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Abstract

Using finite discrete group characters and symmetry breaking by hyperflux as well as constraints on top-
quark family, we study minimal low energy effective theory following from SU5 × D4 models embedded 
in F-theory with non-abelian flux. Matter curves spectrum of the models is obtained from SU5 × S5 theory 
with monodromy S5 by performing two breakings: first from symmetric group S5 to S4 subsymmetry, and
next to dihedral D4 subgroup. As a consequence, and depending on the ways of decomposing triplets of S4, 
we end with three types of D4-models. Explicit constructions of these theories are given and a MSSM-like 
spectrum is derived.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Recently, there has been an increasing interest in building SU5 ×� GUT models, with discrete 
symmetries �, embedded in Calabi–Yau compactification of F-theory down to 4D space time 
[1–11]; and in looking for low energy minimal prototypes with broken monodromies [12–19]. 
This class of supersymmetric GUTs with discrete groups leads to quasi-realistic field spectrum 
having quark and lepton mass matrices with properties fitting with MSSM requirements. In the 
geometric engineering of these F-GUTs, splitting spectral cover method together with Galois 
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theory tools is used to generate appropriate matter curves spectrum [20–25]; and a geometric
Z2 parity has been also introduced to suppress unwanted effects such as exotic couplings and 
undesired proton decay operators [26–29].

In this paper, we develop another manner to deal with monodromy of F-GUT that is different 
from the one proposed first in [18], and further explored in [27,30,31], where matter curves 
of the same orbit of monodromy are identified. In our approach, we use the non-abelian flux 
conjecture of [15,16] to think of monodromy group of F-theory SU5 models as a non-abelian
flavor symmetry �. Non-trivial irreducible representations of the non-abelian discrete group �
are used to host the three generations of fundamental matter; a feature that opens a window to 
build semi-realistic models with matter curves distinguished from each other in accord with mass 
hierarchy and mixing neutrino physics [32–34].

In this work, we study the family of supersymmetric SU5 × �p × U (1)5−p models in the 
framework of F-theory GUT; with non-abelian monodromies �p contained in the permutation 
group S5 [30–42]; and analyse the realisation of low energy constraints under which one can 
generate an effective field spectrum that resembles to MSSM. A list of main constraints leading 
to a good low energy spectrum is described in section 5; it requires amongst others a tree-level 
Yukawa coupling for top-quark family. To realise this condition with non-abelian �p , we consider 
the case where �p is given by the order 8 dihedral group D4; this particular non-abelian discrete 
symmetry has representations which allow more flexibility in accommodating matter genera-
tions. Recall that the non-abelian alternating A4 group has no irreducible doublet as shown in the 
character relation 12 = 32 + 12 + 12 + 12; and the irreducible representation of non-abelian S4
and S3, which can be respectively read from 24 = 32 + 32 + 22 + 12 + 12 and 6 = 22 + 12 + 12, 
has a doublet and two singlets. The non-abelian dihedral group D4 however has representations 
Ri with dimensions, that can be read from 8 = 22 +12 +12 +12 +12, seemingly more attractable 
phenomenologically; it has 5 irreducible Ri ’s, four singlets, indexed by their basis characters as 
1++, 1+−, 1−+, 1−−, and an irreducible doublet 200, offering therefore several pictures to ac-
commodate the three generations of matter of the electroweak theory; in particular more freedom 
in accommodating top quark family.

To deal with the engineering of SU5 ×D4-models, we develop a new method based on finite 
discrete group characters χRi

, avoiding as a consequence the complexity of Galois theory ap-
proach. The latter is useful to study F-theory models with the dihedral D4 and the alternating A4
subgroups of S4 as they are not directly reached by the standard splitting spectral cover method; 
they are obtained in Galois theory by putting constraints on the discriminant of underlying spec-
tral covers, and introducing other monodromy invariant of the covers such a resolvent [14,15,29].

To derive the D4-matter curves spectrum in SU5 ×D4-models, we think of it in terms of a two 
steps descent from S5-theory: a first descent down to S4, and a second one to D4 by turning on 
appropriate flux that will be explicitly described in this work, see also appendix C. By studying 
all scenarios of breaking the triplets S4-theory in terms of irreducible D4-representations, we 
end with three kinds of D4-models: one having a field spectrum involving all D4-representations 
including doublet 200 (model I), the second theory (model II) has no doublet 200 nor the singlet 
1−−, and the third model has no 200, but does have 1−−. We have studied the curves spectrum of 
the three D4-models; and we have found that only model III allows a tree level 3-couplings and 
exhibits phenomenologically interesting features.

The presentation is as follows: In section 2, we study the SU5 × S5 model, and describe
the picture of the two steps breaking S5 → S4 → S3 by using standard methods. In section 3, 
we introduce our method; and we revisit the construction of the S4- and S3-models from the 
view of discrete group characters. In section 4, we use character group method to build three 
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SU5 ×D4 ×U⊥
1 models. In section 5, we solve basic conditions for deriving MSSM-like spectrum 

from SU5 × D4 × U⊥
1 models. In section 6, we conclude and make discussions. Last section is 

devoted to three appendices: In appendix A, we give relations regarding group characters. In 
appendix B, we report details on other results obtained in this study; and in appendix C we 
exhibit the link between non-abelian monodromies and flavor symmetry.

2. Spectral covers in SU5 × � models

In F-GUT models with SU5 gauge symmetry, matter curves carry quantum numbers in SU5 ×
SU⊥

5 bi-representations following from the breaking of E8 as given below

248 → (24,1⊥) ⊕ (1,24⊥)⊕
(10,5⊥) ⊕

(
10, 5̄⊥

)
⊕

(
5̄,10⊥

) ⊕
(

5,10⊥
)

(2.1)

In this SU5 theory, the perpendicular SU⊥
5 is restricted to its Cartan–Weyl subsymmetry 

(
U⊥

1

)4
, 

see appendix C for some explicit details; and the matter content of the model is labelled by five 
weights ti like

10ti , 10−ti , 5̄ti+tj , 5−ti−tj , 1ti−tj (2.2)

with traceless condition

t1 + t2 + t3 + t4 + t5 = 0 (2.3)

The components of the five 10-plets 10ti and those of the ten 5-plets 5̄ti+tj are related to each 
other by monodromy symmetries �; offering a framework of approaching GUT-models with 
discrete symmetries originating from geometric properties of the elliptic Calabi–Yau fourfold 
CY4 which, naively, can be thought of as given by the 4-dim complex space

CY4 ∼ E ×B3 (2.4)

In this fibration, the complex 3-dim base B3 contains the complex GUT surface SGUT wrapped 
by 7-brane; and the complex elliptic curve E fiber is as follows

y2 = x3 + b5xy + b4x
2z + b3yz2 + b2xz3 + b0z

5 (2.5)

where the homology classes [x], [y], [z] and [bk]; associated with the holomorphic sections x, 
y, z and bk , are expressed in terms of the Chern class c1 = c1 (SGUT) of the tangent bundle of 
the SGUT surface; and the Chern class −t of the normal bundle NSGUT |B3 like

[
y
] = 3 (c1 − t) , [z] = −t

[x] = 2 (c1 − t) , [bk] = (6c1 − t) − kc1 (2.6)

2.1. Matter curves in SU5 × S5 model

Matter curves of SU5 × U (1)5−k × �k models live on GUT surface SGUT with monodromy 
symmetries �k contained in S5, the Weyl group of SU⊥, see eq. (C.8) of appendix C. In the case 
5
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of �5 = S5; these curves organise into reducible multiplets1 of S5 with the following character-
istic properties

Matters curves Weights S5 repres Homology classes Holomorphic sections

10ti ti 5 η − 5c1 b5 = b0

5∏
i=1

ti

5̄ti+tj ti + tj 10 η′ − 10c1 d10 = d0

5∏
j>i=1

Tij

1ti−tj ti − tj 20 η′′ − 20c1 g20 = g0

5∏
i �=j=1

Sij

(2.7)

where the tis as above, Tij = ti + tj with i < j , and Sij = ti − tj with i �= j . These tis, Tij s, 
and Sij s are respectively interpreted as the simple zeros of the spectral covers C5 = 0 describing 
ten-plets, C10 = 0 describing five-pelts and C20 = 0 for flavon singlets [45–50]

C5 = b0

5∏
i=1

(s − ti ) ≡ b0

5∏
i=1

si

C10 = d0

5∏
j>i=1

(
s − Tij

) ≡ d0

5∏
j>i=1

sij

C20 = g0

5∏
i �=j

(
s − Sij

) ≡ g0

5∏
i �=j

s′
ij (2.8)

The homology classes of the complex curves in (2.7) are nicely obtained by defining the spectral 
covers in terms of the usual holomorphic sections; for the 5-sheeted covering of SGUT , we have

C5 = b0s
5 + b1s

4 + b2s
3 + b3s

2 + b4s + b5 = 0 (2.9)

with b1 = 0 due to traceless condition; and homology classes of the complex holomorphic sec-
tions bk as follows

Holomorphic sections Homology classes

s −c1
bk η − kc1

(2.10)

with canonical homology class η given by

η = 6c1 − t (2.11)

with c1 and −t as in eqs. (2.6). From these relations, the homology class 
[
10ti

] = [
C5|s=0

]
is 

given by [b5]; by using b5 = b0
∏5

i=1 ti , we have [b5] = η − 5c1 in agreement with (2.6). For the 

1 An equivalent spectrum can be also given by using irreducible representations of S5 and their characters; to fix ideas 
see the analogous S4- and S3-models studied in section 3.
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10-sheeted covering, we have

C10 =
10∑

k=0

dks
10−k (2.12)

and leads to the homology class [d10] = η′ − 10c1 where, due to d0 = b3
0, the class η′ can be 

related to the canonical η of the 5-sheeted cover like 3η. Similar relation can be written down for 
singlets

C20 =
20∑

k=0

gks
20−k (2.13)

leading to 
[
g20

] = η′′ − 20c1 with the property η′′ = 9η.
For later use, we consider together with (2.7) the so called geometric Z2 parity of [19], but 

as approached in [14,15] in dealing with local models. For simplicity, we use a short way to 
introduce this parity by requiring, up to an overall phase, invariance of C5 = 0, C10 = 0, C20 = 0
under the following transformations along the spectral fiber; see [14–16] for explicit details,

s′
i = e−iφsi

b′
k = ei

[
β+(5−k)φ

]
bk

d ′
k = ei

[
γ+(10−k)φ

]
dk

g′
k = ei[δ+(20−k)φ]gk (2.14)

Under this phase change, the spectral covers eqns transform like

C′
5 = eiβC5

C′
10 = eiγ C10

C′
20 = eiδC20 (2.15)

Focusing on 10-plets, and equating above C′
5 with the one deduced from construction of 

[16] namely C′
5 = ei(ζ−φ)C5, we learn that we should have β = ζ − φ, and therefore b′

k =
ei[ζ+(k−6)φ]bk . For the particular choice φ = π , we have s′

i = −si and

b′
k = (−)k eiζ bk (2.16)

If we put ζ = 0, we get 
(
b′

0, b
′
5

) = (+b0,−b5); while by taking ζ = π , we have 
(
b′

0, b
′
5

) =
(−b0,+b5); below we set ζ = π . To get the parity of the holomorphic sections dk and gk

of eqs. (2.8), we use their relationships with the bk coefficients. By help of the relations 
d10 = b2

3b4 − b2b3b5 + b0b
2
5 and g20 = 256b5

4b
4
0 + . . . , it follows that Z2(d10) ∼ Z2(b

2
3b4) and 

Z2(g20) = Z2(b
5
4b

4
0), so we have [27,30,31]

Z2(d10) = −1, Z2(g20) = −1, Z2(b5) = +1

Z2(d0) = −1, Z2(g0) = −1, Z2(b0) = −1 (2.17)

in agreement with the homology class properties η′ = 3η and η′′ = 9η.
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2.2. Models with broken S5

To engineer matter curves with monodromy �k ⊂ S5, we generally use spectral cover splitting 
method combined with constraints inspired from Galois theory [14–16,26,27]. In this study, we 
develop a new method without need of the involved tools of Galois group theory, our approach 
uses characters χR (g) of discrete group representations, and relies directly the roots of the spec-
tral covers. To illustrate the method, but also for later use, we first study the two interesting cases 
by using the standard method:

• �4 = S4 ⊂ S5,
• �3 = S3 ⊂ S5.

The case �4 = D4 requires more tools: it will be studied later after revisiting S4- and 
S3-models from the view of characters of their representations.

2.2.1. S4-model in standard approach
To engineer the breaking of S5 down to S4, we proceed as follows: First, we use S5-invariance 

to rewrite the holomorphic polynomial C5 like

C5 = b0

5!
∑
σ∈�

5∏
i=1

(
s − tσ (i)

)
(2.18)

and similarly for C10 and C20. To break S5 down to S4, we impose a condition fixing one of the 
weight [51], for example

σ (t5) = t5 ⇔ σ (5) = 5 (2.19)

This requirement breaks S5 down to one of the five possible S4 subgroups living inside S5, and 
leads to the following features:

(a) the traceless condition (2.3) of the orthogonal SU⊥
5 is solved as t5 = − (t1 + t2 + t3 + t4); 

it is manifestly S4-invariant. To deal with this t5 weight, we shall think about the breaking of S5
down to S4 in terms of the descent of the symmetry SU5 × U (1)5−k × �k from k = 5 to k = 4
as follows [58,59]

SU5 × U (1)5−5 × S5 → SU5 × U (1)5−4 × S4

∼ SU5 × S4 × U (1) (2.20)

(b) the spectral covers C5 and C10 split as the product of two factors: (α) the spectral cover C5
factorises like C4 × C1 with

C4 = A0

4∏
i=1

(s − ti ) , C1 = a0 (s − t5) (2.21)

and2

2 The holomorphic sections Al and am eqs. (2.21) are directly derived by expanding the factorised forms of the spectral 
covers C4 and C1; we will not give these details here; for example the relevant A4 and a1 are given by A4 = A0

∏4
i=1 ti

and a1 = −a0t5.
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b0 = A0 × a0

b5 = A4 × a1 (2.22)

together with the transformations following from (2.14)–(2.15). Notice that the above factorisa-
tions put conditions on the field K where live the holomorphic sections; a feature that is also 
predicted by Galois theory [28,29]. As a naive illustration, we use the comparison with arith-
metics in the set of integers Z ; an integer number like 6 can be factorised in Z as 6 = 2 × 3,
while a prime integer like 5 has no factorisation.

By using C′
5 = C′

4 × C′
1 and equating ei(ζ−φ) (C4 × C1) with 

(
eiξC4

) × (
eiψC1

)
, it follows that 

ζ − φ = ξ + ψ , and

A′
4 = eiξA4

a′
1 = ei(ζ−ξ−φ)a1 (2.23)

from which we learn that A4 and a1 sections transform differently, and then Z2 (b4) = Z2 (A4)×
Z2 (a1). (β) the C10 splits in turns like C̃6 × C̃4 with

C6 = Ã0

4∏
j>i=1

(
s − Tij

)
, C4 = ã0

4∏
i=1

(s − Ti5) (2.24)

and

d0 = Ã0 × ã0

d10 = Ã6 × ã4 (2.25)

as well as C̃6 = e2iξ̃ C̃6 and C̃4 = e2iψ̃ C̃4 with ξ̃ + ψ̃ = ζ̃ − φ.
Under the above splitting, the spectrum (2.7) decomposes in terms of reducible S4 multiplets 

as follows

Curves Weights S4 U⊥
1 Homology Sections Z2 U(1)Y flux

10ti ti 4 0 η − 4c1+χ A4 �4 N

10t5 t5 1 1 −χ − c1 a1 �1 −N

5ti+tj ti+tj 6 0 η′−6c1+χ̃ Ã6 �̃6 N

5ti+t5 ti+t5 4 1 −χ̃ − 4c1 ã4 �̃4 −N

(2.26)

with

A4 = A0

4∏
i=1

ti , Ã6 = Ã0

4∏
j>i=1

Tij

a1 = a0t5, ã4 = ã0

4∏
i=1

Ti5 (2.27)

and where �i and �̃k refer to Z2 parities; for instance

�4 = Z2 (A4) , �̃6 = Z2

(
Ã6

)
�1 = Z2 (a1) , �̃4 = Z2 (ã4)

�4�1 = Z2 (b5) , �̃4�̃6 = Z2 (d10) (2.28)
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The last column of eq. (2.26) refers to the hyperflux of the U (1)Y gauge field strength; it breaks 
SU5 gauge symmetry down to standard model gauge invariance, and also pierces the matter 
curves of the model as shown in table.

2.2.2. S3-model in standard approach
The breaking of S5 down to S3 may be obtained from above S4 model by further breaking 

S4 down to S3; this corresponds to SU5 × U (1)5−5 × S5 → SU5 × U (1)5−3 × S3. This can be 
realised by fixing one of the four ti roots, say t4, so that the breaking pattern is given by

SU5 × U (1)5−5 × S5 → SU5 × U (1)5−3 × S3

∼ SU5 × S3 × U (1)2 (2.29)

Setting U (1)2 = U⊥
1 ×U⊥

1 , the previous S4 spectrum decomposes into reducible S3 multiplets as 
follows,

Curves S3 U⊥
1 ×U⊥

1 Homology Section U(1)Y flux

10ti 3 (0,0) η − 3c1−χ − χ ′ A′
3 −N − P

10t4 1 (1,0) χ ′−c1 A′
1 P

10t5 1 (0,1) χ − c1 a1 N

5ti+tj 3 (0,0) η′−3c1−χ̃ − χ̃ ′ Ã′
3 −N − P

5ti+t4 3 (1,0) χ̃ ′−3c1 Ã′′
3 P

5ti+t5 3 (0,1) χ̃ − 3c1−χ̃ ′ ã′
3 N − P

5t4+t5 1 (1,1) χ̃ ′−c1 ã′′
1 P

(2.30)

with

b5 = (
A′

3A
′
1

) × a1, d10 =
(
Ã′

3Ã
′′
3

)
× (

ã′
3ã

′′
1

)
(2.31)

where A′
3, A′

1, a1 and Ã′
3, Ã′′

3, ã′
3, ã′′

1 are given by relations of form as in (2.27). An extra column 
for Z2-parity can be also added as in (2.26) with the property

Z2 (b5) = Z2(A
′
3) × Z2(A

′
1) × Z2(a1)

Z2 (d10) = Z2(Ã
′
3) × Z2(Ã

′′
3) × Z2(ã

′
3) × Z2(ã

′′
1 ) (2.32)

Observe also that here we have two new homology class cycles χ and χ ′ with∫
χ

FX = N,

∫
χ ′

FX = P (2.33)

The non-zero P is responsible for the second splitting; this is because the breaking of S5 down 
to S3 has been undertaken into two stages: first S5 → S4; and second S4 → S3. In what follows 
we extend this idea to the breaking pattern of S5 down to D4.

3. Revisiting SSS4 and SSS3-models

In this section, we develop tools towards the study of the breaking of S5 monodromy down 
to its D4 sub-symmetry. To our knowledge these tools, have not been used before, even for Sn

permutation groups, so we begin by revisiting the S4- and S3-models from the view of characters 
of their irreducible representations, and turn in next section to develop the D4 theory.
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3.1. SU5 × S4 × U⊥
1 model

In the canonical ti -weight basis, the matter spectrum of S4-model is given by (2.26); there 
matter curves are organised into reducible multiplets of S4 ×U⊥

1 . Below, we give another manner 
to approach the spectrum of S4-model.

By help of the standard relation 24 = 12 +12 +22 +32 +32 showing that S4 has 5 irreducible
representations Ri and 5 conjugacy classes Ci [39–42], and by using properties of the irreducible 
Ri representations of S4 given in appendix, eq. (2.26) may be expressed in terms of the Ris and 
their χ(a,b,c)

R characters as follows

Curves Weights Irrep S4 χ
(a,b,c)
R U⊥

1 Homology U(1)Y flux

10xi

10x4

10t5

xi

x4

t5

3
1
1

(1,0,−1)

(1,1,1)

(1,1,1)

0
0
1

η − 3c1

χ − c1

−χ − c1

0
N

−N

5Xij

5Xi4

5Xi5

5X45

Xij

Xi4

Xi5

X45

3′
3
3
1

(−1,0,1)

(1,0,−1)

(1,0,−1)

(1,1,1)

0
0
0
1

η′−3c1

−3c1 + χ ′
−3c1−χ ′

−c1

0
N

−N

0

(3.1)

Notice that S4 has three generators denoted here by (a, b, c) and chosen as given by 2-, 3-
and 4-cycles; they obey amongst others the cyclic properties a2 = b3 = c4 = Iid ; these three 
generators are non-commuting permutation operators making extraction of full information from 
them a difficult task, but part of these information is given their χ(a,b,c)

R ’s; these characters are 
real numbers as collected in following table [39–42],

χij χI χ3′ χ2 χ3 χε

a 1 −1 0 1 −1
b 1 0 −1 0 1
c 1 1 0 −1 −1

(3.2)

Notice also that the 4- and 6-representations of S4, which have been used in the canonical formu-
lation of section 2, are decomposed in (3.1) as direct sums of irreducible components as follows:

4(2,1,0) = 1(1,1,1) ⊕ 3(1,0,−1)

6(0,0,0) = 3(1,0,−1) ⊕ 3′
(−1,0,1) (3.3)

Notice moreover that the previous ti-weights are now replaced by new quantities xi given by 
some linear combinations of the ti’s fixed by representation theory of S4. One of these weights,
say x4, is given by the usual completely S4-symmetric term

x4 ∼ (t1 + t2 + t3 + t4) (3.4)

transforming in the trivial representation of S4; the three other xi are given by some orthogonal 
linear combinations of the four ti’s that we express as follows

xi = αit1 + βit2 + γit3 + δi t4 (3.5)

These three weights transform as an irreducible triplet of S4; but seen that we have two kinds of 
3-dim representations in S4 namely 3 and 3′, the explicit expressions of (3.5) depend in which 



10 R. Ahl Laamara et al. / Nuclear Physics B 906 (2016) 1–39
of the two representations the xis are sitting; details are reported in appendix where one also 
finds the relationships tμ = Uμρxρ and tμ ± tν = (

Uμρ ± Uνρ

)
xρ . Notice finally that the explicit 

expressions of Xμν weights in (3.1) are not needed in our approach; their role will be played by 
the characters of the representations.

3.2. SU5 × S3 × (
U⊥

1

)2
model

The spectrum of GUT-curves of the SU5 × S3 × (
U⊥

1

)2
model follows from the spectrum of 

the SU5 × S5 theory by using splitting spectral method. By working in the canonical basis for 
ti -weights, this spectrum, expressed in terms of reducible multiplets, is given by (2.30). Here, 
we revisit the SU5 ×S3 × (

U⊥
1

)2
curves spectrum by using irreducible representations of S3 and 

their characters.
We start by recalling that S3 has three irreducible representations as shown of the usual charac-

ter relation 6 = 12 + 12′ + 22 linking the order of S3 to the squared dimensions of its irreducible 
representations; these irreducible representations are nicely described in terms of Young dia-
grams [42]

1 : , 2 : , 1′ : (3.6)

The group S3 is a non-abelian discrete group; it has two non-commuting generators (a, b) satis-
fying a2 = b3 = 1 with characters as follows

χR χI χ2 χε

a 1 0 −1
b 1 −1 1

(3.7)

The spectrum of matter curves in the S3-model is obtained here by starting from the S4 spectrum 
(t1, t2, t3) (2.30); and then breaking S4 monodromy to S3 × S1. We find

Curves Weights Irrep S3 χ
(a,b)
R U⊥

1 Homology U(1)Y flux

10xi

10x3

10x4

10t5

xi

x3

x4

t5

2
1
1
1

(0,−1)

(1,1)

(1,1)

(1,1)

0
0
0
1

η − 2c1−χ ′
−χ − c1

χ ′−c1

χ − c1

−P

−N

P

N

5Xij

5Xi3

5Xi4

5X34

5Xi5

5X35

5X45

Xij

Xi3

Xi4

X34

Xi5

X35

X45

2
1
2
1
2
1
1

(0,−1)

(−1,1)

(0,−1)

(1,1)

(0,−1)

(1,1)

(1,1)

0
0
0
0
0
0
1

η′−2c1

−c1−χ ′ − χ

−2c1

χ ′−c1

−2c1

−c1−χ ′+χ

χ ′ − c1

0
−P − N

0
P

0
N − P

P

(3.8)

where the integers P and N are as in eq. (2.33).
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4. SU5 ×DDD4 models

First notice that the engineering of the SU5 × D4 × U⊥
1 theory has been recently studied in 

[16] by using Galois theory, but here we use a method based on characters of the irreducible 
representations of D4, and find at the end that there are in fact three kinds of SU5 × D4 × U⊥

1
models, they are explicitly constructed in this section. To that purpose, we first review useful 
aspects on characters of the dihedral group, then we turn to construct the three D4 ×U⊥

1 models.

4.1. Characters in D4 models

The dihedral D4 is an order 8 subgroup of S4 with no 3-cycles; there are three kinds of such 
subgroups inside S4; an example of D4 subgroup is the one having the following elements

Iid ,
(24)

(13)
,

(13) (24)

(12) (34)

(14) (23)

,
(1234)

(1432)
(4.1)

with non-commuting generators a = 〈(24)〉 and b = 〈(1234)〉 satisfying a2 = b4 = I and 
aba = b3. The two other D′

4 and D′′
4 have similar contents; but with other transpositions and 

4-cycles. In terms of (a, b) generators, the eight elements (4.1) of the dihedral D4 reads as

Iid ,
a

b2a
,

b2

ab

ba

,
b

b3 (4.2)

they form 5 conjugacy classes as follows

C1 = {Iid} , C2 = {
b2

}
, C3 = {

b, b3
}

C4 = {a} , C5 = {ab} (4.3)

The dihedral group D4 has also 5 irreducible representations Ri ; this can be directly learnt on 
the character formula 8 = 12

1 + 12
2 + 12

3 + 12
4 + 22, linking the order of D4 with the sum of d2

i , the 
squares of the dimensions di of the irreducible Ri representations of D4. So, the order 8 dihedral 
group has four irreducible representations with 1-dim; and a fifth irreducible D4-representation 
with 2-dim [42]. The character table of D4 representations is given by

Ci\χRj
χ11 χ12 χ13 χ14 χ2 Number

C1 1 1 1 1 2 1
C2 1 1 1 1 −2 1
C3 1 1 −1 −1 0 2
C4 1 −1 1 −1 0 2
C5 1 −1 −1 1 0 2

(4.4)

from which we learn the following characters of the (a, b) generators

χ
(g)
ij χ11 χ12 χ13 χ14 χ2

a 1 −1 1 −1 0
b 1 1 −1 −1 0

(4.5)



12 R. Ahl Laamara et al. / Nuclear Physics B 906 (2016) 1–39
For other features see [41]. With these tools at hand, we turn to engineer the SU5 × D4 × U⊥
1

models with dihedral monodromy symmetry.

4.2. Three D4-models

As in the case of S3 monodromy, the breaking of S4 down to D4 is induced by non-zero flux 
piercing the curves of the SU5 ×S4 ×U⊥

1 model. Using properties from the character table of D4, 
we distinguish three kinds of models depending on the way the S4-irreducible triplets have been 
pierced; there are three possibilities and are as described in what follows:

4.2.1. First case: 3 = 1+,− ⊕ 20,0

In this model, the various irreducible triplets of S4; in particular those involved in:

(i) the five 10-plets namely 5 = 1 ⊕ 3 ⊕ 1t5 , and
(ii) the ten 5-plets which includes the four 10-plets charged under U⊥

1 namely 4t5 = 1t5 ⊕ 3t5 , 
and the six uncharged 10-plets given by 6 = 3 ⊕ 3′,

are decomposed as sums of two singlets 1p,q +1p′,q ′ and a doublet 20,0. The character properties 
of the D4-representations indicate that the decompositions of the triplets should be as

3|D4
= 1+,− ⊕ 20,0

3′∣∣
D4

= 1−,+ ⊕ 20,0 (4.6)

By substituting these relations back into the restricted spectrum resulting from (3.1), we end 
with the following SU5 ×D4 × U⊥

1 spectrum

• five 10-plets

Curves Weights D4 χ
(a,b)
R U⊥

1 Homology U (1)Y flux

10yi

10y3

10y4

10t5

yi

y3

y4

t5

2
1
1
1

(0,0)

(1,−1)

(1,1)

(1,1)

0
0
0
1

η − 2c1 − ϕ

−c1

χ ′ − c1

χ − c1

−N − P

0
P

N

(4.7)

where χ(a,b)
R stands for the character of the generators in the R representation; ϕ = χ + χ ′, 

and the integers N and P as in eqs. (2.33). Notice that the multiplets 10y4 and 10t5 transform 
in the same trivial D4-representation; but having different t5-charges; the 10y3 transforms 
also as a singlet; but with character (1,−1); it is a good candidate for accommodating the 
top-quark family.

• ten 5-plets
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Curves Weight D4 χ
(a,b)
R U⊥

1 Homology U (1)Y flux

5Yi3

5Y12

5Yi4

5Y34

5Yi5

5Y35

5Y45

Yi3
Y12
Yi4
Y34
Yi5
Y35
Y45

2
1
2
1
2
1
1

(0,0)

(−1,1)

(0,0)

(1,−1)

(0,0)

(1,−1)

(1,1)

0
0
0
0
1
1
1

η′−2c1+ϕ

−χ − c1
−χ ′−c1
−2c1

−χ ′−c1
−χ − c1
ϕ − 2c1

N + P

−N

−P

0
−P

−N

N + P

(4.8)

where we have set ϕ = χ + χ ′. From this table, we learn that among the ten 5-plets, two sit 
in the 1+,− representation with character (1,−1), but with different t5 charges; one in 1−,+
with character (−1,1) with no t5 charge; and a fourth in the trivial representation of D4 with 
a unit t5 charge.

• flavons
Among the 24 flavons of the SU5 × S4 × U⊥

1 model, there are 20 ones charged under D4
monodromy symmetry; but because of hermitic feature, they can be organised into 10 ⊕ 10′
subsets with opposite D4 characters and opposite t5 charges. Moreover due to reducibility 
of the 10-dim multiplet as 10 = 4t5 ⊕ 6, which is also equal to 

(
1t5 ⊕ 3t5

) ⊕ (
3 ⊕ 3′); and 

therefore to the direct sum 1t5+,+ ⊕
(

1t5+,− ⊕ 2t5
0,0

)
plus 

(
1+,− ⊕ 20,0

) + (
1−,+ ⊕ 20,0

)
; one 

ends with (α) flavons doublets ϑi , ϑi
t5

having character (0,0) with and without t5 charges,
and (β) flavon singlets having characters (±1,±1) with and without t5 charges; they are as 
collected below:

Curves Weights D4 irrep χ
(a,b)
R character t5 charge

1±Zi3

1±Z12

1±Zi4

1±Z34

1±Zi5

1±Z35

1±Z45

±Zi3
±Z12
±Zi4
±Z34
±Zi5
±Z35
±Z45

2
1
2
1
2
1
1

(0,0)

±(−1,1)

(0,0)

±(1,−1)

(0,0)

±(1,−1)

±(1,1)

0
0
0
0

∓1
∓1
∓1

(4.9)

4.2.2. Second case: 3 = 1+,− ⊕ 1+,− ⊕ 1−,+
This is a completely reducible model; under restriction to dihedral subsymmetry, the 3 and 3′

triplets of S4 are decomposed as follows

3|D4
= 1+,− ⊕ 1+,− ⊕ 1−,+

3′∣∣
D4

= 1−,+ ⊕ 1−,+ ⊕ 1+,− (4.10)

by substituting these decompositions back into the spectrum of SU5 × S4 × U⊥
1 -theory given 

by (3.1), we obtain the curves spectrum of the second SU5 ×D4 × U⊥
1 -model:

• five 10-plets
The spectrum of the 10-plets in the D4-model II can be also deduced from (4.7) by splitting 
the 20,0 doublet as 1+,− ⊕ 1−,+; we have
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Curves D4 irrep Character U⊥
1 Homology U (1)Y flux

10+,−
10−,+
10+,−
10+,+
10t5+,+

1+,−
1−,+
1+,−
1+,+
1+,+

(1,−1)

(−1,1)

(1,−1)

(1,1)

(1,1)

0
0
0
0
1

η − c1 − χ − χ ′
−c1

−c1

χ ′ − c1

χ − c1

−N − P

0
0
P

N

(4.11)

Here we have two matter multiplets namely 10+,+ and 10t5+,+; they transform in the same 
trivial D4-representation with character (1,1); but having different t5-charges. We also have 
two 10+,− multiplets transforming in 1+,− with character (1,−1); but with different fluxes; 
and one multiplet 10−,+ with character (−1,1); it will be interpreted in appendix B as the 
one accommodating the top-quark family.

• ten 5-plets

Curves D4 irrep χ
(a,b)
R U⊥

1 Homology U (1)Y flux

5+,−
5−,+
5−,+
5+,−
5−,+
5+,−
5t5+,−
5t5−,+
5t5+,−
5t5+,+

1+,−
1−,+
1−,+
1+,−
1−,+
1+,−
1+,−
1−,+
1+,−
1+,+

(1,−1)

(−1,1)

(−1,1)

(1,−1)

(−1,1)

(1,−1)

(1,−1)

(−1,1)

(1,−1)

(1,1)

0
0
0
0
0
0
1
1
1
1

η′−c1+χ + χ ′
−c1

−χ − c1

−χ ′−c1

−c1

−c1

−χ ′−c1

−c1

−χ − c1

−2c1+χ + χ ′

N + P

0
−N

−P

0
0

−P

0
−N

N + P

(4.12)

where N and P as in eqs. (2.33).
In this model, there is no flavon doublets; there are only singlet flavons transforming in the 
representations 1+,+, 1−,−, 1+,−, 1−,+ with and without t5 charges; they are denoted in 
what follows as ϑp,q and ϑ±t5

p,q with p, q = ±1.

4.2.3. Third case: 3 = 1+,+ ⊕ 1−,− ⊕ 1+,−
This D4-model differs from the previous one by the characters of the singlets; since in this 

case the S4-triplets 3|S4
and 3′∣∣

S4
are decomposed in terms of irreducible representations of D4

like

3|D4
= 1+,+ ⊕ 1−,− ⊕ 1+,−

3′∣∣
D4

= 1+,+ ⊕ 1−,− ⊕ 1−,+ (4.13)

Substituting these relationships back into (3.1), we get the curve spectrum of the third model 
namely:

• five 10-plets
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Curves D4 irrep Character U⊥
1 Homology U (1)Y flux

10+,+
10−,−
10+,−
10+,+
10t5+,+

1+,+
1−,−
1+,−
1+,+
1+,+

(1,1)

(−1,−1)

(1,−1)

(1,1)

(1,1)

0
0
0
0
1

η − c1 − ϕ

−c1
−c1

χ ′ − c1
χ − c1

−N − P

0
0
P

N

(4.14)

Here we have three 10p,q matter multiplets in the trivial D4-representation with charac-
ter (p, q) = (1,1); one of them namely 10t5+,+ having a t5 charge and the two others not. 
A fourth curve 10+,− in 1+,− without t5 charge nor a flux; and a fifth 10−,− in 1−,− with 
no t5 but carrying a flux.

• ten 5-plets

Curves D4 irrep χ
(a,b)
R U⊥

1 Homology U(1)Y flux

5+,+
5−,−
5−,+
5+,+
5−,−
5+,−
5t5+,+
5t5−,−
5t5+,−
5t5+,+

1+,+
1−,−
1−,+
1+,+
1−,−
1+,−
1+,+
1−,−
1+,−
1+,+

(1,1)

(−1,−1)

(−1,1)

(1,1)

(−1,−1)

(1,−1)

(1,1)

(−1,−1)

(1,−1)

(1,1)

0
0
0
0
0
0
1
1
1
1

η′−c1+χ + χ ′
−κ1χ

′−c1

−χ − c1

−κ2χ
′−c1

−c1

−c1

−κ1χ
′−c1

−κ2χ
′−c1

−χ − c1

−2c1+χ + χ ′

N + P

−κ1P

−N

−κ2P

0
0

−κ1P

−κ2P

−N

N + P

(4.15)

with κ1 + κ2 = 1 whose values will be fixed by the derivation of MSSM. The ten 5-plets 
5p,q splits as follows: 4 with p = q = 1; the two 5t5+,+ having a t5 charge and the two others 
5+,+ chargeless; the U⊥

1 charges and the (N,P ) fluxes allow to distinguish the four. There 
are also 3 types of 5−,−-plets; two 5+,− and one 5−,+. This model has no flavon doublets:
there are only singlet flavons ϑp,q and ϑ±t5

p,q with p, q = ±1.

5. MSSM like spectrum

First, we describe the breaking of the SU5 ×D4 ×U⊥
1 theory down to supersymmetric standard 

model, then we study the derivation of the spectrum of MSSM like model with D4 monodromy
and where the heaviest top-quark family is singled out.

5.1. Breaking gauge symmetry

Gauge symmetry is broken by U (1)Y hyperflux; by assuming doublet–triplet splitting pro-
duced by N units of U (1)Y , but still preserving D4 × U⊥

1 , the 10-plets and 5-plets get de-
composed into irreducible representations of standard model symmetry. The 5-plets of the 
SU5 ×D4 × U⊥

1 models with multiplicity M5 split as [60,61]

n(3,1)−1/3 − n(
3̄,1

)
+1/3

= M5

n(1,2) − n(1,2) = M5 + N (5.1)
+1/2 −1/2
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leading to a difference between number of triplets and doublets in the low energy MSSM effective 
theory. These two relations are important since for N �= 0 the correlation is some how relaxed; 
by choosing

M
(Higgs)
5 = 0 (5.2)

the coloured triplet–antitriplet fields (3,1)−1/3 and 
(
3̄,1

)
+1/3 in the Higgs matter curve come in 

pair that form heavy massive states; which decouple at low energy. Moreover, by making partic-
ular choices of the M(matter)

5 multiplicities, we can also have the desired matter curve properties 
for accommodating fermion families; in particular the chirality property n(1,2)+1/2 �= n(1,2)−1/2

which is induced by hyperflux. Furthermore, due to the flux, we also have different numbers of 
down quarks dc

L and lepton doublets L.
For the 10-plets of the GUT-model with multiplicity M10, we have the following decomposi-

tions [27,62,63]

n(3,2)+1/6 − n(
3̄,2

)
−1/6

= M10

n(
3̄,1

)
−2/3

− n(3,1)+2/3 = M10 − N

n(1,1)+1 − n(1,1)−1 = M10 + N (5.3)

The first relation with M10 �= 0 generates up-quark chirality since the number n(3,2)+1/6 of QL =
(3,2)+1/6 representations differs from the number n(

3̄,2
)
+1/6

of Q̄L = (
3̄,2

)
−1/6. With non-zero

units of hyperflux, the two extra relations leads to the other desired splitting; the second relation 
leads for N �= 0 to lifting the multiplicities between Q = (3,2)+1/6 and uc = (

3̄,1
)
−2/3 while 

the third relation ensures the chirality property of ec
L.

In what follows, we study the derivation of an effective matter curve spectrum that resembles 
to the field content of MSSM. In addition to three families and∑

M10 +
∑

M5 = 0 (5.4)

as well as total hyperflux conservation
∑
fluxes

Ni = 0 (5.5)

we demand the following:

• only a tree-level Yukawa coupling is allowed; and is given by the top-quark family,
• the heaviest third generation is the least family affected by hyperflux,
• MSSM matter generations are in D4 × U⊥

1 representations,
• no dimension 4 and 5 proton decay operators are allowed,
• no μ-term at a tree level,
• two Higgs doublets Hu and Hd as required by MSSM.

5.2. Building the spectrum

Seen that there are three possible SU5 × D4 × U⊥
1 models, we focus on the first model with 

curve spectrum given by eqs. (4.7)–(4.8); and consider first the 10-plets; then turn after to 5-plets. 
Results regarding the two other models II and III are reported in appendix B.



R. Ahl Laamara et al. / Nuclear Physics B 906 (2016) 1–39 17
5.2.1. Ten-plets sector in D4-model I
The five 10-plets of the D4 model carry different quantum numbers with respect to D4 × U⊥

1

representations, different hyperflux units (N,P ); and different M(n)
10 multiplicities satisfying the 

properties (5.3). By thinking about 
∑

M10 as given by the number of MSSM generations

∑
M10 = 3 (5.6)

and taking into account that the two components of the 10i-doublet are monodromy equivalent; 
it follows that one of the five 10-plets should be disregarded; at least at a tree level analysis. 
Moreover, using the property that top-quark 10-plet should be a D4-singlet; one may choose the 
M

(n)
10 ’s as in following table,

Curves D4 irrep U⊥
1 U(1)Y flux Multiplicity

10i

103

104

105

20,0

1+,−
1++
1++

0

0

0

1

−N − P

0

P

N

M
(a)
10

M
(3)
10

M
(4)
10

M
(5)
10

2

1

0

0

(5.7)

where chiral modes of 104 have been ejected (M(4)
10 = 0). Notice that the top-quark generation 

can a priori be taken in any one of the three D4-singlets; that is either 103 or 104; or 105; the 
basic difference between these D4-singlets is given by t5 charge and hyperflux. But the choice of 
the 103-multiplet looks be the natural one as it is unaffected by hyperflux, a desired property for 
MSSM and beyond; and has no t5 charge

103 = (
QL,Uc

L, ec
L

) ≡ 10+,− (5.8)

This multiplet captures also an interesting signature of D4 monodromy in the sense it behaves 
as a D4-singlet 1+,− with non-trivial character (+1,−1). The importance of this feature at mod-
elling level is twice: (i) first it fixes the quantum numbers of the 5Hu Higgs representation as a 
D4-singlet 5p,q as shown on the tree level top-quark Yukawa coupling

10+,− ⊗ 10+,− ⊗ 5Hu (5.9)

Monodromy invariance of (5.9) under D4 ×U⊥
1 requires 5Hu in the trivial representation with no 

t5 charge; i.e: 5Hu ∼ 1+,+. However, an inspection of the characters of the U⊥
1 chargeless 5-plets 

revels that there is no 
(
5+,+

)
t5=0 in the spectrum of the D4 × U⊥

1 -models I and II constructed 
above. To bypass this constraint, we realise the role of the Higgs 5Hu by allowing VEVs to come 
from flavons as well; in other words by thinking of 5Hu as follows

5Hu → 5p,q ⊗ ϑp′,q ′ with pp′ = 1, qq ′ = 1 (5.10)

where ϑp′,q ′ stands for a flavon in the representation 1p′,q ′ .
(ii) second it gives an important tool to distinguish between matter and Higgs in the 5-plets 

sector as manifestly exhibited by the tri-coupling 10+,− ⊗ 5̄M ⊗ 5̄Hd
. This interaction requires 

matter 5̄M
3 and Higgs 5̄Hd

to be in different D4-singlets 1p,q and 1p′,q ′ with pp′ = 1 and qq ′ =
−1; see discussion given later on.
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By choosing the hyperflux units as N = P = 1; and using (5.3) we obtain the matter content

Curves D4 U⊥
1 Flux Matter content Z2 parity

10i

103

104

105

20,0

1+,−
1+,+
1+,+

0
0
0
1

−2
0
1
1

2QL ⊕ 4ec
L

QL ⊕ Uc
L ⊕ ec

L

Uc
L � ec

L

Uc
L � ec

L

�43 = −
�42 = −
�41 = +
�1 = +

(5.11)

Notice that by following [16] using Galois theory, the 10-plets have been attributed Z2 parity 
charges as reported by the last column of above table. In our formulation these parities correspond 
to si → −si and �1 and �4 = �41�42�43 as in eq. (2.28); by help of (2.14) and (2.22) we obtain

Z2 (b5) = +1, Z2 (b0) = −1

Z2 (d10) = −1, Z2 (d0) = −1 (5.12)

in agreement with (2.17).

5.2.2. Five-plets sector
Like for 10-plets, the ten 5-plets carry different quantum numbers of D4 ×U⊥

1 representations, 

hyperflux units (N,P ) and M(n)
5 multiplicities as in (5.1). To have a matter curve spectrum that 

resembles to MSSM, we choose the M(n)
5 ’s and the hyperflux as

Curves D4 irrep U⊥
1 Homology Flux Multiplicity

5Yi3

5Y12

5Yi4

5Y34

5Yi5

5Y35

5Y45

20,0

1−,+
20,0

1+,−
20,0

1+,−
1+,+

0
0
0
0

−1
−1
−1

η′−2c1−χ ′+ξ ′
χ ′−c1

ξ ′−c1

−2c1

ξ ′−c1

χ ′−c1

−2c1−χ ′−ξ ′

−N − P

N

P

0
P

N

−N − P

M
(1)
5

M
(2)
5

M
(3)
5

M
(4)
5

M
(5)
5

M
(6)
5

M
(7)
5

(5.13)

where χ ′ and ξ ′ are two classes playing similar role as in the case of breaking S5 monodromy 
down to S3. By using (5.4)–(5.6), we have∑

M5 = −
∑

M10 = −3 (5.14)

and thinking of this number as 
∑

M5 = 3 −6, a possible configuration for a MSSM like spectrum 
is given by

M
(1)
5 = 2

M
(2)
5 = 0

M
(3)
5 = −4

M
(4)
5 = 0

M
(6)
5 = 1

M
(7) = −2 (5.15)
5
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By choosing the hyperflux as N = P = 1, and putting back into above table, we obtain, after 
relabelling, the 5-plets

Curves D4 U⊥
1 Flux M

(n)
5 Matter Parity

(5M
i )0

(5Hu−,+)0

(5M+,−)0

(5Hd+,+)−t5

(5M+,−)−t5

(5M
i )−t5

(5M
i )0

20,0

1−,+
1+,−
1+,+
1+,−
20,0

20,0

0

0

0

−1

−1

−1

0

−2

1

1

1

1

−2

0

2

0

−4

0

1

−2

0

2d̄
c

L

Hu

−4d̄
c

L−3L̄

−Hd

d̄c
L

−2d̄
c

L

0

�̃61 = +
�̃62 = +
�̃63 = −
�̃41 = +
�̃42 = +
�̃43 = +
�̃64 = +

(5.16)

From this table we learn that the up-Higgs 5-plet 
(

5Hu−,+
)

0
has a character equal to (−1,+1) and 

no t5 charge; by substituting in (5.10), we obtain 5Hu ∼
(

5Hu−,+
)

0
⊗ (

ϑ−,+
)

0.

We also learn that the 5-plet (5M+,−)0 is the least multiplet affected by hyperflux; and because 
of our assumptions, it is the candidate for matter 5̄M

3 ; the partner of 103 in the underlying SO10
GUT-model. With this choice, the down-type quarks tri-coupling for the third family namely 
103 ⊗ 5̄M

3 ⊗ 5̄Hd ; and which we rewrite like

10+,− ⊗ 5̄M
p,q ⊗ 5̄Hd

p′,q ′ with pp′ = 1, qq ′ = −1 (5.17)

This coupling requires the matter 5̄M
3 and the down-Higgs 5̄Hd multiplets to belong to differ-

ent D4 singlets seen that 103 is in 1+,− representation. However, the candidates (5̄Hd−,−)t5 and 
5̄M

3 ≡ (5̄M−,+)0 are ruled out because of the non conservation of t5 charge. Nevertheless, a typ-
ical diagonal mass term of third family may be generated by using a flavon ϑ+−t5

carrying −1
unit charge under U⊥

1 and transforming as a trivial D4 singlet. This leads to the realisation 
5̄Hd ∼ (5̄Hd−,−)t5(ϑ++)−t5 ; and then to

(
10+,−

)
0 ⊗

(
5̄M−,+

)
0
⊗

(
5̄Hd−,−

)
t5

⊗ (ϑ++)−t5
(5.18)

Non-diagonal 4-order coupling superpotentials with one 
(
10+,−

)
0 are as follows3

(
10+,−

)
0 ⊗ (

10+,+
)

0 ⊗
(

5Hu−,+
)

0
⊗ (

ϑ−,−
)

0(
10+,−

)
0 ⊗ (

10+,+
)
t5

⊗
(

5Hu−,+
)

0
⊗ (

ϑ−,−
)
−t5(

10+,−
)

0 ⊗
(

5Hu−,+
)

0
⊗

(
10i

0,0

)
0
⊗

(
ϑi

0,0

)
0(

10+,−
)

0 ⊗ (
10+,−

)
0 ⊗

(
5Hu−,+

)
0
⊗ (

ϑ−,+
)

0(
10+,−

)
0 ⊗

(
5Hu−,+

)
0
⊗

(
10i

0,0

)
0

(
ϑi

0,0

)
0

3 A complete classification requires also use Z2 partity; see [16].
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(
10+,+

)
0 ⊗

(
5Hu−,+

)
0
⊗

(
10i

0,0

)
0
⊗

(
ϑi

0,0

)
0(

10+,+
)
t5

⊗
(

5Hu−,+
)

0
⊗

(
10i

0,0

)
0
⊗

(
ϑi

0,0

)
−t5

(5.19)

Below, we discuss some properties of these couplings.

5.3. More on couplings in D4 model I

First, we study the quark sector; and turn after to the case of leptons.

5.3.1. Quark sector
From the view of supersymmetric standard model with SU (3) × SUL (2) × UY (1) gauge 

symmetry; and denoting the triplet and doublet components of the Higss 5-plets 5Hx = 3Hx ⊕2Hx

respectively like Dx ⊕ Hx , the usual tree level up/down-type Yukawa couplings in SU5 model 
split like

10M.10M.5Hu → QucHu + ucecDc
u + QQDc

u

10M.5
M

.5
Hd → QdcHd + ecLHd + QDc

dL (5.20)

They involve up/down Higgs triplets Dc
u and Dc

d , which are exotic to MSSM; but with the hy-
perflux UY (1) choice we have made in SU5 ×D4 × U⊥

1 model (5.11), (5.16), they are removed; 
therefore we have

10M.10M.5Hu → QucHu

10M.5
M

.5
Hd → QdcHd + ecLHd (5.21)

with right hand sides capturing same monodromy representations as left hand sides; that is Q, uc

same D4 × U⊥
1 representations as 10M , and so on. In what follows, we study each of these terms 

separately by taking into account ϑp,q flavon contributions up to order four couplings; some of 
these flavons are interpreted as right neutrinos; they will be discussed at proper time.

• Up-type Yukawa couplings
Because of the D4 × U⊥

1 monodromy charge of the up-Higgs 5-plet like (5Hu−,+)0, there is no 
monodromy invariant 3-coupling type 10M.10M.5Hu . As shown by eq. (5.10), one needs to go 
to higher orders by implementing flavons with quantum numbers depending on the monodromy 
representation of the 10-plets. Indeed, by focusing on the third generation 10M

3 ≡ (10+,−)0; we 
can distinguish diagonal and non-diagonal interactions; an inspection of D4 quantum numbers 
of matter and Higgs multiplets reveals that we need D4-charged flavons to have monodromy 
invariant superpotentials as shown below

W
(4)
top = α3Tr[(10+,−)0 ⊗ (10+,−)0 ⊗ (5Hu−,+)0 ⊗ (ϑ−,+)0] (5.22)

By restricting to VEVs 
〈
ϑ−,+

〉 = ρ0 and 〈Hu〉 = vu; this non-renormalisable coupling leads to 
the top quark mass term mtQ3u

c
3 with mt equal to α3vuρ0. Such a term should be thought of as 

a particular contribution to a general up-quark mass terms uc
i M

ijuj with 3 × 3 mass matrix as 
follows

Mu,c,t = vu

⎛
⎝ ∗ ∗ ∗

∗ ∗ ∗
∗ ∗ α ρ

⎞
⎠ (5.23)
3 0
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where the (∗)s refer to contributions coming from other terms including non-diagonal couplings; 
one of them is

Tr[(10+,−)0 ⊗ (5Hu−,+)0 ⊗ (100,0)0 ⊗ (ϑ0,0)
′
0] (5.24)

it involves a 10-plet doublet (100,0)0 ≡ (10i )0 and a flavon doublet (ϑ0,0)
′
0 ≡ (ϑi)

′
0 with VEVs 

(ρ1, ρ2); the latter (ϑ0,0)
′
0 will be combined the 10i-plet doublet like (100,0)0 ⊗ (ϑ0,0)

′
0 to make 

a scalar. Indeed, the tensor product can be reduced as direct sum over irreducible representations 
of D4 having amongst others the D4-component

S−,− = (100,0)0 ⊗ (ϑ0,0)
′
0

∣∣−,− (5.25)

with (−, −) charge character. This negative charge is needed to compensate the (−, −) charge 
coming from (10+,−)0 ⊗ (5Hu−,+)0. Restricting to quarks, this reduction corresponds to (100,0)0 ⊗
(ϑ0,0)

′
0 → Qi ⊗ ρi with

Qi ⊗ ρi |(−,−) = Q1ρ2 − Q2ρ1 (5.26)

Putting back into (5.24), and thinking of S−,− in terms of the linear combination α2(Q1ρ2 −
Q2ρ1) of quarks, we obtain α2vu(Q1ρ2 − Q2ρ1)u

c
3; which can be put into the form uc

i M
ijuj

with mass matrix as

Mu,c,t = vu

⎛
⎝ ∗ ∗ α2ρ2

∗ ∗ −α2ρ1

∗ ∗ α3ρ0

⎞
⎠ (5.27)

One can continue to fill this mass matrix by using the VEV’s of other flavons; however to do that, 
one needs to rule out couplings with those flavons describing right neutrinos νc

i . Extending ideas 
from [16], the 3 generations of the right handed neutrinos νc

i in SU5 × D4 × U⊥
1 model should 

be as

νc
3 → (

ϑ+,−
)

0

(νc
1, νc

2)
� → (

ϑ0,0
)

0 (5.28)

with the following features among the set of 15 flavons of the model

Flavons SU5 D4 irrep U⊥
1 Z2 Parity VEV

(
ϑ0,0

)′
0(

ϑ−,+
)

0(
ϑ0,0

)
±t5(

ϑ+,−
)
±t5(

ϑ+,+
)
±t5(

ϑ0,0
)

0 = (νc
1, νc

2)�(
ϑ+,−

)
0 = νc

3

1
1
1
1
1

1
1

2
1
2
1
1

2
1

0
0

±1
±1
±1

0
0

+
+
+
+
∓

–
–

(ρ1, ρ2)
�

ρ0

(σ1, σ2)
�

–
ω

–
–

(5.29)

Therefore, the contribution to (5.27) coming from the diagonal couplings of the doublets (100,0)0
follows from

W(4) = Tr[(5Hu−,+)0 ⊗ [(100,0)0 ⊗ (100,0)0]
∣∣ ⊗ (ϑ−,+)0] (5.30)

p,q
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However, though monodromy invariant, this couplings cannot generate the mass term mQ1,2u
c
1,2

since the matter curve (100,0)0 don’t contain the quark uc
1,2; so the mass matrix (5.27) for the 

up-type quarks is

Mu,c,t = vu

⎛
⎝ 0 0 α2ρ2

0 0 −α2ρ1

0 0 α3ρ0

⎞
⎠ (5.31)

it is a rank one matrix; it gives mass to the third generation (top-quark), while the two first 
generations are massless.

Masses for lighter families
The rank one property of above mass matrix (5.31) is a known feature in GUT models building 

including F-Theory constructions; see for instance [36,43,44,64]. To generate masses for the up-
quarks in the first two generations, different approaches have been used in literature: (i) approach 
based on flux corrections using non-perturbative effects [20] or non-commutative geometry [21]; 
and (ii) method using δW deformations of the GUT superpotential W by higher order chiral op-
erators [14,43,44,64–66]. Following the second way of doing, masses to the two lighter families 
are generated by higher dimensional operators corrections that are invariant under D4 symmetry 
and Z2 parity. This invariance requirement leads to involve 6- and 7-dimensional chiral operators 
which contribute to the up-quark mass matrix as follows

δW =
5∑

i=1

xiδWi (5.32)

with

δW1 =
(

10i
0,0

)
0
⊗ (

10+,+
)

0 ⊗
(

5Hu−,+
)

0
⊗

(
ϑi

0,0

)
−t5

⊗ (
ϑ+,+

)
t5

δW2 =
(

10i
0,0

)
0
⊗ (

10+,+
)
t5

⊗
(

5Hu−,+
)

0
⊗

(
ϑi

0,0

)
−t5

⊗
(
ϑi

0,0

)
−t5

⊗ (
ϑ+,+

)
t5

δW3 =
(

10i
0,0

)
0
⊗ (

10+,+
)
t5

⊗
(

5Hu−,+
)

0
⊗

(
ϑi

0,0

)
−t5

⊗ (
ϑ+,−

)
−t5

⊗ (
ϑ+,+

)
t5

(5.33)

and

δW4 = (
10+,−

)
0 ⊗ (

10+,+
)

0 ⊗
(

5Hu−,+
)

0
⊗ (

ϑ−,+
)

0 ⊗ (
ϑ+,−

)
−t5

⊗ (
ϑ+,+

)
t5

δW5 = (
10+,−

)
0 ⊗ (

10+,+
)
t5

⊗
(

5Hu−,+
)

0
⊗

(
ϑi

0,0

)2

−t5
⊗ (

ϑ+,+
)
t5

(5.34)

Notice that the adjunction of 
(
ϑ+,+

)
t5

chiral superfield is required by invariance under Z2 par-
ity. Using this deformation, a higher rank up-quark mass matrix is obtained as usual by giving 

VEVs to flavons as in (5.29) and 
〈(

ϑ+,−
)
−t5

〉
= ϕ. By calculating the product of the operators in 

eqs. (5.33)–(5.34) using D4 fusion rules, we obtain

x1δW1 =
(

10i
0,0

)
0
⊗ (

10+,+
)

0 ⊗
(

5Hu−,+
)

0
⊗

(
ϑi

0,0

)
−t5

⊗ (
ϑ+,+

)
t5

= x1vu(Q1σ1 − Q2σ2)u
c
2ω

and

x2δW2 =
(

10i
0,0

)
0
⊗ (

10+,+
)
t5

⊗
(

5Hu−,+
)

0
⊗

(
ϑi

0,0

)
−t5

⊗ (
ϑ+,−

)
−t5

⊗ (
ϑ+,+

)
t5

= x2vu(Q1σ2 − Q2σ1)u
cωϕ (5.35)
1



R. Ahl Laamara et al. / Nuclear Physics B 906 (2016) 1–39 23
The operator

(
10i

0,0

)
0
⊗ (

10+,+
)
t5

⊗
(

5Hu−,+
)

0
⊗

(
ϑi

0,0

)
−t5

⊗
(
ϑi

0,0

)
−t5

⊗ (
ϑ+,+

)
t5

contributes in the up-quark mass matrix (5.31) as a correction to the matrix elements m1,1 and 
m1,2; it has the same role as the higher operator (5.35); so we will not take it into account in the 
quark mass matrix. Expanding the remaining operators by help of the D4 rules, we have

x4δW4 = (
10+,−

)
0 ⊗ (

10+,+
)

0 ⊗
(

5Hu−,+
)

0
⊗ (

ϑ−,+
)

0 ⊗ (
ϑ+,−

)
−t5

⊗ (
ϑ+,+

)
t5

= x4vuρ0ϕωQ3u
c
2

and

x5δW5 = (
10+,−

)
0 ⊗ (

10+,+
)
t5

⊗
(

5Hu−,+
)

0
⊗

(
ϑi

0,0

)2

−t5
⊗ (

ϑ+,+
)
t5

= x5vuωQ3u
c
1 (σ1σ2 − σ2σ1) = 0

Summing up all contributions, we end with the following up-quark matrix

Mu,c,t = vu

⎛
⎝ x2σ1ωϕ x1ω α2ρ2

−x2σ1ωϕ −x1ω −α2ρ1

0 x4ρ0ϕω α4ρ0

⎞
⎠ (5.36)

• Down-type Yukawa
Following the same procedure as in up-Higgs type coupling, we can build invariant operators 

for the down-type Yukawa

(10+,−)0 ⊗ (5
M

+,−)0 ⊗ (5
Hd

+,+)t5 ⊗ (
ϑ+,+

)
−t5

(5
M

+,−)0 ⊗ (5
Hd

+,+)t5 ⊗ (100,0)0 ⊗ (
ϑ0,0

)
−t5

(5.37)

Restricting VEV of down Higgs 〈Hd〉 = vd , and using the flavons VEVs as in (5.29) as well 
as taking into account multiplicities, the first coupling gives a mass term of the form mid

c
i Q3

with mi = ωvdy3,i where y3,i are coupling constants. For the second term, we need to reduce 
(100,0)0 ⊗ (

ϑ0,0
)
−t5

into irreducible D4 representations; and restricts to the component S(+,−) =
Qi ⊗ σi |(+,−) with

S(+,−) = Q1σ1 + Q2σ2 (5.38)

So the couplings in eqs. (5.37) may expressed like

y3,iQ3d
c
i ωvd + y1,i (Q1σ1 + Q2σ2)d

c
i vd (5.39)

leading to the mass matrix

md,s,b = vd

⎛
⎝ y1,1σ1 y1,2σ1 y1,3σ1

y1,1σ2 y1,2σ2 y1,3σ2

y3,1ω y3,2ω y3,3ω

⎞
⎠ (5.40)
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5.3.2. Lepton sector
First we consider the charged leptons; and then turn to neutrinos.

• Charged leptons
Charged leptons masses are determined by the same operators used in the case of the down 

quark sector 10M ⊗5
M ⊗5

Hd ; using spectrum eqs. (5.11), (5.16), the appropriate operators which 
provide mass to charged leptons are

(10+,−)0 ⊗ (5
M

+,−)0 ⊗ (5
Hd

+,+)t5 ⊗ (
ϑ+,+

)
−t5

(100,0)0 ⊗ (5
M

+,−)0 ⊗ (5
Hd

+,+)t5 ⊗ (
ϑ0,0

)
−t5

(5.41)

giving the lepton mass term mijec
i Lj with mass matrix

me,μ,τ = vd

⎛
⎝ z1,1σ1 z1,2σ1 z1,3σ1

z1,1σ2 z1,2σ2 z1,3σ2

z3,1ω z3,2ω z3,3ω

⎞
⎠ (5.42)

• Neutrinos
Right handed neutrinos are as in eq. (5.28), they have negative R-parity. Dirac neutrino term 

is embedded in the coupling 
(
νc
i ⊗ 5

M
)

⊗ 5Hu where the right neutrino νc
i is an SU5 singlet; it 

allows a total neutrino mass matrix using see-saw I mechanism [18]. The invariant operators that 
give the Dirac neutrino in SU5 ×D4 × U⊥

1 model are

x1,i

(
ϑ+,−

)
0 ⊗ (5

M

+,−)0 ⊗ (5Hu−,+)0 ⊗ (
ϑ−,+

)
0

x2,i

(
ϑ0,0

)
0 ⊗ (5

M

+,−)0 ⊗ (5Hu−,+)0 ⊗ (
ϑ0,0

)′
0 (5.43)

Using the D4 algebra rules and flavon VEV’s, these couplings lead to

x1,ivuρ0Liν
c
3

x2,ivuρ2Liν
c
1 − x2,ivuρ1Liν

c
2 (5.44)

and then to a Dirac neutrino mass matrix as

mD = vu

⎛
⎝ x2,1ρ2 −x2,1ρ1 x1,1ρ0

x2,2ρ2 −x2,2ρ1 x1,2ρ0

x2,3ρ2 −x2,3ρ1 x1,3ρ0

⎞
⎠ (5.45)

The Majorana neutrino term is given by Mνc
i ⊗ νc

j ; by using eqs. (5.11), (5.16), the Majorana 

neutrino couplings in SU5 ×D4 × U⊥
1 model are as follows

(
ϑ+,−

)
0 ⊗ (

ϑ+,−
)

0(
ϑ0,0

)
0 ⊗ (

ϑ0,0
)

0(
ϑ+,−

)
0 ⊗ (

ϑ0,0
)

0 ⊗ (
ϑ0,0

)′
0 (5.46)

we can also add the singlet 
(
ϑ−,+

)
0 as a correction of the last two operators. The operators in 

above (5.46) lead to

mνcνc, Mνcνc, λνc(νcρ1 + νcρ2) (5.47)
3 3 1 2 3 1 2
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and ends with a Majorana neutrino mass matrix like

mM =
⎛
⎝ 0 M λρ1

M 0 λρ2

λρ1 λρ2 m

⎞
⎠ (5.48)

The general neutrino mass matrix is calculated using see-saw I mechanism; it reads as Mν =
−mDm−1

M m�
D ; and leads to the following effective neutrino mass matrix

Mν � ξ0

⎛
⎝ m1,1 m1,2 m1,3

m1,2 m2,2 m2,3

m1,3 m2,3 m3,3

⎞
⎠ (5.49)

with

m1,1 = λ2x2
2,1ρ

4
2 − 2x2

2,1ρ1ρ2mM + 2λx2,1ρ
2
2(λx2,1ρ

2
1 − x1,1Mρ0)

+ (λx2,1ρ
2
1 + x1,1Mρ0)

2

m2,2 = λ2x2
2,2ρ

4
2 − 2x2

2,2ρ1ρ2mM + 2λx2,2ρ
2
2(λx2,2ρ

2
1 − x1,2Mρ0)

+ (λx2,2ρ
2
1 + x1,2Mρ0)

2

m3,3 = λ2x2
2,3ρ

4
2 − 2x2

2,3ρ1ρ2mM + 2λx2,3ρ
2
2(λx2,3ρ

2
1 − x1,3Mρ0)

+ (λx2,3ρ
2
1 + x1,3Mρ0)

2 (5.50)

and

m1,2 = λ2x2,1x2,2ρ
4
2 − 2x2,1x2,2ρ1ρ2mM + (λx2,1ρ

2
1 + x1,1ρ0M)(λx2,2ρ

2
1 + x1,2ρ0M)

+ λρ2
2 [2λx2,1x2,2ρ

2
1 − ρ0M(x1,1x2,2 + x2,1x1,2)]

m1,3 = λ2x2,1x2,3ρ
4
2 − 2x2,1x2,3ρ1ρ2mM + (λx2,1ρ

2
1 + x1,1ρ0M)(λx2,3ρ

2
1 + x1,3ρ0M)

+ λρ2
2 [2λx2,1x2,3ρ

2
1 − ρ0M(x1,1x2,3 + x2,1x1,3)]

m2,3 = λ2x2,2x2,3ρ
4
2 − 2x2,2x2,3ρ1ρ2mM + (λx2,2ρ

2
1 + x1,2ρ0M)(λx2,3ρ

2
1 + x1,3ρ0M)

+ λρ2
2 [2λx2,2x2,3ρ

2
1 − ρ0M(x1,3x2,2 + x2,3x1,2)] (5.51)

and where we have set

ξ0 = v2
u

M(mM − 2λ2ρ1ρ2)
(5.52)

To obtain neutrino mixing compatible with experiments we need a particular parametrisation
and some approximations on Mν . To that purpose, recall that there are three approaches to mix-
ing using: (i) the well know Tribimaximal (TBM) mixing matrix, (ii) Bimaximal (BM) and 
(iii) Democratic (DC); all of the TBM, BM and DC mixing matrices predict a zero value for 
the angle θ13. However recent results reported by MINOS [24], Double Chooz [25], T2K [54], 
Daya Bay [55], and RENO [56] collaborations revealed a non-zero θ13; such non-zero θ13 has 
been recently subject of great interest; in particular by perturbation of the TBM mixing ma-
trix [57].

To estimate the proper masses of the Mν matrix; we diagonalise it by using the unitary UTBM

TBM mixing matrix; we use the μ–τ symmetry requiring m2,2 = m3,3, m1,2 = m1,3; as well as 
the condition m2,3 = m1,1 + m1,2 − m2,2. So we have Mdiag

ν = U� MνUTBM with
TBM
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UTBM =

⎛
⎜⎜⎝

√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎟⎠ (5.53)

and therefore

Mdiag
ν � ξ0

⎛
⎝ λ1 0 0

0 λ2 0
0 0 λ3

⎞
⎠ (5.54)

with eigenvalues as

λ1 = ξ0(m1,1 − m1,2)

λ2 = ξ0
(
m1,1 + 2m1,2

)
λ3 = ξ0

(
2m3,2 − m1,1 − m1,2

)
(5.55)

6. Conclusion and discussions

In this paper, we have developed a method based on characters of discrete group representa-
tions to study SU5 ×D4 × U⊥

1 -GUT models with dihedral monodromy symmetry. After having 

revisited the construction of SU5 × S4 × U⊥
1 and SU5 × S3 × (

U⊥
1

)2
models from the character 

representation view, we have derived three SU5 ×D4 × U⊥
1 models (referred here to as I, II and 

III) with curves spectrum respectively given by eqs. (4.7)–(4.8), (4.11)–(4.12) and (4.14)–(4.15). 
These models follow from the three different ways of decomposing the irreducible S4-triplets 
in terms of irreducible representations of D4; see eqs (4.6), (4.10), (4.13); such richness may be 
interpreted as due to the fact that D4 has four kinds of singlets with generator group characters 
given by the (p, q) pairs with p, q = ±1.

Then we have focused on the curve spectrum (4.7)–(4.8) of the first SU5 ×D4 × U⊥
1 model; 

and studied the derivation of a MSSM-like spectrum by using particular multiplicity values and 
turning on adequate fluxes. We have found that with the choice of: (i) top-quark family 103 as 
(10+−)0, transforming into a D4-singlet with χ(a,b) character equal to (1,−1); and (ii) a 5Hu

up-Higgs as 
(
5−,+

)
0, transforming into a different D4-singlet with character equal to (−1,1); 

there is no tri-Yukawa couplings of the form
(
10+,−

)
0 ⊗ (

10+,−
)

0 ⊗
(

5Hu

)
++

as far as D4 ×U⊥
1 invariance is required; this makes SU5 ×D4 ×U⊥

1 model with two quark gener-
ations accommodated into a D4-doublet non interesting phenomenologically. Monodromy invari-
ant couplings require implementation of flavons ϑp,q by thinking of 5Hu ∼ (

5−,+
)

0 ⊗ (
ϑ−,+

)
0

leading therefore to a superpotential of order 4. The same property appears with the down-Higgs 
couplings where D4 × U⊥

1 invariance of 103 ⊗ 5̄M
3 ⊗ 5̄Hd requires: (α) a matter 5̄M

3 ≡ (5̄M−,+)0

in a U⊥
1 chargeless D4-singlet with character (−1,1); and (β) a curve 5̄Hd with a D4-character 

like (5̄−,−)+t5 composed with a charged flavon (ϑ++)−t5 ; that is as

(5̄−,−)+t5 ⊗ (ϑ++)−t5

By analysing the conditions that a D4 × U⊥
1 -spectrum has to fulfil in order to have a tri-Yukawa 

coupling for top-quark family 103, we end with the constraint that the character of 5Hu up-Higgs 
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should be equal to (1,1) as clearly seen on 10+,− ⊗ 10+,− ⊗ 5Hu . This constraint is valid even 
if 103 was chosen like 10+,+. By inspecting the spectrum of the three studied SU5 × D4 × U⊥

1
models; it results that the spectrum of the third model given by eqs. (4.14)–(4.15) which allow 
tri-Yukawa coupling; for details on contents and couplings of models II and III; see appendix B.
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Appendix A. Characters in SSS4-models

In this appendix, we give details on some useful properties of �-models studied in this paper,
in particular on the representations of S4 and their characters.

A.1. Irreducible representations of S4

First, recall that S4 has five irreducible representations; as shown on the character formula 
24 = 12 + 1′2 + 22 + 32 + 3′2; these are the 1-dim representations including the trivial 1 and 
the sign ε = 1′; a 2-dim representation 2; and the 3-dim representations 3 and 3′, obeying some 
“duality relation”. This duality may be stated in different manners, but, in simple words, it may 
be put in parallel with polar and axial vectors of 3-dim Euclidean space. In the language of Young 
diagrams, these five irreducible representations are given by

1 : , 2 : , 3 : (A.1)

and

3′ : , 1′ : (A.2)

This diagrammatic description is very helpful in dealing with S4 representation theory [40–42],
it teaches us a set of useful information, in particular helpful data on the three following:

i) Expressions of (3.5)
In the representation 3 of the permutation group S4, the three xi -weights in (3.5) read in terms 

of the ti ’s as

�x = 1

2

⎛
⎝ t1 − t2 − t3 + t4

t1 + t2 − t3 − t4

t1 − t2 + t3 − t4

⎞
⎠ =

⎛
⎝ x4 − t2 − t3

x4 − t3 − t4

x4 − t4 − t2

⎞
⎠ (A.3)

where x4 = 1
2 (t1 + t2 + t3 + t4) is the completely symmetric term. The normalisation coefficient 

1
2 is fixed by requiring the transformation xi = Uij tj as follows

U = 1

2

⎛
⎜⎜⎝

1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎞
⎟⎟⎠ , detU = 1 (A.4)
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For the representation 3′, we have

�x′ = 1√
8

⎛
⎝ t1 − 3t2 + t3 + t4

t1 + t2 − 3t3 + t4

t1 + t2 + t3 − 3t4

⎞
⎠ = 1√

2

⎛
⎝ x4 − 2t2

x4 − 2t3

x4 − 2t4

⎞
⎠ (A.5)

The entries of these triplets are cyclically rotated by the (234) permutation.

ii) S4-triplets as 3-cycle (234)

The {|ti〉} and {|xi〉} weight bases are related by the orthogonal 5 × 5 matrix
(

U 0
0 1

)
, |xi〉 = Uij

∣∣tj 〉 (A.6)

with U as in (A.4); and then

t1 = 1
2 (x4 + x1 + x2 + x3)

t2 = 1
2 (x4 − x1 + x2 − x3)

t3 = 1
2 (x4 − x1 − x2 + x3)

t4 = 1
2 (x4 + x1 − x2 − x3) (A.7)

From these transformations, we learn ti = Ukixk ; and then ti ± tj = (
Uki ± Ukj

)
xk which can be 

also expressed ti ± tj = V ±kl
ij X±

kl . Similar relations can be written down for 
{∣∣x′

i

〉}
.

A.2. Characters

The discrete symmetry group S4 model has 24 elements arranged into five conjugacy classes 
C1, . . . , C5 as in table (A.8); it has five irreducible representations R1, . . . , R5 with dimensions 
given by the relation 24 = 12 + 12′ + 22 + 32 + 32′; their character table χij = χRj (Ci ) is as 
given below

Ci\irrepRj χI χ3′ χ2 χ3 χε Number

C1 ≡ e 1 3 2 3 1 1
C2 ≡ (αβ) 1 −1 0 1 −1 6
C3 ≡ (αβ)(γ δ) 1 −1 2 −1 1 3
C4 ≡ (αβγ ) 1 0 −1 0 1 8
C5 ≡ (αβγ δ) 1 1 0 −1 −1 6

(A.8)

The S4 group has 3 non-commuting generators (a, b, c) which can be chosen as given by the 2-, 
3- and 4-cycles obeying amongst others the cyclic relations a2 = b3 = c4 = Iid . In our approach 
the character of these generators have been used in the engineering of GUT models with S4
monodromy, they are as follows

χij χI χ3′ χ2 χ3 χε

a 1 −1 0 1 −1
b 1 0 −1 0 1
c 1 1 0 −1 −1

(A.9)
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In the SU5 ×S4 theory considered in paper, the various curves of the spectrum of the GUT-model 
belong to S4-multiplets which can be decomposed into irreducible representation of S4. In doing 
so, one ends with curves indexed by the characters of the generators of S4 as follows

4 = 1(1,1,1) ⊕ 3(1,0,−1)

6 = 3(1,0,−1) ⊕ 3′
(−1,0,1) (A.10)

Appendix B. Results on SU5 ×DDD4 models II and III

In this appendix, we collect results regarding the SU5 × D4 × U⊥
1 models II and III of sub-

sections 4.2.2 and 4.2.3. In addition to higher order terms, we also study when couplings like

Couplings SU5 D4 U⊥
1 Parity

10i ⊗ 10j ⊗ 5Hu

10i ⊗ 5j ⊗ 5Hd

νc
i ⊗ 5M ⊗ 5Hu

mνc
i ⊗ νc

j

1
1
1
1

1+,+
1+,+
1+,+
1+,+

0
0
0
0

+
+
+
+

(B.1)

can be generated.

B.1. SU5 ×D4 model II

The spectrum of the SU5 ×D4 × U⊥
1 model II under breaking SU5 ×D4 × U⊥

1 to MSSM is 
given by:

Curve in D4 model II U⊥
1 Spectrum in MSSM

101 = 10+,− 0 M1QL+uc
L(M1−N − P) + ec

L(M1+N + P)

102 = 10−,+ 0 M2QL+uc
LM2+ec

LM2

103 = 10+,− 0 M3QL+uc
LM3+ec

LM3

104 = 10+,+ 0 M4QL+uc
L(M4+P) + ec

L(M4−P)

105 = 10+,+ 1 M5QL+uc
L(M5+N) + ec

L(M5−N)

51 = 5+,− 0 M ′
1d

c

L+(M ′
1+N + P)L

52 = 5−,+ 0 M ′
2d

c

L+M ′
2L

53 = 5−,+ 0 M ′
3Dd+(M ′

3−N)Hd

54 = 5+,− 0 M ′
4Du+(M ′

4−P)Hu

55 = 5−,+ 0 M ′
5d

c

L+M ′
5L

56 = 5+,− 0 M ′
6d

c

L+M ′
6L

57 = 5t5+,− −1 M ′
7d

c
L+(M ′

7−P)L

58 = 5t5−,+ −1 M ′
8d

c
L+M ′

8L

59 = 5t5+,− −1 M ′
9d

c

L + (M ′
9 − N)L

510 = 5t5+,+ −1 M ′
10d

c

L + (M ′
10 + N + P)L

(B.2)
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To get 3 generations of matter curves and 2 Higgs doublets of MSSM, taking into account the 
constraints in subsection 5.1, we make the following choice of the flux parameters, P = −N = 1, 
and

M1 = M2 = M3 = M4 = −M5 = 1

M ′
1 = M ′

3 = M ′
4 = M ′

8 = M ′
10 = 0

M ′
2 = M ′

5 = M ′
6 = M ′

9 = −M ′
7 = −1 (B.3)

Using the property 
∑

i M
i
5 = − 

∑
i M

i
10 = −3, the localisation of Higgs curves are as 5Hu =

5−,+, 5
Hd = 5+,−, and the third generation like 101 = 10M3 , and 52 = 5M3 . The distribution of 

the matter curves is collected in the following table:

Curve in D4 model II U⊥
1 Spectrum in MSSM Z2 parity

101= 10M3= (10+,−)0 0 QL+uc
L+ec

L –
102= (10−,+)0 0 QL+uc

L+ec
L –

103= (10+,−)0 0 QL+uc
L+ec

L –
104= (10+,+)0 0 QL+2uc

L +
105= (10+,+)t5 1 −QL−2uc

L –
51= (5+,−)0 0 – +
52= 5M3= (5−,+)0 0 −d

c

L − L –

53= (5Hu−,+)0 0 Hu +
54= (5Hd+,−)0 0 −Hd +
55= 5M1= (5−,+)0 0 −d

c

L − L –
56= 5M2= (5+,−)0 0 −d

c

L − L –
57= (5+,−)−t5 −1 d

c

L +
58= (5−,+)−t5

−1 – +
59= (5+,−)−t5 −1 −d

c

L +
510= (5+,+)−t5

−1 – +

(B.4)

From this spectrum, we learn that we have three families of fermions, an extra vector like pairs, 
dc
L + d

c

L, QL + QL; and two 2(uc
L + uc

L) which are expected to get a large mass if some of the 
singlet states acquire large VEV’s. In this D4 model; there are only singlet flavons transform-
ing in the representations 1+,+, 1+,−, 1−,+; with and without t5 charges, they are classified as 
(ϑp,q)0,±t5 with p, q = ±1; they lead to the following order 4-couplings

• Up-type quark Yukawa couplings
The allowed Yukawa couplings that are invariant under D4 × U⊥

1 are:

(10+,−)0 ⊗ (10+,−)0 ⊗ (5Hu−,+)0 ⊗ (ϑ−,+)0

(10−,+)0 ⊗ (10−,+)0 ⊗ (5Hu−,+)0 ⊗ (ϑ−,+)0

(10+,−)0 ⊗ (10+,−)0 ⊗ (5Hu−,+)0 ⊗ (ϑ−,+)0

(10+,−)0 ⊗ (10−,+)0 ⊗ (5Hu−,+)0 ⊗ (ϑ+,−)0

(10−,+)0 ⊗ (10+,−)0 ⊗ (5Hu−,+)0 ⊗ (ϑ+,−)0 (B.5)
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• Down-type quark Yukawa couplings
The Yukawa couplings down-type are:

(10+,−)0 ⊗ (5−,+)0 ⊗ (5Hd+,−)0 ⊗ (ϑ−,+)0

(10+,−)0 ⊗ (5−,+)0 ⊗ (5Hd+,−)0 ⊗ (ϑ−,+)0

(10+,−)0 ⊗ (5+,−)0 ⊗ (5Hd+,−)0 ⊗ (ϑ+,−)0

(10−,+)0 ⊗ (5−,+)0 ⊗ (5Hd+,−)0 ⊗ (ϑ+,−)0

(10−,+)0 ⊗ (5−,+)0 ⊗ (5Hd+,−)0 ⊗ (ϑ+,−)0

(10−,+)0 ⊗ (5+,−)0 ⊗ (5Hd+,−)0 ⊗ (ϑ−,+)0

(10+,−)0 ⊗ (5−,+)0 ⊗ (5Hd+,−)0 ⊗ (ϑ−,+)0

(10+,−)0 ⊗ (5−,+)0 ⊗ (5Hd+,−)0 ⊗ (ϑ−,+)0

(10+,−)0 ⊗ (5+,−)0 ⊗ (5Hd+,−)0 ⊗ (ϑ+,−)0 (B.6)

B.2. SU5 ×D4 model III

The spectrum of the model SU5 ×D4 × U⊥
1 Model III is as follows

Curves in D4 model III U⊥
1 Spectrum in MSSM

101= 10+,+ 0 M1QL+uc
L(M1−N − P) + ec

L(M1+N + P)

102= 10−,− 0 M2QL+uc
LM2+ec

LM2

103= 10+,− 0 M3QL+uc
LM3+ec

LM3

104= 10+,+ 0 M4QL+uc
L(M4+P) + ec

L(M4−P)

105= 10+,+ 1 M5QL+uc
L(M5+N) + ec

L(M5−N)

51= 5+,+ 0 M ′
1d

c

L+(M ′
1+N + P)L

52= 5−,− 0 M ′
2d

c

L+(M ′
2−κ1P)L

53= 5−,+ 0 M ′
3Du+(M ′

3−N)Hd

54= 5+,+ 0 M ′
4Dd+(M ′

4−κ2P)Hu

55= 5−,− 0 M ′
5d

c

L+M ′
5L

56= 5+,− 0 M ′
6d

c

L+M ′
6L

57= 5t5+,+ −1 M ′
7d

c

L+(M ′
7−κ1P)L

58= 5t5−,− −1 M ′
8d

c

L+(M ′
8−κ2P)L

59= 5t5+,− −1 M ′
9d

c

L+(M ′
9−N)L

510= 5t5+,+ −1 M ′
10d

c

L+(M ′
10+N + P)L

(B.7)

The 3 generations of fermions and the 2 Higgs Hu, Hd are obtained by taking the fluxes like 
N = −P = −1 with κ1 = 0, κ2 = 1, and

M1 = M2 = M3 = M4 = −M5 = 1
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M ′
1 = M ′

3 = M ′
4 = M ′

7 = M ′
10 = 0

M ′
2 = M ′

5 = M ′
6 = M ′

8 = −M ′
9 = −1 (B.8)

We choose the Higgs curves as 5Hu = (5Hu+,+)0, 5Hd = (5Hd−,+)0 and the third 10M3 , 5
M3 genera-

tion as follow

Curves in D4 model III U⊥
1 Spectrum in MSSM Z2 parity

101= 10M3= (10+,+)0 0 QL+uc
L+ec

L −
102= (10−,−)0 0 QL+uc

L+ec
L −

103= (10+,−)0 0 QL+uc
L+ec

L −
104= (10+,+)0 0 QL+2ec

L +
105= (10+,+)t5 1 −QL−2ec

L −
51= (5+,+)0 0 − +
52= 5M3= (5−,−)0 0 −d

c

L − L −
53= (5Hd−,+)0 0 −Hd +
54= (5Hu+,+)0 0 Hu +
55= 5M1= (5−,−)0 0 −d

c

L − L −
56= 5M2= (5+,−)0 0 −d

c

L − L −
57= (5+,+)−t5 −1 − +
58= (5−,−)−t5

−1 −d
c

L +
59= (5+,−)−t5 −1 d

c

L +
510= (5+,+)−t5 −1 − +

(B.9)

• Up-type quark Yukawa couplings
The allowed Yukawa couplings that are invariant under D4 × U⊥

1 and preserving parity sym-
metry are:

(10+,−)0 ⊗ (10+,−)0 ⊗ (5Hu+,+)0 (B.10)

for third generation; and

(10−,−)0 ⊗ (10−,−)0 ⊗ (5Hu+,+)0

(10+,+)0 ⊗ (10+,+)0 ⊗ (5Hu+,+)0

(10+,+)0 ⊗ (10−,−)0 ⊗ (5Hu+,+)0 ⊗ (ϑ−,−)0

(10+,+)0 ⊗ (10+,−)0 ⊗ (5Hu+,+)0 ⊗ (ϑ+,−)0

(10−,−)0 ⊗ (10+,−)0 ⊗ (5Hu+,+)0 ⊗ (ϑ−,+)0 (B.11)

• Down-type quark Yukawa couplings
The Yukawa couplings down-type are:

(10+,+)0 ⊗ (5−,−)0 ⊗ (5Hd−,+)0 ⊗ (ϑ+,−)0 (B.12)

for third generation, and
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(10+,+)0 ⊗ (5−,−)0 ⊗ (5Hd−,+)0 ⊗ (ϑ+,−)0

(10+,+)0 ⊗ (5+,−)0 ⊗ (5Hd−,+)0 ⊗ (ϑ−,−)0

(10−,−)0 ⊗ (5−,−)0 ⊗ (5Hd−,+)0 ⊗ (ϑ−,+)0

(10−,−)0 ⊗ (5−,−)0 ⊗ (5Hd−,+)0 ⊗ (ϑ−,+)0

(10−,−)0 ⊗ (5+,−)0 ⊗ (5Hd−,+)0

(10+,−)0 ⊗ (5−,−)0 ⊗ (5Hd−,+)0

(10+,−)0 ⊗ (5−,−)0 ⊗ (5Hd−,+)0

(10+,−)0 ⊗ (5+,−)0 ⊗ (5Hd−,+)0 ⊗ (ϑ−,+)0 (B.13)

For the neutrino sectors in both models II and III, the couplings are embedded in the Dirac and 
Majorana operators as for model I; their mass matrix depend on the choice of the localisation of 
right neutrino in the singlet curves ϑ±,±.

Appendix C. Monodromy and flavor symmetry

We begin by recalling that in F-theory GUTs, quantum numbers of particle fields and their 
gauge invariant interactions descend from an affine E8 singularity in the internal Calabi–Yau Ge-
ometry: CY4 ∼ E → B3. The observed gauge bosons, the 4D matter generations and the Yukawa 
couplings of standard model arise from symmetry breaking of the underlying E8 gauge symme-
try of compactification of F-theory to 4D space time.

In this appendix, we use known results on F-theory GUTs to exhibit the link between non-
abelian monodromy and flavor symmetry which relates the three flavor generations of SM. First, 
we briefly describe how abelian monodromy like Zp appear in F-GUT models; then we study the 
extension to non-abelian discrete symmetries such the dihedral D4 we have considered in present 
study.

C.1. Abelian monodromy

One of the interesting field realisations of the F-theory approach to GUT is given by the 
remarkable SU5 ×SU⊥

5 model with basic features encoded in the internal geometry; in particular 
the two following useful ones: (i) the SU5 × SU⊥

5 invariance follows from a particular breaking 
way of E8; and (ii) the full spectrum of the field representations of the model is as in eq. (2.1). 
From the internal CY4 geometry view, SU5 and SU⊥

5 have interpretation in terms of singularities; 
the SU5 lives on the so called GUT surface SGUT ; it appears in terms of the singular locus of the 
following Tate form of the elliptic fibration y2 = x3 + b5xy + b4x

2z + b3yz2 + b2xz3 + b0z
5; it 

is the gauge symmetry visible in 4D space time of the GUT model. Quite similarly, the SU⊥
5 may 

be also imagined to have an analogous geometric representation in the internal geometry, but 
with different physical interpretation it lives as well on a complex surface S ′, another divisor of 
the base B3 of the complex four dimensional elliptic CY4 fibration. Obviously these two divisors 
are different, but intersect. Here, we want to focus on aspects of the representations of SU⊥

5
appearing in eq. (2.1) and too particulary on the associated matter curves �ti , �ti+tj , �ti−tj ,
which are nicely described in the spectral cover method using an extra spectral parameter s. If 
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thinking of the hidden SU⊥
5 in terms of a broken symmetry by an abelian flux or Higgsing down 

to its Cartan subgroup, the resulting symmetry of the GUT model becomes U (1)4 × SU5 with4

U (1)4 = U (1)1 × U (1)2 × U (1)3 × U (1)4

≡
∏4

i=1
U (1)i (C.1)

The extra U (1)’s in the breaking U (1)4 × SU5 put constraints on the superpotential couplings 
of the effective low energy model; the simultaneous existence of U (1)4 is phenomenologically 
undesirable since it does not allow a tree-level Yukawa coupling for the top quark. This ambiguity 
is overcome by imposing abelian monodromies among the U (1)’s allowing the emergence of a 
rank one fermion mass matrix structure, see eqs. (C.4)–(C.5) given below.

Following the presentation of section 2 of this paper, the spectral covers describing the above 
invariance are given by polynomials with an affine variable s as in eq. (2.8), see also (2.9), 
(2.12), (2.13). To fix the ideas, we consider monodromy properties of 10-plets �ti encoded in the 
spectral cover equation

C5 : b5 + b3s
2 + b2s

3 + b4s
4 + b0s

5 = 0 (C.2)

The location of the seven branes on GUT surface associated to this SU5 representation is given 
by b5 = 0. Using the method of [18,27,30,31], the possible abelian monodromies are Z2, Z3, Z4, 
Z2 ×Z3 and Z2 ×Z2; they lead to factorisations of the C5 spectral cover as

C2 × (C1)
3 , C3 × (C1)

2 , C4 × C1 , C3 × C2 , (C2)
2 × C1 (C.3)

and to the respective identification of the weights {t1, t2}, {t1, t2, t3}, {t1, t2, t3, t4}, {t1, t2} ∪
{t3, t4, t5} and {t1, t2} ∪ {t3, t4}.

The algebraic equations for the matter curves �ti , �ti+tj , �ti−tj in terms of the ti

weights associated with the SU⊥
5 fundamental representation are respectively given by ti = 0,(

ti + tj
)
i<j

= 0 and ± 
(
ti − tj

)
i<j

= 0, they are denoted like 10ti , 5̄ti+tj and 1±(
ti−tj

), see 
eq. (2.2).

As a first step to approach non-abelian monodromies we are interested in here, it is helpful 
to notice the two useful following things: (a) the homology 2-cycles in the CY4 underlying 
SU5 × U (1)4 invariance has monodromies captured by a finite discrete group that can be used 
as a constraint in the modelling. (b) From the view of phenomenology, these monodromies must 
be at least Z2 in order to have top-quark Yukawa coupling at tree level as noticed before. Notice 
moreover that under this Z2, matter multiplets of the SU5 model split into two Z2 sectors5: 
even and odd; for example the two tenplets 

{
10t1,10t2

}
are interchanged under t1 ↔ t2; the 

corresponding eigenstates are given by 10t± with eigenvalues ±1. By requiring the identification 

4 Recall the three useful relations: (a) Let �H = (H1, . . . ,H4) the generators of the U (1)i charge factors and E±αi
the 

step operators associated with the simple roots �αi , then we have 
[
E+αi

,E−αi

] = �αi . �H . (b) If denoting by | �μ〉 a weight 
vector of the fundamental representation of SU⊥

5 , then we have �αi . �H | �μ〉 = λi | �μ〉 with λi = �αi . �μ. (c) using the 4 usual 
fundamental weight vectors �ωi dual to the 4 simple roots, the 5 weight vectors { �μk} of the representation are: �μ1 = �ω1, 
�μ2 = �ω2 − �ω1, �μ3 = �ω3 − �ω2, �μ4 = �ω4 − �ω3, �μ5 = −�ω4.
5 In general we have two Z2 eigenstates: t± = 1

2 (t1 ± t2) with eigenvalues ±1. While any function of t+ is Z2

invariant, only those functions depending on (t−)2 which are symmetric with respect to Z2.



R. Ahl Laamara et al. / Nuclear Physics B 906 (2016) 1–39 35
t1 ↔ t2, naively realised by setting t1 = t2 = t , matter couplings in the model get restricted; 
therefore the off diagonal tree level Yukawa coupling

10t1 .10t2 .5−t1−t2 (C.4)

which is invariant under SU5 ×U (1)4, becomes after t1 ↔ t2 identification a diagonal top-quark 
interaction invariant under Z2 monodromy. The resulting Yukawa coupling reads as follows [27,
30,31]

10t .10t .5−2t (C.5)

the other diagonal coupling 100.100.5−2t is forbidden by the U (1) symmetry; see footnote 5. 
Notice that for bottom-quark the typical Yukawa coupling 10t .5̄ti+tj .5̄tk+tl is allowed by Z2

while 100.5̄ti+tj .5̄tk+tl is forbidden.
In this monodromy invariant theory, the symmetry of the model is given by SU5 ×U (1)3 ×Z2; 

it may be interpreted as the invariance that remains after taking the coset with respect to Z2; that 
is by a factorisation of type G = H × Z2 with H = G/Z2. Indeed, starting from SU5 × U (1)4

and performing the two following operations: (i) use the traceless property of the fundamental
representation of SU⊥

5 to think of (C.1) like

U (1)4 =
(∏5

i=1
U (1)ti

)
/J (C.6)

with J = {ti | t1 + t2 + t3 + t4 + t5 = 0} � U (1)diag. This property is a rephrasing of the usual 

U (5) factorisation, i.e. SU (5) = U(5)
U(1)

. (ii) Substitute the product U (1)t1 ×U (1)t2 by the reduced 
abelian group U (1)t × Z2 where monodromy group has been explicitly exhibited. In this way 
of doing, one disposes of a discrete group that may be promoted to a symmetry of the fields 
spectrum. To that purpose, we need two more steps: first explore all allowed discrete monodromy 
groups; and second study how to link these groups to flavor symmetry. For the extension of 
above Z2, a similar method can be used to build other prototypes; in particular models with 
abelian discrete symmetries like SU5 × U (1)5−k ×Zk with k = 3, 4, 5; or more generally as

SU5 × U (1)5−p−q ×Zp ×Zq (C.7)

where 1 < p + q ≤ 5 and Z1 ≡ Iid , Z0 ≡ Iid . Notice that the discrete groups in eq. (C.7) are 
natural extensions of those of the theories with SU5 × U (1)5−k × Zk symmetry; and that the 
condition p + q ≤ 5 on allowed abelian monodromies is intimately related with the Weyl sym-
metry WSU⊥

5
of SU⊥

5 . Therefore, we end with the conclusion that the Zp × Zq abelian discrete 
groups in above relation are in fact particular subgroups of the non-abelian symmetric group 
WSU⊥

5
� S5.

C.2. Non-abelian monodromy and flavor symmetry

To begin notice that the appearance of abelian discrete symmetry in the SU5 based GUT 
models with invariance (C.7) is remarkable and suggestive. It is remarkable because these finite 
discrete symmetries have a geometric interpretation in the internal CY4, and constitutes then a 
prediction of F-theory GUT. It is suggestive since such kind of discrete groups, especially their 
non-abelian generalisation, are highly desirable in phenomenology, particularly in playing the 
role of a flavor symmetry. In this regards, it is interesting to recall that it is quite well established 
that neutrino flavors are mixed; and this property requires non-abelian discrete group symmetries 
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like the alternating A4 group which has been subject to intensive research during last decade 
[32–34,52,53].

Following the conjecture of [15,16], non-abelian discrete symmetries may be reached in 
F-theory GUT by assuming the existence of a non-abelian flux breaking the SU⊥

5 down to a 
non-abelian group � ⊂ WSU⊥

5
. In this view, one may roughly think about the Zp × Zq group of 

(C.7) as special symmetries of a family of SU5 based GUT models with invariance given by

SU5 × U (1)5−k × �k (C.8)

where now �k is a subgroup of S5 that can be a non-abelian discrete group. In this way of doing, 
one then distinguishes several SU5 GUT models with non-abelian discrete symmetries classified 
by the number of surviving U (1)’s. In presence of no U (1) symmetry, we have prototypes like 
SU5 × S5 and SU5 ×A5; while for a theory with one U (1), we have symmetries as follows

SU5 × U (1) × S4

SU5 × U (1) ×A4

SU5 × U (1) ×D4 (C.9)

where the alternating A4 and dihedral D4 are the usual subgroups of S4 itself contained in S5. In 
the case with two U (1)’s, monodromy gets reduced like SU5 × U (1)2 × S3.

Moreover, by using non-abelian discrete monodromy groups �k , one ends with an important 
feature; these discrete groups have, in addition to trivial representations, higher dimensional rep-
resentations that are candidates to host more than one matter generation. Under transformations 
of �k , the generations get in general mixed. Therefore the non-abelian �k’s in particular those 
having 3- and/or 2-dimensional irreducible representations may be naturally interpreted in terms 
of flavor symmetry.

In the end of this section, we would like to add a comment on the splitting spectral cover 
construction regarding non-abelian discrete monodromy groups like A4 and D4. In the models 
(C.9), the spectral cover for the fundamental C5 is factorised like C5 = C4 × C1 and similarly for 
C10 and C20 respectively associated with the antisymmetric and the adjoint of SU⊥

5 . In the C4 ×C1
splitting, we have

C4 = a5s
4 + a4s

3 + a3s
2 + a2s + a1

C1 = a7s + a6 (C.10)

where the ais are complex holomorphic sections. For the generic case where the coefficients 
ai are free, the splitted spectral cover C4 × C1 has an S4 monodromy. To have splitted spectral 
covers with monodromies given by the subgroups A4 and D4, one needs to put constraints on the 
ai ’s; these conditions have been studied in [14,16]; they are non linear relations given by Galois 
theory. Indeed, starting from SU5 × SU⊥

5 model and borrowing tools from [16], the breaking of 
SU5 × SU⊥

5 down to SU5 ×D4 ×U (1) model considered in this paper may be imagined in steps 
as follows: first breaking SU⊥

5 to subgroup SU⊥
4 × U (1) by an abelian flux; then breaking the 

SU⊥
4 part to the discrete group S4 by a non-abelian flux as conjectured in [15,16]; deformations 

of this flux lead to subgroups of S4. To obtain the constraints describing the D4 splitted spectral 
cover descending from C4 × C1, we use Galois theory; they are given by a set of two constraints 
on the holomorphic sections of C4 × C1; and are obtained as follows:

(i) The first constraint comes from the discriminant �C4 of the spectral cover C4 which should 
not be a perfect square; that is �C �= δ2. The explicit expression of the discriminant of C4 has 
4
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been computed in literature; so we have

108a0(λa2
6 + 4a1a7)(κ

2a2
7 + a0(λa2

6 + 4a1a7))
2 �= δ2 (C.11)

where dependence into a6 and a7 is due to solving the traceless condition b1 = 0 in C5 = C4 ×C1. 
(ii) The second constraint is given by a condition on the cubic resolvent which should be like 
RC4 (s)

∣∣
s=0 = 0. The expression of RC4 (s) is known; it leads to

a2
2a7 = a1

(
a0a

2
6 + 4a3a7

)
(C.12)

where a0 is a parameter introduced by the solving the traceless condition b1 = 0; for explicit 
details see [16].
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