74)

and apply the relations (48) to the RDE (40a) using (70)-(74). It follows
then that this RDE is transformed into a system of two successive linear
matrix differential equations and an algebraic relation; viz. on 7 = 0,

Ji(7) = —Ji(DA%, = A_Jy(7) + (B, + Jia(1)B2)(B, + Ji(1)By)*,  (75a)

Ji(r) = —A_ (1) + J (DA, (75b)
Bo(r) = T Tia7), (75¢)

where
Ji0) = [AS,]7' = [(S — P_)]"! (75d)

Jin(0) = [AS|]7! AS), (75e)
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and
Re M—A_)) <0 and Re AMA;) = 0. (751)
It follows therefore, by (75b), that
Jia(1) = exp(—A-y7) J1:0) exp(A_»7), (76)
with J2(0) given by (75e). Hence, by (75f),

hm Ji(7) = 0 exp. fast. 77

Consider now (75a) rewritten as

J(r) = —J(DA*, — A_Ji(1) + B\BY + F(1),

with the perturbation term

F(7) := J)m)B:BY + BiBIJNH(T) + Jia(T)B2BIJ (7). (78a)
We get then, on 7 = 0,
Ji(r) = exp(—A_7) J1(0) exp(—A%7)

+ j; exp(—A_,&) B\B} exp(—A*¢) d¢ (78b)
+ [O exp(—A_i(r — &) F(&) exp(—A*\(r — &) dE.

Note here that, by (77), the perturbation F(7) is a continuous bounded
function that tends to zero exp. fast as » — «. Moreover, by (75f), the
third term on the RHS of (78b) is bounded by the convolution of the
function exp(—207), with o; > 0, and the bounded function ||[F(7)||, which
tends to zero exp. fast. Hence the third term on the RHS of (78b) tends to
zero exp. fast as 7 — =, It follows now also by (75f) that the first term on
the RHS of (78b) tends to zero exp. fast as 7— . Finally, the second term
on the RHS of (78b) is (by (41b) and (48a)) equal to M (r), which, by (75f)
and (55a), converges exp. fast to M, = [(P. — P_);]7". It follows by the
results above that

P_{B Jitn) = [(P. — P )] exp. fast. (79)
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Observe now that (77) and (79) applied to (73), (74), and (75c) give
lim A7) = (P — P.), exp. fast,

Iim Apx(7) = 0 exp. fast,
lim Ay(7) = 0 exp. fast.

Therefore, by (70) and (49a),

=P, - P exp. fast.

(P, — P), 0]
0 0

lim A(r, L) = [

Hence (62) holds. 1

Remark 5. By (63)-(64) it follows, under assumption (22) or equiva-
lently (S — P_), > 0, that

L=§-P (80)
iff
dim{N(S) N NO*(C, A)] = dim{NOYC, A)]. (81)

To see this, observe that, when (S — P_), > 0, (80) holds iff rk[S — P_]is
minimal, i.e.

rk[S — P_] = rk[(S — P.);] = dim[¥£1(A )],
or equivalently
nullS — P_] = n — dim[L*(A_)] = dim[L%A_)];

(here rk[M] and nul[M] denote resp. the rank and the nullity (i.e., the
dimension of the null space) of the matrix M). The conclusion (81) follows
then by (15) and (47). Note also that (80) means that S — P_ is congruent

to
[(s - Py 0
0 0f
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It does not mean that § ~ P_ is equal to this matrix.
It is easy to conclude this section.

ProoF oF THEOREM 3. By Lemma 5, the assumption (22) is equiva-
lent to (S — P_); > 0. Hence, by Lemma 7, there exists a p.s.d. matrix
L = 0 such that L < § — P_; whence, by Lemma 4,

Al(r, L) = A(7, S — P)) on7t=0.
By Lemmas 6 and 7, this can be completed to
Ar, L) = A(r, S — P_) = M(7)™! ont >0,
where the left and right expressions tend to P, — P_ and 7 — %, Hence

lim Az, $ - P.)=P, — P_.

It follows by (39) that

limP(r,8) =P+ limA(r,S-P)=P.. |

Remark 6. (a) It follows by Remark 4(b) and Lemma 7 that P(z, §)
may not approach P, exp. fast when £%A_) = NOYC, A) # {0}. How-
ever, if NO%C, A) = {0}, i.e., if the Hamiltonian matrix has no eigen-
values on the imaginary axis, then the speed of convergence is exponen-
tial, as shown previously in {10].

(b) A finer analysis based on Remark 4(b) and Lemma 7 and exten-
sions of these ideas shows that the speed of convergence is exponential iff
rk[§ — P_] is minimal.

For example, let A, B, C, and § be as in the example above Lemma 6.
Obviously, rk{S — P_] = rk[S] ! is minimal. Observe also that, by for-
mula (41),

oy ] 4 2 CXP(—T)]
() = d(7) |2 exp(—7) exp(=27) |

with

d(r) ;=2 + exp(—27) (r — 1),
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Hence, as 7 — o,

2 2
lim P(1) = [0 0} =P, exp. fast.

Now take § = § — P_ = I, whence rk[S — P_] = rk[S] = 2 is not minimal.

Then by (41)
2 [exp(—27) + 11! 0
P(r) = ,I],
0 [1+ 7]

and P(7) tends to P, as 7 — . But the convergence is not exponential.

Remark 7. The proof of Theorem 3 shows that, under assumption
(22), w.l.g. we may assume that rk|S — P_] is minimal, or equivalently
that (80) or (81) hold, as announced in Comment 1(c). This is also easily
illustrated by the example above Lemma 6.

5. CoNcLUSION
The proof of Theorem 1 follows now easily from Theorem 2 (necessity)
and Theorem 3 (sufficiency) since w.l.g. (A, B) is controllable.
Comments. 2 (a) Recently De Nicolao and Gevers [3, Theorem 3]
proved that the convergence (21) holds under assumption (2) if

N(S) C NOXC, A). (82)

This follows easily by Theorem 1. Indeed, (22) is then obviously true.
Condition (82) however is not implied by (22) and hence is not necessary,
as was rightly observed by De Nicolao and Gevers.

(b) When NOXC, A) = {0} then obviously criterion (22) reads also

N(S) N NO*H(C, A) = {0}.

Hence criterion (22) generalizes [1, condition (32)] under the sole assump-
tion of (2). The analysis above shows that when NOXC, A) # {0} (or
equivalently LO(H) # {0}), then the presence of unobservable modes on
the j-axis may slow down but does not prevent the convergence towards
)

In LQ-optimal control the following is important.

CoROLLARY 1. Consider the RDE (1) where

(A, B) is stabilizable. 2)
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Then

lim P(r) = P,  forall P(0) = § = §*=0 (83)
iff
NO*(C, A) = {0}. (84)

Remark 8. Condition (84) is a criterion for the uniqueness of p.s.d.
symmetric solutions of the ARE (3) under assumption (2); see [6].

The analysis above handles only the convergence question (21) without
considering the solution of an infinite-horizon LQ-optimal control prob-
lem. This is now done briefly.

For a given § = §* = 0, where § € R"*", we consider the infinite
horizon cost

I, 1, 8) = [ ACxO + @) de + lim x(t) *Sxe)  85)

subject to

x(2) = Ax(?) + Bult), x(0) = x, € R,

u(+) 1s continuous.

Let U,4 be the set of admissible controls for which the cost exists for all
xg € R". We are interested in solving the infinite-horizon LQ-optimal
control problem LQ*(S), viz.

Min J(x,, u, S) (86)

ey

where xy € R" is arbitrary. We assume here that (2) holds and we consider
the question under what criterion will the optimal cost be x{P. x, and the
latter be realized by the state feedback law

a(t)y = — B*P . x(1) ont =0 (87)

Note also that we solve here the infinite-horizon problem, as the hori-
zon t; — x, as a limit cost problem realizable by the limit control. Indeed,
the latter is known. Standard analysis using the Bellman-Gronwall lemma
shows that, under convergence condition (22), the finite-horizon optimal
closed-loop transition matrix tends to exp(A . 1) uniformly on bounded in-
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tervals, whence the same happens for the finite horizon optimal control
towards —B*P,exp(A.1)x;. Hence the limit control exists uniformly on
bounded intervals and is realizable by state feedback law (87). Therefore
the realizability of x{P. x, by the limit control is equivalent to its realiz-
ability by the feedback law (87).

A first observation is that, with A, described by (9)-(10) and (14), (16),

lim P.exp(A xy = 0 for all x, € R*;

hence the closed-loop control induced by (87) is exp. stable; i.e., for all
X0 (S R",

u(t) = —B*P.exp(A;:D)xg
satisfies

Imu(t) =0 exp. fast.

However, for a given § = §* = 0, it is easy to see that

lim S exp(A.:f)xq = 0 for all x, € R”

iff
NOXC, A) = $YA,) C N(S). (88)

Hence we have by standard arguments

LEMMA 8. Let (A, B) be stabilizable and consider the infinite-horizon
cost (85) due to the feedback law (87). Then, for any given § = §* = 0,

J(xo, 4, S) = xFP, xo for all x, € R”
iff
NOYC, A) C N(S). (88)

Remark 9. Observe that it takes an additional condition to realize the
cost X P, x; by the feedback law (87).

We have now also easily
LEMMA 9. Let S = §* = 0. Then one has

N(S) N NO*(C, A) = {0} (22)
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and
NOYC, A) C N($), (88)
iff
N(S) N NO**(C, A) = NOC, A). (89)

THEOREM 4. Consider the infinite-horizon 1L.Q-optimal control prob-
lem LQ™(S) described by (85) and (86). Assume that

(A, B) is stabilizable. (2)

Let P, be the strong solution of the ARE (3). Let S = §* = 0 be given. Let
P(r, S) be the solution of the RDE (1) where 7 = t;, — t = 0 and P(0) = S.
Then, with xo € R® arbitrary,

Min J(xo, u, S) = lim x{P(r, S)xg = x5 P+ xq,
Wl VEU g T ( )

and this cost is attained by the state feedback law (87)
iff
N(S) N NO** (C, A) = NOYC, A). (89)

Comments. 3 (a) Condition (89) implies that N(S) N NO*'(C, A) is A-
invariant. This property is paramount for getting the solution of an infinite
horizon LQ-problem as the limiting case of a receding-horizon LQ-prob-
lem; see 8, 9].

(b) If (A, B) is controllable then, by Fact 1, (89) reads equivalently as

NS — P_) = NP, — P).

(c) In view of Lemmas 8 and 9, criterion (89) is convergence criterion
(22) modulo the well-posedness condition (88). It is much more easier to
study the convergence of the RDE (1) towards the strong solution P.
when (88) holds. Indeed, then for all + = 0,

NOXC, A) C N(P(z, 8))
and standard arguments can be used to apply [1, (32)] for obtaining con-

vergence criterion (22).
(d) It should be realized that if NO%C, A) + {0}, then the optimal state
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trajectories of problem LQ™(S) are not always exp. stable and may contain
critical modes (not necessarily bounded). These critical modes are
bounded, or equivalently A, is stable in the sense of Lyapunov, iff A
restricted to NO%C, A) is diagonalizable: this is generically also required.
Note that, under this condition, *‘small unobservable critical initial states
produce small stationary ripples.”” On the other hand, if A restricted to
NOC, A) is not diagonalizable, then critical unbounded modes cannot be
avoided if there are critical unobservable initial states: they may be un-
wanted and the problem of finding a near optimal stabilizing feedback law
becomes important.

We conclude with a result that was to be expected.

COROLLARY 2. Claim (90) of Theorem 4 holds for every S = §* = 0 iff
(C, A) is detectable, i.e.

NO(C, A) = {0}.

Remark 10. In Theorem 4, two penalty situations are important, viz.
(a) S = 0, where (89) holds iff NO*(C, A) = {0}, and (b) S > 0, where (89}
holds iff NOYC, A) = {0}.

Remark 11.  Similar results hold for L.QG-optimal estimation.
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