
Theoretical Computer Science 66 (11989) 15-25
North-Holland

15

ON MONOTONE SIMULATIONS OF
NMONOTONE NETWORKS

Paul E. DUNNE
Department of Computer Science, University of Liverpool, U.K. L693BX

Communicated by M.S. Paterson
Received April 1986
Revised March 1988

Abstract. We consider the following problem: given some n-argument monotone Boolean function,
j(&), with formal arguments X,, = {x, , . . . , x,,}, compute f using the 2n+ 1 inputs X,, u

{foJi,*.., j;,}. Here f. k is the k-slice of J i.e. the n-argument monotone Boolean function

fk(JL) = (Sh T’,1) v z+,, where Ti is the n-argument monotone Boolean function which takes
the value 1 iff at least k of its arguments are 1.

It is easy to see that if nonmonotone operations are permitted thel; O(n) gates are sufficient
by using the relation jr-: V’!, (f k ,, k A T’: L+,). The properties of slice functions imply that efficient
monotone solutions wc .:ld allow superlinear lower bounds on the combinational complexity of
f to be obtained from large enough lower bounds on the monotone complexity ofcf: Since negation
is known to be superpolynomially powerful, some monotone functions must have superpolynomial
complexity even if all the slice functions are given as extra inputs. However it is possible that
efficient simulations, usirtg slice functions, exist for restricted classes of monotone functions.

In this paper we examine a broad class of monotone Boolean functions, proving that for almost
all of the functions in the class, no such simulation exists, and that in a very weak sense negation
is exponentially powerful. In contrast to this an example of an efficient construction is given,
again for a natural c&s;: of monotone Boolean functions.

1. Introduction

Although it has long been known that “almost all”’ n-argument Boolean functions
require exponentially many gates to be computed [lo], the best lower bounds proved
to date on the combinational complexity of explicitly defined functions are linear
[4]. The difficulty of proving large lower bounds on the size of circuits which permit
arbitrary 2-input Boolean functions as gate operations, has led to the consideration
of more restricted types of Boolean networks. Probably the most widely studied of
these is the class of monotone networks, in which only Zinput AND (A) and OR
(v) gates are permitted. Such networks compute exactly the class of monotone
Boolean functions. Using this model there has been some success in obtaining good
lower bounds on the size of networks computing sets of functions (e.g. [13]). In

’ A property ll holds for “almost all” n-argument Boolean functions if the fraction of n-argument
functions which do not have property II tends to 0 with n.

0304-3975/89/$3.50 @ 1989, Elsevier Science Publishers B.V. (North-Holland)

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82432725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

16 P.E. Dunne

fact exponential lower bounds, on the complexity of one output functions, have
been proved by Andreev [2], and Alon and Boppa.nna [1) for this model. The results
of [l] are based on earlier, superpolynomial lower bounds of Razborov [7,8], which
show that negation is superpolynomially powerful for computing some monotone
Boolean functions.

Unfortunately none of these results implies superlinear lower bounds on the
combinational complexity of any function or set of functions.

Recent work of Berkowitz [3], Wegener [is, 151 and Dunne [S, 6) has considered
the problem of relating the combinational and monotone network complexity of
monotone Boolean functions via slice functions.

Berkowitz [3] established that the combinational and monotone network com-
plexities of any k-slice function differed by at most a multiplicative constant and
an additive term of O(n log2 n). (This term is an improvement of Berkowitz’ original
construction which was independently obtained by Valiant [121 and Wegener [141.)
Since fk is easy to compute given J this result establishes that any lower bound of
h(n) = o(n log* n) on the monotone network complexity of a k-slice of f would
imply that f had combinational complexity a(h(n)). In addition the fact that f is
easily computable, given its n + 1 ditierent slice functions (cf. Abstract above) implies
that if f is “hard” then some slice of f must have large monotone complexity.
Wegener [14] and Dunne [6] showed that the “canonical” slice of certain NP-
complete predicates has polynomial complexity. The present author [S, 61 proved
that for !hese same predicates (HAMILTONIAN CIRCUIT, CLIQUES and SAT)
the &z-slice, (called “central” slice in [S, 61) was also NP-complete and no easier
than the underlying NP-complete function. In [14] Wegener introduced a set-
theoretic interpretation of monotone networks computing slice functions and in
[151 constructed new classes of monotone functions for which smaller lower bounds
on monotone network complexity would be ,qicient to deduce superlinear lower
bounds on combinational network size.

None af these results yields superlinear lower bounds on combinational com-
plexity. However if good methods existed for computing f from its slice functions
(using only monotone operations) then such lower bounds could be derived from
lower bounds on the monotone complexity of J; i.e. without using slice functions
directly. Although no efficient method can exist for all monotone functions, o’sie
can still consider such simulations for special classes. In this paper we examine the
following class of monotone functions:

De&&ion 1. Let A, denote an arbitrary partition of X, into r nonempty sets,
x(1) ,..., X”‘ofsizesn, ,..., n,. Let cy denote an r-tuple (a,, . . . , a,) where 1 s ui <
ni. PART(Ar, (w) is the set of monotone Boolean functions such that for every prime
implicant p off e PART(A,, cu), p contains exactly ai variables from X(? For the
case r=l and ul= a we denote the class of functions PART(dr, a) by (2n,.,. These
are the functions f E Mn such that every prime implicant off contains exactly a
variables.

MonotbJne simulations of nonmonotone networks 17

Where there is no risk of ambiguity we will dispense with the dependence on 4,
and (Y, using instead PART(n).

The main result of this paper concerns the following complexity measure: let
C”*(f) denote the monotone network complexity off when all slice functions of
f are given free as extra inputs. We consider this measure for functions in
PART(A,, cw), and show that almost all functions, f in this class have C”*(f) =
a(G(A,, a)), where G depends on the partition A, and on cy. Consequently it is
proved, that with certain choices of A, and cy, for almost all such functions f, C”*(f)
is asymptotically equal to _C”(%f). In contrast to this negative result, it is proved
that for any constant k an8 ~11 f E Qn,,J_k we hwe C”*(f) = O(n’-‘/log n), whereas
C(f) = $I(n“/log n) for almost all functions in this class.

Also considered are other methods of reconstructing f from its slice functions,
namely the use of “monotone projections” in the sense of Skyum and Valiant [111.

The remainder of this paper is organised as follows. In the next section it is
proved that, in general, a monotone Boolean function is not a projection of any
slice function, while in Section 3 the simulation for the class &_k, mentioned
above, is given. Section 4 proves the main result.

Notation

Ml = the set of all n-argument monotone Boolean functions,

fk (X,) = k-slice of some function f (X,,) in Mn 9

c r a = i = 1 ai,

C(f) = combinational complexity of J;

C”(f) = monotone network complexity of J:

For a monom m over X,,, var(m) denotes the set of variables in Xn upon which
m essentially depends, i.e. {x E X,, : m - -K x}. The dua2 function of f(Xn), denoted j,
is the function

-lf(lX* ,1x2,. . . ,1x,).

If f c M,, it is easy to show, from De Morgan’s Laws, that &E M, and C”(f) =

C"(f)*
All logarithms irre to the base 2 unless stated otherwise.

2. A negative result on monotone projections

Definition 2. Let f(Xn) and g(Y’) be n-input and p-input monotone Boolean
functions (p 2 n). f is a monotone projection of g iff there is a mapping dp : YP +
{X,, 0,l) such that f(X,) = g(a(Y,)).

18 RE. Dunne

The result in [6] that the $-slices of some NP-complete functions are also
NP-complete is obtained by giving a (nonmonotone) projection from this slice
function to J: Thus, for certain functions, projections offer an alternative method
of computingf from a slice function. The following result establishes that, in general,
monotone projections from k-slices to f do not exist.

Lemma 1. Let f be a member of M,, which depends on all its arguments, and let PBr(f)
denote the set of prime implicants off: If there exist q1 = m,a, q2 = m2b in PI(f) and
c in X,, -(a, b) such that ml b $ f and m2ac 6 f then f is not a monotone projection of
any k-slice of any g(Y,).

Proof. Suppose that g, o and k exist such that f(X,,) is a monotone projection of
the k-slice of g(Y,) using Q : Yp + {X”, 0, 1). Define for each x E X,,, the weight of
x under a, denoted w(x), as the number of arguments of Yp which are projected
onto x under CT. Clearly, since f depends on all its arguments, w(x) 2 1 for each
x E X,. For any assignment T to X, the contribution of Yp under o, denoted K (Yp, V)
is given by

l(y E Yp: a(y)‘” = l)i.

Clearly, for any assignment T which renders f eaual to 1, it must hold that
K(Yp, W) 3 k since it has bean assumed that f is a projection of some k-slice
function. Consider the assignment a! which sets exactly the variables in q1 to 1.
From the preceding remark K (Yp, cy) 2 k since f la = I. By the same reasoning under
the assignment p, which sets exactly the variables in q2 to 1, K (Yp, /3) 2 k also.
Now let y be that assignment which fixes only the variables in m2 u {a, c} to 1.
Since f is now 0 it must be the case that K(Yp, y) s k and as w(c) a 1, it follows
that w(b) > w(a). However, by applying the same argument to the variables of
ml u (b) we obtain w(6) s w(a). This contradiction proves the lemma. Cl

3. An eficient simulution for the class Qn,n_k

In this section we construct an efficient simulation for one class of monotone
Boolean functions. The following results are required.

Fact 1 (Shannon [lo]). Let H be a subset of M,. Then, for almost all h E H,

Fact 2. Let k 3 1 be constant and Q$ be the set of n-input m-output monotone Boolean
functions such that for each F = (f I,. . . , f “) in QTk, 6 E Q,,k for all 1 e js m. Let
Cm(QTk) denote

max{ C”(F): F E Qt,k}.

Monotone simulations of nommonotone networks 19

Then,

(ij C”(Qz,,) = 0(d/log n),

6) C”(Qi d G nC”(Q,, k),

(iii) C”(Qn:k)s Cm(Qz,k*_I)+2n -1,
(iv) for k 2 2, c”(Q,,k) = 0(nk/log n).

Proof. (i) has been proved by Savage [9]; (ii) is obvious; a proof of (iii) is given
in [16, p. 1081 and (iv) is immediate from (i)-(iii). Cl

Lemma 2. FOP almost al2 f e Qn,n_k,

C(f)=n(nk/log n).

Proof. The number of distinct monoms of size rt - k over X, is a(nk), since k is
fixed. Thus, /Q,,n_kl = 2*@) and the lemma follows from Fact 1. D

Theorem 1. Let y(n, k) = max{ n, n k-*/lOg n}. For ail constant k3 2, vf E Qa,n_k,

C”‘(f) = OMn, k)).

Proof. Observe that f =f A Ti_k = (f A T”,_k) v Tz. So it is sufficient to prove t5rt
Qq 2sqss

C”(.fV T:-k+& c”(f v T:_k+,_,)fO(y(n, k)).

Let S4_, be an optimal network computing (f A T&) v T:_k+q_,. We may express
the function computed by Sq_, as

(f AT:-kbPIVP2V’ g’vPt,

Where, for al1 pi, pig f A T:_k =$
For any product p let x(p) be the disjunction over all variables in Xn that do not

occur in p, We claim that for all m e PI(f), and for all pi, m s x(pi). To see this,
recall that pi g m, thus there exists some XC X, such that m G xs x(pi). Sq is the
network which computes

((f A T:-k) v T!-k+q-1) A i\ x(pi)
i= 1

which evaluates to f A T;-k v Tn,_k+q.

Let g = Aizl x(pi). Each x(pi) defines a prime clause of g and hence every such
clause of g contains exactly n-(n-kfq-l)=k-q+lsk-1 vaziables. So go

Q n,k-;l and if k 3 3, from Fact 2(iv) it follows that

C”(S,)s Cm(S&+O(nk-‘/log fz).

If k =2 then g is just a product of at most n variables and so in this case,
C”(S,) s C”(S,_,) + n. By repeatedly applying this construction to fn_k which, we
recall, is given free, we obtain after k - I tierations a network computing f; which

has size O(y(n, k)). Cl

20 f?E. Dunne

Corollary 1. Let k 3 3 be fixed and

HARDk = {f~ Qn.“+: C”(f) = w(&‘/log n)}.

HARDk#flandforanyf~HARDkitholdsthatC(f)=O(Cm(f)).

Proof? That HARDk is nonempty is immediate from Lemma 2. For the second
part let f be any function in HARDk. From Theorem 1 (ii),

C”(f)< C(f,+)+O(d-‘/log n)

G C(f)+O(n)+O(P/log n)

= C(f)+O(nk-‘/log n)

and the result follows from the choice off: Cl

Corollary 2. Vf E Q,,n_Z, C”(f)=O(C(f)).

Proof. From Lemma 2 the set of functions in Qn,n_2 with superlinear monotone
complexity is nonempty. If f is any such function then the result follows by the
same argument used to prove Corollary 1. Cl

4. Maisr result

Definition 3. Let Y, = {yO, . . . , yn} be a set of n + 1 Boolean variables disjoint from
X,. A reconstruction function for f (X,) is any (2n + 1)-input monotone Boolean
function h(X,,, Y,,) such that h(X,, fO,. . . ,fn) =f(X”). h is said to cover$

Below, d(n) and g(n) are functions from N to N. Let K = (& , Hz, . . . , H,, . . . ,)

where H, is a set of d(n) (2n + l)-input monotone Boolean functions over X,, U,.
H,, covers Jn c M,, iff each f E J, is covered by some member of H,,. H covers
J = u:=o Jn c UT=* M,, iff, for all n, H, covers J,,. If every h E H,, has C”(h) s g(n)
then H is a g-cover for J. Note that a g-cover exists for J iff each f E J, has

C”*(f)s g(n).

Before proving the main result we establish three preliminary lemmas.

Lemma 3. A, and Q! are as in Dejnition 1. Let { pl, . . . , p,} be a set of t products
satisfying the constraints on the prime implicants of functions in PART(n). There are
exactly

2rl;_,(:$-r

functions in PART(n) which have all the pi as prime implicants.

Proof. Obvious. Cl

2 If HARDk were empty then the second part of the corollary would be trivially true. Consider a
statement such as “WOE M,, Cm(f) 3 2” + C(j) > 2” “. This is true since no f~ M,, has C”(j) 2 2”.

Monotone simulations of nonmonotone networks 21

Note: To avoid unwieldy expressions, P(n) will denote nS=, (2).

Lemma 4. kt m = zIz2 . . . zb where 6 = aj + f and { zl, . . . , zb} C x(j). suppose that

{P 1,. . . , pJ is a set of s products eaA containing a - aj variables and such that for
all i #j each of these products contains exactly ai variables from X(? Note that s is
at most n I~iZj~_r (2). Ifr = 1 then S = 1.

There are exactly (2 Pt”‘-bs)(2” - 1)” functions f E PART(n) such that Vi=, mpi of:

Proof. Let qi = m A pi for each 1 s i s s. By considering the product obtained after
setting any zk to 1, it is easily seen that each qi gives rise to b possible prime
implicants. The number of functions which contain none of the 6s distinct prime
implicants arising from all the qi, is 2P(n)-bs. For each of these functions there are
(2b - 1)” ways of extending the set of prime implicants so that each qi is an implicant
of the new function. (For each qi some non-empty subset of the b possible products
must be added to the set of prime implicants.) Multiplying these two factors gives
the expression in the lemma. Cl

Lemma 5. For any g-cover H, 1 H, 1 s 2°(g(“) log g(“)).

Proof. If, for all constants c, there exists an arbitrarily large n such that l&l >
2cgW log s(n) then Fact 1 implies that one of the functions in H, has monotone
complexity o(g(n)) and so H could not be a g-cover. Cl

Fact 3. Let m:N+N. If s>2b(log,2)m(n) then

(2 P(n)--bs)(2b _ 1)” < 2tV+-m(n).

Proof. The inequality in the lemma holds if 2mcn) c exp(s/2’). This is true if and
only if s > 2b(log, 2)m(n) as required. Cl

Our main result is the following theorem.

Theorem 2. Let r 3 3 or r = 2 and ai s tIi -2 (for i = 1 and i = 2). Without 10~s of
generality suppose that b = a1 s a2 s l e 9 s a,. If H is a g-cover for PART then

g(n)=fl. (P(n)
\2Q) log P(n) > l

Proof. Suppose that H is a g-cover for PART, with H, in H consisting of a set of
d(n) reconstruction functions which cover all the functions in PART(n). From
Lemma 5 it follows that d(n) s 2’(“) where l(n) s c g(n) log g(n) for some constant
c > 0. Some function h E H,, must cover at least 1 PART(n)ld (n) different functions
from PART(n).

this h. So by the previous

set {Pi,-, p,) of products
Lemma 3 it follows that if

22 P.E. Dunne

Let D denote the subset of PART(n) covered by
argument 1 Dl is at least 2P(“)-‘? Now consider any
over Xn, each product being as in Lemma 3. From

r

’ /
I

t > c g(n) log g(n), then some function in D cannot have all of these products as
prime implicants.

Similarly, consider any set {ql, l . . , qs} of products over X,, each product being
as in Lemma 4 with j = 1. Again from Lemma 4, by using Fact 3, it follows that if
s > 2b(~ log, 2)g(n) log g(n) then some function in D does not have a!1 of these s
products as implicants.

We can now examine the structure of h in greater detail. h computes some
(2n + I)-input monotone Boolean function of X,, Y,. Each prime implicant of this
function consists of some product, m say, over X, which is /\‘ed with some product
over Y,. When the ith Y” input is replaced by the i-slice of some function f in D
then this product of y’s reduces to a single slice function, fk(&) say. Thus the
“prime implicant” reduces to a function, w, of the form

m h fk = m A ((f n Tg) v Ti+,).

(From here on we drop the explicit dependence on X,.)
Note that the product m is present regardless off since we are considering a

single monotone Boolean function h(X,.,, Y,).
Now since only functions in PART(n) are of interest, we may assume that k s Q

and that each m contains at most ai variables from X? With these assumptions
we claim that any product m, as above, contains at least ai variables from each class
X(? To see this, suppose that there is some m containing fewer than ai variables
from X? Note that m therefore depends on at most a - 1 variables. Consider the
following three cases:

(I) Ivar(m)l > k: then m A TE,, = m and so m would be an implicant of every
function in D. This is a contradiction since no function in PART(n) has m as an
implicant.

(II) Ivar(m)l < k: construct a product p of exactly k - 1 variables to satisfy the
following:

(i) var(m) c var(p).

(ii) For each j Z i, p contains at most aj variables of X(-?
(iii) p contains at most Qi - 1 variables from X(?

Thus mAp=p.
The conditions on r, aj and nj in the theorem guarantee that the set Xn -Xqi)-

var(p) contains at least two variables, y and z say. p A y A z is a product of k + I
variables and so is a prime implicant of Ti+, . Additionally

mApAyAZ=pAyAZ.

These two facts imply that p A y A z is an implicant of every function in D. This is
a contradiction: p A y A z is not an implicant of any function in PART(n) since it
contains only ai - 1 variables from X?

Monotone simulatiorls of nonmonotone networks 23

(III) Ivar(m)l = k: This is similar to Case (II), for by the same argument we can
identify at least one variable in X, - Xti) - var(m), y say, and so appeal to the
reasoning concluding Case (II) with regard to the monom m A y.

Therefore we can further assume that the product m contains exactly Qi variables
from each class of the partition of X,.

Note: Without the restriction on A, and ar in the theorem, this assumption is not
valid.

If k = a then this function w simplifies to

We call the product m occurring in an expression having the form of (A) a Type
(A) term. mA will denote an arbitrary Type (A) term. Note that these depend solely
on h and so are independent of j: Additionally, since we have assumed that any
###A contains exactly Qi variables from XtiJ9 it follows that different Type (A) terms
contribute different prime implicants to any f~ D.

If k < a then w simplifies to

Such products m will be referred to as Type (B) terms, ?& denoting an arbitrary
such term.

From the consequence of Lemma 3, stated earlier, the number of Type (B) terms
in h is at most c g(n) log g(n). This is because any Type (B) term is a prime implicant
of each function in D.

Consider the function MAX E PART(n) which is defined by

h&ix= v mAv v mBe
Type (A) terms Type (B) terms

Clearly MAX is in D and by the preceding arguments on the structure of h, it must
be the case that, for each f~ 0,

V mdfv T:+,)v v mB=f:
Type (A) terms Type (B) terms

This may be rewritten as

V mAV
(A) terms Type

V
(B)

mB df-v T:+,)=f
terms >

since each Type (B) term is a prime implicant of every f e D.
Therefore MAX A (f v Ti+,) =J PI(f) is a subset of PI(MAX) (which includes

all the &#) and MAX A Ti,, <J: The lower bound on the size of 101 implies that

MAX has at least P(n) = c g(n) log g(n) prime implicants, for otherwise not enough
subsets can be formed. Recall that the function x(p) is the disjunction of all variables
in X,, which do not occur in p. Then for each f E D we have

MAX /\ T:,, = v P~X(PFf:
pczPI(MAX)

24 P.E. Dunne

Thus there are at least (PI(MAX)I(2)-’ implicants
f~ D, which satisfy the conditions of Lemma 4.
maximum number of such implicants we obtain

of length a + 1 common to each
From the upper bound on the

Using the approximation G log G 3 F implies G 3 F/log F proves the theorem. Cl

The result of Theorem 2 is easily seen to be expressible as given in Corollary 3.

Corollary 3. For almost all f E PART(A,, cu),

c”*(f)=a
(

P(n)
2b(3) log P(n) > ’

Of more interest are the following special cases of Theorem 2.

Corollary 4. If ai, ni are constant for some 1 < i < r then for almost allf E PART(A,, a),

Note that in this case the counting argument of Shannon gives C”(f) =
a(P(n)/log P(n)). So for this class of functions, providing the slice functions as
extra inputs does not in general reduce monotone complexity.

The final corollary given deals with the case r = 1.

Corollary 5. Let r = 1 and consider Q,,o = PART(A,, cy). There exist functions f E Q,,.,
for which

(a constant),

(a = o(n)),

(a= n - k, k constant).

Proof. Since O,,, is a superset of PART(n) for certain partitions, it is sufficient to
prove the result for a particular PART(A,, (w) in each case.

For the first two relations partition X, into n/a sets of roughly equal size, and
set ai = 1 for each i. Applying Theorem 2 gives the results claimed.

For the final relation, partition X, into two sets: one of size 2k and one of size
n -2k, then set a, = 1 and a2 = k - 1. Again apply Theorem 2 to yield the result, Cl

Monotone simulations of nonmonotone networks 25

The result of Section 3 shows that the last relation of Corollary 5 is in fact the
best possible, since there it was proved that C”*(J) = O(&‘/log n) for any function
in this final class.

References

PI

PI

[31

[41
PI

W
PI

PI

PI
IlO1

w

WI
r131

1141
WI
WI

N. Alon and R. Boppana, The monotone circuit complexity of Boolean functions, Combinatorics,
to appear.
A.E. Andreev, A method of proving lower bounds on the complexity of monotone Boolean functions,
Dokl. Akad. Nauk 282 (1985) 1033-1037 (in Russian).
S. Berkowitz, On some relationships between monotone and non-monotone circuit complexity,
Technical Report, Univ. of Toronto (1982).
N. Blum, A Boolean function requiring 3n network size, nteoret. Comput. Sci. 28 (1984) 337-345.
P.E. Dunne, Techniques for the analysis of monotone Boolean networks, Ph.D. Dissertation, Univ.
of Warwick, September 1984; Theory of Computation Report No. 69, Dept. of Computer Science,
Univ. of Warwick.
P.E. Dunne, The complexity of central slice functions, Theoret. Comput. Sci. 44 (1986) 247-257.
A.A. Razborov, Lower bounds on <he monotone complexity of some Boolean functions, Dokl. Nauk
281(4) (1985) 798-801 (in Russian).
A.A. Razborov, A lower bound on the m13fiotbne complexity of the logical permanent, Matematischi
Zametki 37(6) (1985) 887-901 (iu Russian).
J.E. Savage, An algorithm for the computation of linear forms, SIAM J. Comput. 3 (1974) 150-158.
C.E. Shannon, The synthesis of two-terminal switching networks, Bell Systems Tech. J. 28 (1949)
59-98.
S. Skyum and LG. Valiant, A complexity theory based on Boolean algebra, J. ACM 32 (1985)
484-502.
L.G. Valiant, Negation is powerless for Boolean slice functions, SIAM1 Comput. 15 (1986) 531-535.
I. Wegener, Boolean functions whose monotone complexity is of size n2/log n, 7%eoret. Cornput.
Sci. 21 (1982) 213-224.
1. Wegener, On the complexity of slice functioc,, Theoret. Comput. Sci. 38 (1985) 55-68.
I. Wegener, More on thq complexity of slice functions, Theoret. Comput. Sci. 43 (1986) 201-211.
I. Wegener, The Comptexity of Boolean Functions, Wiley-Teubner Series in Computer Science
(Wiley-Teubner, Stuttgart, 1987).

