
From Theoretical e-barter Models to an

Implementation Based on Web Services 1

Mario Bravetti, Adalberto Casalboni

Università di Bologna, Dipartimento di Scienze dell’Informazione, Mura Anteo Zamboni 7, 40127
Bologna, Italy, E-mail: bravetti@cs.unibo.it

Manuel Núñez, Ismael Rodríguez

Dept. Sistemas Informáticos y Programación, Universidad Complutense de Madrid, Ciudad
Universitaria s/n, 28040 Madrid, Spain, E-mail:{mn,isrodrig}@sip.ucm.es

Abstract

An e-barter system is an e-commerce environment where transactions do not necessarily involve
money. They are multi-agent systems where agents perform exchanges of resources on behalf of
their respective users. Besides, their structure is based on a tree of markets. In this paper we
develop a suitable design for this kind of systems. The design will be defined by means of a web
services by using BPEL4WS. Since the formal specification abstracts most practical details, the
development of such design definition requires to face several challenges.

Keywords: e-commerce, e-barter, multi-agent systems, web services

1 Introduction

Among those areas where the development of Computer Science has changed
our society during the last years, the relevance of e-commerce technologies is
remarkable. New mechanisms to perform transactions have appeared and they
entail new challenges. Since e-commerce systems dramatically affect user’s

1 Research partially funded by EU Integrated Project Sensoria, contract n. 016004, by the
Spanish Ministerio de Ciencia y Tecnología project MASTER (TIC2003-07848-C02-01), the
Junta de Comunidades de Castilla-La Mancha project DISMEF (PAC-03-001), the Marie
Curie Research and Training Network TAROT (MRTN-CT-2003-505121).

Electronic Notes in Theoretical Computer Science 159 (2006) 241–264

1571-0661 © 2006 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.09.034
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82432793?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

possessions, their reliability is specially important for their success. Similarly
to other domains, formal specifications allow to predict relevant properties of e-
commerce systems and they provide a reference of ideal behavior for developing
an implementation. In order to provide handleable and unabiguous models,
formal languages abstract from some low level details that are considered
irrelevant for the system description. In spite of the gap between specification
models and final implementations, specifications provide a developer with a
model of ideal behavior of the system that may be useful not only in the
analysis phase of a project but also during the whole development process.

Among existing applications of formal methods to the area of e-commerce
(see e.g. [12,4,11,2,10]), here we consider the formal definition of e-barter sys-
tems formerly introduced in [6] and extended in [7,9]. This kind of systems
are characterized because transactions do not necessarily involve money. They
provide a generalization of the classical e-commerce model because they can
represent systems where exchanges may or may not involve the use of money.
Users connected to the system exchange goods according to their respective
preferences. Exchanges are performed until the system reaches a kind of op-
timal distribution of resources with respect to the user requests. In order to
avoid critical bottlenecks in the system performance, a single global market is
replaced by a hierarchical tree-like structure of markets, where parallelism can
be exploited allowing local markets to progress independently to each other.
Following this structure, users are connected to different local markets in the
leaves of the tree according to proximity reasons. Exchanges are performed
inside each local market until it reaches an optimal distribution. Then, the
market becomes an agent that acts as representative of the users that traded
inside it. This agent exchanges resources on behalf of its users with other
(representative) agents in a higher level market until this higher order market
reaches an optimum. The mechanism is repeated until the global market, that
is the one at the top of the hierarchy, reaches an optimum. The behavior of
this system is formally defined in terms of a process algebraic notation. This
definition allows to formally reason about the behavior of the system and pre-
dict some relevant theoretical results. In particular, as it is shown in [9], if an
adequate amount of information is exchanged among the different levels, the
final distribution of resources is optimal from the point of view of the users.
That is, the hierarchical system reaches the same kind of distribution that can
be reached by a non-hierarchical system where a single central market would
embrace all the agents (i.e. the economic efficiency of a hierarchical market
matches that of a non-hierarchical market).

In this paper we face the problem of developing a design of the e-barter
system which may constitute the basis for an efficient implementation. Web

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264242

services and the related notion of orchestration of services constitute a suitable
conceptualization semi-fomal model allowing to move from an abstract model
to an implementable distributed model that allows us to exploit parallelism
of the specified system. Web Services related technologies are a set of middle-
ware technologies for supporting Service Oriented Computing [5]. One of the
main goals of this paradigm consists in enabling the construction of a network
of integrated collaborative applications regardless of the platform and the
development language. Web services technologies allow to construct these
systems by supporting their definition in a structured and standardized way.
In particular, a web service is identified by a URI, and public interfaces and
bindings are defined by using XML so that their definition can be discovered
by other software systems [15]. Web services allow to publish services on the
internet by means of a naming service called UDDI [14] (Universal Description,

Discovery and Integration). XML based WSDL technology [3] (Web Services

Description Language) is used to describe services inside UDDI naming servers
and making them accessible at a certain location by means of an XML based
protocol called SOAP [13] (Simple Object Access Protocol). Orchestration
of web services is supported by BPEL4WS [1] (Business Processes for Web

Services), which is a language for describing web-service behavior (workflow)
in terms of calls to other web-services. It can be used for the design and
implementation (since it is really executable by means of engines) of systems
that are defined in terms of composition of web-services.

The representation of the e-barter system as orchestration of web services
requires to address several practical challenges and force the developer to
define more in the detail the system architecture and behavior: the entities
involved (which as we will see can be both concrete, i.e. real services on the
internet, or abstract, i.e. just representing activities made by human beings),
the flow of interaction among these entities, the kinds of data exchanged,
the time for message exchange, timeout for receiving requests, etc. Starting
from the system formal specification we will develop a design of a possible
implementation, where entities and flow interactions are defined in such a way
as to obtain an efficient implementation which exploits system parallelism of
different local markets expressed as distributed services. We will also note
that an alternative design is possible which increases the performance at the
price of loosing optimality of the solution in certain cases.

The rest of the paper is structured as follows. In Section 2 we sketch the
formal model defining e-barter systems. In Section 3 we present the main
design decisions for implementing e-barter systems via web-services. In Sec-
tion 4 we present the main diagrams for the BPEL4WS processes describing
the involved entities. Finally, in Section 5 we present our conclusions. The

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 243

appendix contains the operational semantics of the formal model terms.

2 Formal specification of multi-level e-barter systems

In this section we briefly describe e-barter systems and introduce their formal
specification. A summary of the formal operational semantics denoting the be-
havior of these systems can be found in the appendix of this paper. An e-barter
system is a multi-agent system where agents exchange resources on behalf of
their respective users. Since agents must perform exchanges according to the
preferences of users, we need a suitable notation to denote preferences. We use
utility functions. The input of a utility function is a basket of resources and
the output is a numerical value denoting the preference on this basket. Let
fA be the utility function of an agent A. Let x̄ be a basket with 2 apples and
1 euro, and ȳ be another basket with 1 apple and 2 euros. If fA(x̄) > fA(ȳ)
then A prefers x̄ to ȳ. A possible utility function showing that behavior is
fA(apples, euros) = 2 · apples + euros. Let us suppose there is another agent
B whose utility function is fB(apples, euros) = 2 · apples + 3 · euros. Then,
if the agents A and B perform an exchange where agent A gives 1 euro to
B and B gives 1 apple to A, then both utility functions return higher values
after the exchange, that is, both agents improve.

An e-barter system performs fair exchanges, that is, exchanges where at
least one agent improves and none of them worsens. When no more fair
exchanges are available, the market is completed, that is, it reaches a con-
figuration that cannot be improved. Instead of using a single market where
all agents in the system exchange resources, agents will be grouped in local
markets according to proximity reasons. For example, agents belonging to the
same city are put together until their markets are completed. Then, they use
some representatives to exchange resources in a higher order market involv-
ing several cities. After these are completed, new representatives exchange
resources in a higher market, and so on.

Initially, customers willing to participate in an e-barter system are repre-

sented by (electronic) agents. These agents are provided with two parameters:
The basket of resources that the customer is willing to exchange and a utility

function. Such agents trade in the most local market whose area includes the
location of the the related customers.

Then the e-barter system works according to the following algorithm:

(1) Agents exchange goods inside their local market. A multilateral exchange
will be made if (at least) one of the involved agents improves its utility
and none of them decreases its utility. This is repeated until no more
exchanges are possible. In this case we say that the local market is

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264244

completed (or saturated).

(2) Once a market is completed, their agents are combined to create a new
agent which will trade in the higher level market whose area include the
location of the current market (this happens unless we are in the top-level
market). This agent behaves as a representative of the combined agents.
The new agent will have as basket of resources the union of the baskets
corresponding to each agent. Its utility function will encode the utilities
of the combined agents. This utility function imposes that resources
obtained by the representative are such that they can delivered among
its users in such a way that no user worsens with respect to the previous
distribution. If this condition holds, it returns the addition of utilities of
each represented user (see [9] for more details). First order agents will
be combined again into markets, according to proximity reasons.

(3) The exchanges in the higher level market are performed starting again
from (1), unless we are in the top-level market. In this case the process
is finished and the distribution of goods obtained is the final one.

Note that during the whole process, after the completion of any market, the
formal model keeps track of distribution of goods to the several customers by
propagating such information in a top-down way through the tree of markets
until it arrives to the leaves of the tree (i.e. to the agents directly representing
customers).

As we will see in Section 3, the design of the e-barter system will address
several practical issues that are beyond the detail level considered in the pre-
vious description. Some of these issues will make us to reconsider the previous
scheme. For example, requiring that all subagents are connected to a market
before it becomes completed is actually needed to provide final optimal distri-
butions, but this requirement might not be feasible in practice. For instance,
if an agent is temporally out, then it may block the rest of agents. So, when a
market becomes a new higher order market (see step (2)), in some situations
it will be able to become a representative of only some agents. These changes
will affect the operational semantics of the formal language (presented in the
appendix). Note that these changes show that the relation between the for-
mal specification (i.e., the model of the analysis of the system) and the web
services definition we construct from it (i.e., the design and implementation)
is two-fold.

2.1 A brief introduction to the formal model

Next we briefly introduce the formal representation of e-barter systems. The
formal definition of an e-barter system is made by means of a specification lan-

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 245

guage that was explicitly developed to define this kind of systems. An e-barter
system is formally given by a syntactical term in the syntax of this language.
The semantics of the language implicitly define the behavior of an e-barter
system in a formal fashion. A brief introduction to the operational semantics
can be found in the appendix of the paper. Even though this language uses
a process algebraic notation (mainly when defining the operational rules) it
does not need the usual operators appearing in this kind of languages (choice,
restriction, etc). In fact, our constructions remind a parallel operator as the
one presented, for example, in the process algebra CCS [8].

Definition 2.1 A market system is given by the following EBNF:

MS ::= ms(M)

M ::= A | unsat(M, . . . , M)

A ::= (S, u, x)

S ::= [] | [A, . . . , A]
�

First, in order to avoid ambiguity of the grammar, we annotate market
systems with the terminal symbol ms. Intuitively, the market M = (S, u, x)
(that is, M = A) represents a completed market, that is, a market where no
more exchanges can be performed among its agents. Let us note that in this
case the market represents an agent that will be able to make transactions
with other agents in a higher market. In the previous expression, u denotes
the utility function of M and x represents the basket of resources owned by
M . We consider that there are p different commodities, 2 that is x ∈ IRp

+, and
that the amount of money is placed in the last component of the tuple.

Regarding the first argument of M there are two possible situations. Either
S is an empty list or not. In the first case we have that M represents an original

agent, that is, a direct representative of a customer (note that a single agent is
trivially completed since there is nobody to deal with). In the second case, if
S = [A1, . . . , An] then we have that M represents an agent associated with the
(possible higher order) agents A1, . . . , An belonging to a completed market.

The second possible syntactic form of M , unsat(M1, . . . , Mn), represents
an uncompleted market consisting of the markets M1, . . . , Mn. Let us remark
that in this case some of the sub-markets may be completed.

2 We are assuming that all the items are goods. Nevertheless, agents could also trade bads.
For example, a customer would be willing to give an apple pie if he receives minus s brown
leaves in his garden. However, bads are usually not considered in microeconomic theory, as
they can be easily turned into goods: Instead of considering the amount of leaves, one may
consider the absence of them.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264246

Fig. 1. A market system and some operational transitions.

Next we present an example showing how an e-barter system may be con-
structed. In this example we will also (informally) introduce the operational
transitions of the language.

Example 2.2 Let us consider a system with six agents Ai = ([], ui, xi),
for 1 ≤ i ≤ 6. We suppose that these agents are grouped into three differ-
ent markets. Initially, these markets are uncompleted (uncompleted markets
are represented by a single square in the figure), so we make the following
definitions:

M1 = unsat(A1, A2)

M2 = unsat(A3, A4)

M3 = unsat(A5, A6)

Let us consider that the first two markets are linked, and the resulting market
is also linked with the remaining market M3. We should add the following
definitions:

M4 = unsat(M1, M2)

M5 = unsat(M4, M3)

Finally, the global market is defined as M = ms(M5). This hierarchical
structure is graphically presented in Figure 1, top-left.

Following the philosophy explained in the previous section, transactions

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 247

will be made within a market only among completed sub-markets. So, initially
only M1, M2, and M3 are allowed to perform transactions (as we remarked
before, original agents are trivially completed).

We will use the symbol � to denote exchange of resources. Let us sup-
pose that, after some exchanges, M1 gets completed. That is, there exists a
sequence of exchanges M1 � M1

1 � M2
1 · · · � Mn

1 = M ′

1 such that M ′

1 ��.
In this case, the market grouping the first two agents should be labeled as
completed. So, the agents effectively perform all the achieved transactions
becoming A′

1 and A′

2, respectively. Then, the first market will be turned into
([A′

1, A
′
2], f(u1, u2), x1 + x2), where f is a function combining utility functions

which works as described in the algorithm presented in the previous section
(step 2). In parallel, M2 will have a similar behavior.

Once both M1 and M2 get completed, transactions between them will be
allowed. Note that these transactions (inside the market M4) will be performed
according to the new utility functions, f(u1, u2) and f(u3, u4), and to the new
baskets of resources, x1 + x2 and x3 + x4.

The process will iterate until M5 gets completed. At this point, the whole
process finishes. �

Note that if we assume that markets can become completed even if all
the submarkets are not completed yet and that new higher order agents can
represent only a subset of agents, then other sequences of interaction may
occur in the previous example. Despite the presentation of the formal model
in [6,7] does not consider these features, the formal model considered in this
paper includes them. As we said before, they are added to the system in order
to take into account some practical issues that will be addressed in the system
design phase.

3 Design of multi-level e-barter Systems via web services

The specification presented in [6,7] and sketched in the previous section presents
e-barter systems in terms of what can be done, for example, in terms of con-
straints on exchanges (they must satisfy the requirements imposed by utility
functions). In the design phase, instead, we have to define the precise struc-
ture (architecture) of the system, the entities which play a role in it, the order
in which things have to be done, and the temporal behaviour of such entities.
For example, it has to be taken into account the location of the instances of
such entities as well as which instances communicate with each other, the kind
of interactions that the entities may perform, the kind of data exchanged, and
the workflow of such interactions. When producing the BPEL4WS description
of the e-barter system the first thing to do is to identify the different entities

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264248

(which in the BPEL4WS specification will be denoted by so-called portTypes)
that are involved in the system. In particular, not only concrete entities (that
will be actually implemented via web-services) but also abstract entities which
just correspond to human actions. In the case of the e-barter system we have
three main entities: clients, agents and markets. Each client belongs to a
certain market of level 0 (the most local level in the hierarchy of markets).
Agents in charge of making exchanges for clients belong to a certain market at
level 0, while agents in charge of making exchanges for markets of level n ≥ 0
belong to a certain market of level n + 1. It also works the other way around,
that is, if a particular market is located at level 0 then it determines a set of
clients (we suppose that they are numbered from 1 on) and a set of agents. 3

On the contrary, if the market is located at a level n > 0 then it determines
a set of agents only (numbered from 1 on) where each agent makes exchanges
for a given market of level n − 1.

In order to represent the architecture of a single market, the operations
needed to manage the market have to be effectively provided by the system.
What can be seen as a set of operations to manage the data involved in the
market becomes an entity to support the behavior and evolution of the market.
This entity is called the manager of the exchange matrix.

The behavior of the three main entities is defined via orchestration. Their
behavior is therefore defined via the semi-formal workflow language BPEL4WS
in such a way that is totally consistent with the formal model given in the pre-
vious section. We will consider that the formal model includes the additional
features described in previous sections, that is, markets can become completed
even if some submarkets are not, and new higher order markets may represent
only a subset of markets (the operational semantics of the model, presented
in the appendix, actually include them).

Conceptually, the design defined in BPEL4WS explicitly represents the
communication between the entities, that in the formal model are simply
included syntactically one inside each other. More precisely, according to
the formal model, a market unsat(M1, . . . , Mn) includes syntactically all the
agents that will trade in it, i.e. given I = {s1, . . . , sr} ⊆ {1, . . . , n} such that
{Ms1

, . . . , Msr
} is the set of submarkets represented by trading agents, we

have that, for all i ∈ I, Mi follows the agent form (Si, ui, xi). The correspond-
ing market entity in the BPEL4WS design will first communicate with all the
agent entities corresponding to Ms1

, . . . , Msr
in order to get their utility func-

tions us1
, . . . , usr

and baskets xs1
, . . . , xsr

, and then it will perform exchanges
according to the internal behavior of unsat(M1, . . . , Mn) in the formal model

3 These agents are numbered as well and we suppose, for the sake of simplicity, that the
agent i makes exchanges for client i.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 249

until it saturates. 4 When this happens (supposing that we are not in the top
level market), in the formal model we have that unsat(M1, . . . , Mn) is turned
into the agent A ≡ ([A1, . . . , Ar], u, x), (which is in charge for trading for this
market in the upper level) where u and x̄ are the aggregated utility function
and the overall basket of resources. In the same way, the market entity will
simply transmit the same information to the agent entity (of the higher level)
corresponding to A. The behaviour of the agent entity in the BPEL4WS de-
sign is simply defined in such a way that it checks the information received
and delivers it to its local market for trading (so the described flow repeats).

In addition to the formal model, the BPEL4WS specification considered
in the following includes also an explicit phase of transmission of results of the
exchange performed to the clients. Such a transmission is started when the
top-level market is saturated and it is propagated top-down by markets and
agents until the client entities are reached and notified.

Here a different design choice can be considered. In order to improve the
efficiency of the system and to simplify the structure of the utility functions
obtained by aggregation after the saturation of markets, it is possible, e.g.,
to decide to propagate upwards only requests of agents who did not perform
any exchange in the current market. On the contrary, baskets of agents that
performed exchanges can be immediately distributed top-down to the clients.
It is easy to see that the price for the improved efficiency is the loss of global
optimality of exchanges in general.

In the following section, we describe the mechanism to provide a uniform
specification of the markets in our e-barter system by means of local naming
and the technique based on UDDI to connect markets to agents of higher
level and vice-versa (thus defining the structure of the system: this was done
correspondingly by syntactical inclusion of markets in the formal model).

3.1 Local naming definition for each market

In order to invoke a service, other services must know where the first one is
located. This mechanism is implemented through the binding of the names
of the services to a physical address by using a UDDI server. In the case
of our e-barter systems, following a hierarchical architecture, the structure of
the UDDI service is depicted in Figure 2. In this graphic we can observe that
there exists a different local UDDI server for every market.

Thus, we adopt the idea that each single market of the market system has

4 The BPEL4WS design abstracts from computation inside atomic services such has the
evaluation of the exchanges to be made (the saturation of the matrix of exchanges). There-
fore a legal implementation of such services must be made in such a way that it conforms
with the formal model behavior.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264250

Fig. 2. Scheme to bind names.

its own namespace, defined just through a service of a UDDI. In each of these
namespaces, every portType comes associated/bound to a specific web service.
Thus, if one invokes a service appearing with the same name (same portType)
in two different markets then the called service is the one determined by the
UDDI associated with the market in which the invocation was performed. In
this way, the specific hierarchical structure of e-barter systems can be uniform,
that is, the same BPEL4WS process can be used for equal entities (regardless,

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 251

Fig. 3. List of abstract portTypes.

e.g., of the level where they are located). The only difference is that the client

portType is available only in the first level since instances of this type can
communicate only with agents located in the first level.

If we are working in a market at a certain level, it is possible to refer to the
agent aPTi of the associated market at the immediately higher level by using
the aPTSUPi portType (it is assumed that the UDDI of the market is defined
in such a way that aPTSUPi binds to the i-th agent of the market at the higher
level). Similarly, given a market at a certain non-zero level, it is possible to
refer to the the market mPT at the immediately lower level for which the i-th
agent of the market is in charge, by using the mPTINFi portType.

3.2 WSDL definition of local PortType names

In the following, we describe the meaning of portTypes that we use and their
operations. In general names of operations are quite self-explaining. 5 Port-
Types corresponding to abstract entities are listed in Figure 3, while concrete
portTypes are listed in Figure 4.

• clientPTi, agentPTi and marketPT correspond to the three main entities
whose behavior is specified with BPEL4WS in the following.

• agentPTSUPi is a portType identical to agentPTi. It contains the same
operations of a the agent agentPTi and it has the same behavior. The only
difference is that it is bound by the UDDI service of a given market to a
different location: the location of the agent agentPTi (in the immediately
higher level market) associated to such a market.

• marketPTINFi is, similarly, a portType identical to marketPT. It contains
the same operations of a market marketPT and it has the same behavior.
The only difference is that it is bound by the UDDI service of a given
market to a different location: the location of the market marketPT (in the
immediately lower level) associated to the i-th agent of such a market.

• actionsClientPTi represents the decisions that a customer takes.

5 Operations in italic are I/O operations, while the other operations are Input only.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264252

Fig. 4. List of concrete portTypes.

• actionsAgentPTi is a concrete entity representing actions of agents not di-
rectly represented in BPEL4WS. It contains a concrete service for control-
ling validity of utility functions.

• actionsMarket is a concrete entity representing actions of agents not directly
represented in BPEL4WS. It contains a service that returns the index i of
the agent in charge of the current market in the higher level. It returns 0 if
the current market is the top-level market.

• managerErrorsPT is an entity used for notification of errors.

• managerExchangeMatrixPT is the entity that offers more services to the
system. It is used to store the matrix of exchanges for a given market (and
related information) and to manage it in an efficient way. It includes op-
eration for the updating, modification and reading of such a matrix. In
particular, saturateMarket saturate the matrix evaluating an optimal solu-
tion in an unspecified way; maximizeU and sumBaskets, compute the aggre-
gated utility function and the union of baskets after saturation, respectively;
assignBaskets distribute an updated basket of resources received from the
higher level to the agents trading in this market; and sendAgentList and
sendBasket return an array with the list of indexes of agents trading in the
current market and return the basket of resources assigned to the specified
agent, respectively.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 253

4 BPEL4WS processes for the entities of e-barter sys-

tems

In this section we give the BPEL4WS processes defining the behavior of the
clients, agents, and markets portTypes. Due to space limitations we do not
include the semi-formal behavioral representation in terms of XML code for
each of the entities, but give a graphical representation of the workflows (which
is directly correspondent to the XML and more readable than the XML code).
In doing this we use a refinement construct which allows us to express an entire
workflow as a single box in a larger workflow including it. Such a construct
simply stands for replacement of the box with the content of the refinement
and is used for clarity of presentation.

Figures 5, 6, and 7 contain the main diagrams describing the behaviours of
the client, the agent and the market entities. Refinements boxes of the client,
agent and market entities are defined in figure 8,in figure 9, and in figures 10
and 11, respectively.

5 Conclusions

An e-barter system is an e-commerce environment where agents exchange re-
sources on behalf of their respective users, exchanges do not necessarily involve
money, and agents and markets are structured in a hierarchical fashion in such
a way that markets may become higher order (representative) agents. This
kind of systems were formally specified in [6,7]. Unfortunately, there is a gap
between the formal specification and a suitable design for the system. While
the formal specification level turns out to be fundamental in defining the func-
tional ideal behavior of the system, several practical issues were not addressed
in the formal specification. In this paper we have developed a design of an
e-barter system in terms of web services. Web services provide a suitable
and well-supported model (a number of related standard and tools have been
developed) for defining the behavior of e-barter systems in a distributed way.
Tasks like conceptual decomposition and parallel execution of independent ac-
tivities by means of different entities are implicitly performed as a result of the
definition of the system as a set of web service orchestrations. In doing this,
the formal specification represents the ideal behavior of the system which is
to be realized by adopting adequate design (architectural) choices at the level
of Web Service orchestration. By developing this case study we experienced:
need of local naming technique via multiple UDDI services, introduction of
new entities (such as the manager of the exchange matrix), design decisions
about synchronization of re-start of cycles of exchanges in different markets,

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264254

Fig. 5. BPEL4WS process for clients.

design decisions in structure of data exchanged and consequent tradeoff be-
tween optimality of exchanges and efficiency of the system, etc. Besides, let
us note that a definition of the system in terms of web services does not
only provide a suitable design, but also (partially) an implementation, since
web service orchestrations defined with BPEL4WS are executable by ad-hoc
interpreters.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 255

Fig. 6. BPEL4WS process for agents.

References

[1] T. Andrews and F. Curbera. Web Service Business Process Execution Language, Working
Draft, 2004. Version 2.0, 1.

[2] A. Cavalli and S. Maag. Automated test scenarios generation for an e-barter system. In 19th
ACM Symposium on Applied Computing, SAC’04, pages 795–799. ACM Press, 2004.

[3] E. Christenses, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL 1.1), 2001. Note 15, http://www.w3.org/TR/wsdl.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264256

Fig. 7. BPEL4WS process for markets.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 257

Fig. 8. Refinements of the client entity: (second level) refinement of Build & Send Basket (left)
and (second level) refinement of Build & Send Utility Function (right).

[4] K.V. Hindriks, F.S. de Boer, W. van der Hoek, and J.-J.C. Meyer. Formal semantics for an
abstract agent programming language. In Intelligent Agents IV, LNAI 1365, pages 215–229.
Springer, 1998.

[5] M.N. Huhns and M.P. Singh. Service-oriented computing: Key concepts and principles. In
IEEE Internet Computing, pages 75–81. IEEE Computer Society Press, 2005.

[6] N. López, M. Núñez, I. Rodríguez, and F. Rubio. A formal framework for e-barter based on
microeconomic theory and process algebras. In Innovative Internet Computer Systems, LNCS
2346, pages 217–228. Springer, 2002.

[7] N. López, M. Núñez, I. Rodríguez, and F. Rubio. A multi-agent system for e-barter including
transaction and shipping costs. In 18th ACM Symposium on Applied Computing, SAC’03,
pages 587–594. ACM Press, 2003.

[8] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[9] M. Núñez, I. Rodríguez, and F. Rubio. Formal specification of multi-agent e-barter systems.
Science of Computer Programming (to appear), 2005. in press.

[10] M. Núñez, I. Rodríguez, and F. Rubio. Specification and testing of autonomous agents in
e-commerce systems. Software Testing, Verification and Reliability, 15(4), 2005. in press.

[11] R.L. Probert, Y. Chen, B. Ghazizadeh, P. Sims, and M. Cappa. Formal verification and
validation for e-commerce: Theory and best practices. Journal of Information and Software
Technology, 45(11):763–777, 2003.

[12] A.S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In Agents
Breaking Away, LNAI 1038, pages 42–55. Springer, 1996.

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264258

Fig. 9. Refinements of the agent entity:(Second level) refinement of Deliver Data to the Market.

[13] SOAP - Simple Object Access Protocol. http://www.w3.org/TR/soap.

[14] UDDI - Universal Description, Discovery and Integration of Web Services.
http://www.uddi.org/specification.html.

[15] World Wide Web Consortium (W3C). http://www.w3.org.

6 Appendix: Operational semantics of the specification

model

Next we present a brief description of the operational semantics of the spec-
ification language used to specify e-barter systems. Besides, in order to ease
the presentation several details have been removed from the semantics. A
full description can be found in [9], though a few details have been changed
to properly represent some practical requirements that were discovered dur-
ing the construction of the system design. In the next definition we present
the anchor case of our operational semantics. In order to perform complex
exchanges, agents should first indicate the barters they are willing to accept.

Definition 6.1 Let A = (S, u, x) be a completed market. The exchanges the

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 259

Fig. 10. Refinements of the market entity: (second level) refinement of Construction of Data for
Agent of Upper Level (left) and (second level) refinement of Delivery of Data to Agent of Upper
Level (right).

agent A would perform are given by the following operational rules:

u(x+y)≥u(x) ∧ (x+y)≥0

(S,u,x)
y

−→(S,u,x+y)

u(x+y)>u(x) ∧ (x+y)≥0

(S,u,x)
y

−→(S,u,x+y)

where y ∈ IRp, being p the number of different commodities. �

Let us remark that y may have negative components. Actually, these tuples
will contain the barters offered by the agent. For example, if y = (1,−1, 0,−3)
fulfils the premise then the agent would accept a barter where it is offered one
unit of the first product in exchange of one unit of the second good and three
units of money. Regarding the rules, the first premise simply indicates that
the agent would not decrease (resp. would increase) its utility. The second
premise indicates that the agent does not run into red numbers, that is, an
agent cannot offer a quantity of an item if it does not own it. Thus, a transition
as −→ denotes that the agent does not worsen; a transition
−→ denotes that
the agent does improve. Next we show how offers are combined.

Definition 6.2 Let M = unsat(M1, . . . , Mn) be an uncompleted market and

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264260

Fig. 11. Refinements of the market process: (second level) refinement of Distribution of Baskets to
Agents (left) and (second level) refinement of Receiving data from Agent (right).

I = {s1, . . . , sr} ⊆ {1, . . . , n} be a set of indexes denoting the completed
markets belonging to M (that is, for any i ∈ I we have that Mi = (Si, ui, xi)).
We say that the matrix E ∈ (IRp

+)n×n is a valid exchange matrix for M , denoted
by valid(M, E), if the following conditions hold:

• For any 1 ≤ i ≤ n we have
∑

j Eij ≤ xi,

• for any 1 ≤ i ≤ n we have Eii = 0, and

• for any 1 ≤ i, k ≤ n such that k �∈ I we have Eki = 0 and Eik = 0.

�

First, let us note that the notion of valid matrix is considered only in the
context of uncompleted markets: If a market is already completed then no
more exchanges can be performed. Second, only completed markets belonging

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 261

∃ k ∈ I : Mk

yk�−→ M ′
k ∧ ∀ i ∈ I,Mi

yi−→ M ′
i ∧ valid(M, E)

M
E
� unsat(M ′

1, . . . , M
′
n)

where • M = unsat(M1, . . . , Mn)

• E ∈(IRp
+)n×n and I = {s1, . . . , sr} ⊆ {1, . . . , n}

• M ′
i =

(
Mi i /∈ I

(Si, ui, xi + yi) otherwise

• yi =
P

j Eji−
P

j Eij , for any i ∈ I

Fig. 12. Operational rule for the exchange of resources in an uncompleted market.

to an uncompleted one may perform exchanges among them. This restriction
allows to give priority to transactions performed by closer agents belonging
to uncompleted sub-markets. Regarding the definition of valid matrix, the
components of matrixes E are baskets of resources (that is, elements belonging
to IRp

+). Thus, Eij represents the basket of resources that the market Mi would
give to Mj . The condition

∑
j Eij ≤ xi indicates that the total amount of

resources given by the market Mi must be less than or equal to the basket of
resources owned by that market. Finally, let us comment that an exchange
does not need to include all of the completed markets. That is, if we have
an exchange where only r′ markets participate, then the rows and columns
corresponding to the remaining r − r′ completed markets will be filled with
0. Besides, the rows and columns corresponding to the n − r uncompleted
markets will be also filled with 0.

Next we introduce the rules defining the exchange of resources. Intuitively,
if we have a valid exchange matrix where at least one of the involved agents
improves and no one worsens then the corresponding exchange can be per-
formed.

Definition 6.3 Let M = unsat(M1, . . . , Mn) be an uncompleted market and
I = {s1, . . . , sr} ⊆ {1, . . . , n} be a set of indexes denoting the completed
markets belonging to M (that is, for any i ∈ I we have that Mi = (Si, ui, xi)).
The operational transitions denoting the exchange of resources that M may
perform are given by the rule shown in Figure 12. We say that M is a local

optimum, denoted by M ��, if there do not exist M ′ and E such that M
E
� M ′.

�

The operational rule presented in Figure 12 is applied under the same con-
ditions appearing in the definition of a valid exchange matrix: It is applied to
uncompleted markets and the exchange is made among a subset of the com-
pleted sub-markets. The premises indicate that at least one completed market

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264262

improves after the exchange and that none deteriorates. Let us remind that,

in general, a market may generate both Mi
y

−→ M ′
i and Mi

y

−→ M ′

i . So, the
previous rule also considers situations where more than one market improves
(we only require that at least one improves). Besides, let us remark that

Mi
0

−→ M ′

i always holds. So, a market not involved in the current exchange
does not disallow the exchange. Regarding the conclusion, sub-markets be-
longing to M are modified according to the corresponding exchange matrix,
while uncompleted sub-markets do not change. For completeness reasons,

some other minor rules concerning the propagation of the operator
E
� must

be added (see [9] for further details).

If a market reaches an optimum then we need to modify the attribute of
the market by replacing a term such as unsat(M1, . . . , Mn) by a term such
as (S, u, x). Once a market is completed, resources are recursively moved
from the corresponding agents to the leaves of the tree. Let us remark that a
market gets completed when all of its sub-markets are completed. However,
in the following we will consider it in a different way. In particular, the rule
defining how a market becomes a higher order market will differ from the
rule given in [9]. As we said before, in order to allow the construction of a
more practical design, the behavior originally described by the formal model
is slightly modified in this paper. In particular, we adapt some aspects of
the formal model to the feedback provided during the development of the
system design. Concretely, we allow a market to become completed even if
only a subset of agents is completed. Moreover, we allow the new higher order
agent to be composed from only a subset of the agents it contains. By doing
so, the formal model can also represent a situation where some agents are
not considered because they try to join the new higher order market after
the timeout was reached. In addition, it can also represent the alternative

approach we described before: Only those agents that do not increment their
utility in the current level participate in the higher level. These situations were
not be represented in the original formal model because they are motivated by
some low level details that are beyond the abstraction level of the specification.
However, these issues turned out to be relevant to accurately describe the
overall behavior of the e-barter system in this paper. This is an example of
the two-fold relation existing between the formal model and the web service
design, and how both can be used to adapt each other.

Note that the modification of the formal model will consist in enabling new
behaviors that were not considered in the former model. The model presented
in [9] does not allow a market to become completed until all submarkets do so,
and all submarkets are always included in the new agent. So, the new specifi-
cation can be regarded as a generalization of the previous one: According to

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264 263

the new specification, more behaviors are possible, so the former specification
is a refinement of the new one (which, unfortunately, diverges from our cur-
rent necessities). In fact, the new model is created to enable the consistent
construction of an implementation where some practical issues are dealt as
we need. Note that the implementation is also a kind of (lower level) refine-
ment. Thus, our model is generalized to allow a new (low level) refinement in
a different direction.

The following rule uses two auxiliary notions: Deliver and CreateUtility.
Function Deliver distributes a basket of resources among the original agents
that are located in the leaves of the tree that is provided. On the other hand,
function CreateUtility computes a combined utility function from the ones
provided as arguments as it is described in the algorithm shown in Section 2,
step 3 (see the formal definition of both functions in [9]).

Definition 6.4 Let M = unsat(M1, . . . , Mn) be an uncompleted market. Let
I = {s1, . . . , sr} ⊆ {1, . . . , n} where for any i ∈ I we have Mi = (Si, ui, xi).
The following rule modifies the market from uncompleted to completed:

M 	�

M � ([A1, . . . , Ar], u,
P

i∈I
xi)

where u = CreateUtility(us1
, . . . , usr

, xs1
, . . . , xsn

) and for any 1 ≤ i ≤ r we
have Ai = (S ′

i, usi
, xsi

) with S ′

i = Deliver(Ssi
, usi

, xsi
). �

Let us remark that in the previous rule the transition � is not labelled.
These transitions play a role similar to internal transitions in classical process
algebras. In order to propagate the transformations given by a � transition
to the context of different constructors, other minor rules have to be added.
These rules can be found in [9].

M. Bravetti et al. / Electronic Notes in Theoretical Computer Science 159 (2006) 241–264264

	Introduction
	Formal specification of multi-level e-barter systems
	A brief introduction to the formal model

	Design of multi-level e-barter Systems via web services
	Local naming definition for each market
	WSDL definition of local PortType names

	BPEL4WS processes for the entities of e-barter systems
	Conclusions
	References
	Appendix: Operational semantics of the specification model

