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a b s t r a c t

This paper introduces an approach for obtaining the numerical solution of the nonlinear
Volterra–Fredholm integro-differential (NVFID) equations using hybrid Legendre polyno-
mials and Block-Pulse functions. These hybrid functions and their operational matrices are
used for representing matrix form of these equations. The main characteristic of this ap-
proach is that it reduces NVFID equations to a system of algebraic equations, which greatly
simplifying the problem. Numerical examples illustrate the validity and applicability of the
proposed method.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Integral equations have been one of the principal tools in various areas of appliedmathematics, physics and engineering.
In this paper we are concerned with the NVFID equations [1]. These types of equations were introduced by Volterra for
the first time. Volterra investigated the population growth on the topic of integro-differential equations [2]. Scientists
have investigated the topic of integro-differential equations through their work in many scientific applications such as
heat transfer, diffusion process in general, neutron diffusion and biological species coexisting together with increasing and
decreasing rates of generating [1,2]. The NVFID equations arise in neurosciences [3].

The aim of this work is to present a numerical method for approximating the solution of NVFID equations of the form:u′(x)+ q(x)u(x)+ λ1

∫ 1

0
k1(x, s)ψ1(s, u(s))ds + λ2

∫ x

0
k2(x, s)ψ2(s, u(s))ds = f (x),

u(0) = u0, 0 ≤ s < 1,
(1)

where the parameters λ1, λ2 and functions q(x), f (x), ψ1(s, u(s)), ψ2(s, u(s)), k1(x, s) and k2(x, s) are known and belong to
L2[0, 1). u(x) is the unknown function. In this work we supposeψ1(s, u(s)) = u(s)α andψ2(s, u(s)) = u(s)β where α, β are
positive integers.

In recent years, many different basic functions have been used to estimate the solution of integral equations, such as
orthogonal functions and wavelets. Three families of the orthogonal functions are classified: 1-(PCOF) Piecewise Constant
Orthogonal Functions (e.g., Walsh, Block-Pulse, Haar, etc.), 2-Orthogonal polynomials (e.g., Legendre, Laguerre, Chebyshev,
etc.) and 3-Sine–Cosin functions in the Fourier series. For more information on these orthogonal functions, see [4–13].
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In this paper, we use the hybrid Legendre polynomials and Block-Pulse functions to solve NVFID equations of the form
Eq. (1). These hybrid function methods had been used for some Volterra and Fredholm integral equations [13], control
problems [14,15], linear time-varying descriptor systems [16] and simple form of integro-differential equations [10,17]
beforehand. We present hybrid function’s useful properties such as product matrix, integration of the cross product,
operational matrix of integration and coefficient matrix to solve NVFID equations.

This paper is organized as follows. In Section 2, we introduce hybrid functions and its properties. In Section 3, we apply
these sets of hybrid functions for approximating the solution of NVFID equations. Numerical results are reported in Section 4.
Finally, Section 5 concludes the paper.

2. Hybrid functions and some of their properties

The orthogonal set of hybrid functions hij(x), i = 1, 2, . . . , n, j = 0, 1, . . . ,m − 1, where i is the order for Block-Pulse
functions, j is the order for Legendre polynomials and x is the normalized time, is defined on the interval [0, 1) as

hij(x) =

Lj(2nx − 2i + 1),
i − 1
n

≤ x <
i
n
,

0, otherwise.
(2)

Here, the Legendre polynomials Lm(x) defined in the interval [−1, 1] are given by

L0(x) = 1, L1(x) = x,
(m + 1)Lm+1(x) = (2m + 1)xLm(x)− mLm−1(x), m = 1, 2, 3, . . . .

The set of {Lm(x) : m = 0, 1, . . .} in Hilbert space L2[−1, 1] is a complete orthogonal system.
A set of Block-Pulse functions bi(x), i = 1, 2, . . . , n on the interval [0, 1) is defined as follows

bi(x) =

1,
i − 1
n

≤ x <
i
n
,

0, otherwise.
(3)

The Block-Pulse functions on [0, 1) are disjoint, so for i, j = 1, 2, . . . , n, we have bi(x)bj(x) = δijbi(x), also these functions
have the property of orthogonality on [0, 1).

Since hij(x) is the combination of Legendre polynomials and Block-Pulse functions which are both complete and orthog-
onal, then the set of hybrid functions is a complete orthogonal system in L2[0, 1).

2.1. Function approximation

Any function u(x) ∈ L2[0, 1) can be expanded in a hybrid function

u(x) =

∞−
i=1

∞−
j=0

cijhij(x), (4)

where the hybrid coefficients are given by cij =
(u(x),hij(x))
(hij(x),hij(x))

for i = 1, 2, . . . ,∞, j = 0, 1, . . . ,∞, such that (·, ·) denotes
the inner product.

Usually, the series expansion Eq. (4) contains an infinite number of terms for a smooth u(x). If u(x) is piecewise constant
or may be approximated as piecewise constant, then the sum in Eq. (4) may be terminated after nm terms, that is

u(x) ≃

n−
i=1

m−1−
j=0

cijhij(x) = CTh(x), (5)

where

C = [c10, . . . , c1,m−1, c20, . . . , c2,m−1, . . . , cn0, . . . , cn,m−1]
T , (6)

h(x) = [h10(x), . . . , h1m−1(x), h20(x), . . . , h2m−1(x), . . . , hnm−1(x)]T . (7)

We can also approximate the function k(x, s) ∈ L2([0, 1)× [0, 1)) as follows

k(x, s) ≃ hT (x)Kh(s), (8)

where K is an nm × nm matrix that Kij =


h(i)(x),


k(x,s),h(j)(s)


h(i)(x),h(i)(x)


h(j)(s),h(j)(s)

 for i, j = 1, 2, . . . , nm.
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2.2. Operational matrix of integration

The integration of the vector h(x) defined in Eq. (7) is given by∫ x

0
h(x′)dx′

≃ Ph(x), (9)

where P is the nm × nm operational matrix for integration and is given in [18] as

P =


E H H · · · H
O E H · · · H
O O E · · · H
...

...
. . .

. . .
...

O O O · · · E

 , (10)

that E and H arem × m matrices that have the following shapes,

H =
1
n


1 0 0 · · · 0
0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 , (11)

E =
1
2n



1 1 0 0 0 · · · 0 0 0 0 0

−
1
3

0
1
3

0 0 · · · 0 0 0 0 0

0 −
1
5

0
1
5

0 · · · 0 0 0 0 0

0 0 −
1
7

0
1
7

· · · 0 0 0 0 0

0 0 0 −
1
9

0 · · · 0 0 0 0 0

...
...

...
...

...
. . .

...
...

...
...

...

0 0 0 0 0 · · · 0
1

2m − 9
0 0 0

0 0 0 0 0 · · ·
−1

2m − 7
0

1
2m − 7

0 0

0 0 0 0 0 · · · 0
−1

2m − 5
0

1
2m − 5

0

0 0 0 0 0 · · · 0 0
−1

2m − 3
0

1
2m − 3

0 0 0 0 0 · · · 0 0 0
−1

2m − 1
0



. (12)

Pattern of operational matrix P by n = 4 andm = 8 appears in Fig. 1.

2.3. The integration of the cross product

The integration of the cross product of two hybrid function vectors h(x) in Eq. (7) can be obtained as

D =

∫ 1

0
h(x)hT (x)dx =


L O · · · O
O L · · · O
...

...
. . .

...
O O · · · L

 , (13)

where L is anm × m diagonal matrix that is given by

L =
1
n


1 0 · · · 0

0
1
3

· · · 0
...

...
. . .

...

0 0 · · ·
1

2m − 1

 . (14)
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Fig. 1. Patterns of the matrices D (left) and P (right).

The efficacy of matrix D is used for converting the Fredholm part of NVFID equations to an algebraic equation. Because of its
diagonal shape it can increase the calculating speed. Fig. 1 shows the pattern of matrix D when n = 4 andm = 4.

2.4. Product operational matrix

It is always necessary to evaluate the product of h(x) and hT (x), that is called the product matrix of hybrid functions. Let

H(x) = h(x)hT (x), (15)

where H(x) is nm × nmmatrix. Multiplying the matrix H(x) by vector C that defined in Eq. (6) we obtain

H(x)C = Ch(x), (16)

whereC is nm× nmmatrix and called the coefficient matrix. To illustrate the calculation procedure in Eq. (16), we consider
that n = 2,m = 8 [13] we have

C =

[C1 O
O C2

]
,

where Ci, i = 1, 2 are 8 × 8 matrices given by

Ci =



ci0 ci1 ci2 ci3 · · · ci7

1/3ci1
ci0

+2/5ci2
2/3ci1

+3/7ci3
3/5ci2

+4/9ci4
· · · 7/13ci6

1/5ci2
2/5ci1

+9/35ci3

ci0
+2/7ci2
+2/7ci4

3/5ci1
+4/15ci3
+10/33ci5

· · ·
63/143ci5

+56/221ci7

1/7ci3
9/35ci2

+4/21ci4

3/7ci1
+4/21ci3

+50/231ci5

ci0
+4/15ci2
+2/11ci4

+100/429ci6

· · ·
175/429ci4

+504/2431ci6

...
...

...
... · · ·

...

1/15ci7 7/65ci6
21/143ci5

+56/663ci7
245/1287ci4

+1176/12 155ci6
· · ·

ci0
+56/221ci2

+6804/46 189ci4
+5000/46 189ci6



. (17)

With the powerful properties of Eq. (16) we can convert the Volterra part of NVFID equations to an algebraic equation.

3. Numerical solution of NVFID equations using hybrid functions

Consider the NVFID equation (1). The unknown function u(x) can be expanded as

u(x) ≃ UTh(x), (18)
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where U is the unknown nm-vector and h(x) is given by Eq. (7). Likewise, k1(x, s), k2(x, s), q(x) and f (x) are also expanded
into the hybrid functions

k1(x, s) ≃ hT (x)K1h(s), k2(x, s) ≃ hT (x)K2h(s), (19)

f (x) ≃ F Th(x), q(x) ≃ Q Th(x), (20)

where K1, K2 are nm × nm-matrices and F is an nm-vector. We approximate u′(x) as follows

u′(x) ≃ U ′Th(x), (21)

which U ′ will be evaluated in terms of U .

u(x)− u(0) =

∫ x

0
u′(η)dη ≃

∫ x

0
U ′Th(η)dη ≃ U ′TPh(x). (22)

If we expand u(0)with hybrid basis i.e. u(0) = U0h(x), then U0 is obtained as follows:

U0 =
 m  
u(0), 0, . . . , 0,

m  
u(0), 0, . . . , 0, . . . ,

m  
u(0), 0, . . . , 0  

nm

T
,

and we have

u(x) ≃ U ′TPh(x)+ UT
0 h(x). (23)

Therefore,

U ≃ PTU ′
+ U0. (24)

After substituting the approximate equations (18)–(20) into (1) we get

U ′Th(x)+ Q Th(x)hT (x)U + λ1hT (x)K1

∫ 1

0
h(s)ψ1(s,UTh(s))ds

+ λ2hT (x)K2

∫ x

0
h(s)ψ2(s,UTh(s))ds ≃ F Th(x). (25)

Functions ψ1(s,UTh(s)) = (UTh(s))α and ψ2(s,UTh(s)) = (UTh(s))β are known and can be expanded into the hybrid
functions as

(u(s))α ≃ UT
αh(s),

(u(s))β ≃ UT
βh(s).

(26)

In the next subsection, we consider computing Uα and Uβ in terms of U , where Uα,Uβ are mn-vectors whose elements are
nonlinear combination of the elements of the vector U . Substituting Eq. (26) in Eq. (25) produces

U ′Th(x)+ Q Th(x)hT (x)U + λ1hT (x)K1

∫ 1

0
h(s)hT (s)Uαds + λ2hT (x)K2

∫ x

0
h(s)hT (s)Uβds ≃ F Th(x), (27)

where
 x
0 h(s)hT (s)Uβds =

 x
0

Uβh(s)ds = UβPh(x), making use of Eqs. (16) and (13) and operational matrix P , we get

U ′Th(x)+ Q TUh(x)+ λ1hT (x)(K1DUα)+ λ2hT (x)K2UβPh(x) ≃ F Th(x). (28)

If we approximate the fourth term of Eq. (28) with hybrid basis we achieve

hT (x)(K2UβP)h(x) ≃ Uβh(x). (29)

We can achieveUβ by away likeC andwe see that each element ofUβ is obtained by the sum of column elements of (K2UβP)
with respect to coefficient C in Eq. (16) at each column. By using this property and omitting hybrid vector functions in
Eq. (28), we will have

U ′T
+ Q TU + λ1(K1DUα)T + λ2Uβ ≃ F T . (30)

Another equivalent form is

U ′
+ UTQ + λ1(K1DUα)+ λ2Uβ T ≃ F , (31)

multiplying matrix PT on both sides of Eq. (31) and applying Eq. (24) in Eq. (31) we get

U − U0 + PTUTQ + λ1PT (K1DUα)+ λ2PTUβ T ≃ PT F . (32)

After replacing ≃ with =, we have a nonlinear system that can be solved with Newton’s method for the unknown vector U ,
then by the use of u(x) ≃ UTh(x) the approximated solution is given.
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Table 1
Approximate and exact solutions for Example 4.1.

x Solution with
n = 2,m = 8

Solution with
n = 4,m = 8

Solution with
n = 8,m = 8

Method in [19] with
m = 16

Exact

0.0 0.000000 0.000000 0.000000 0.000000 0
0.1 0.010917 0.010256 0.010031 0.010978 0.01
0.2 0.041703 0.040487 0.040075 0.040702 0.04
0.3 0.092364 0.090698 0.090171 0.090736 0.09
0.4 0.162911 0.160866 0.160094 0.161077 0.16
0.5 0.253371 0.250997 0.250228 0.250164 0.25
0.6 0.364244 0.361061 0.360502 0.361120 0.36
0.7 0.493830 0.490969 0.490583 0.490819 0.49
0.8 0.642375 0.640830 0.640374 0.640819 0.64
0.9 0.810337 0.810183 0.810047 0.811118 0.81
1.0 0.998506 0.999660 0.999986 1.000149 1

3.1. Evaluating Uα and Uβ

For numerical implementation of the method explained in the previous section, we need to evaluate Uα and Uβ . The
elements of each one are nonlinear combination of the elements of the vector U . From (16) and (18). We have

(u(x))2 ≃ (UTh(x))(UTh(x)) = UTh(x)hT (x)U

= UTUh(x) = U2h(x), (33)

where the vector U2 = UTU is an mn-row vector, then for (u(s))3 we get

(u(x))3 ≃ (UTh(x))(U2h(x)) = UTh(x)hT (x)UT
2

= UTUT
2 h(x) = U3h(x). (34)

Therefore, with this method we can approximate (u(s))α and (u(s))β for arbitrary α and β . Suppose that this method holds
for α − 1 where (u(x))α−1

= Uα−1h(x), we obtain it for α as follows

(u(x))α = u(x)u(x)α−1
≃ (UTh(x))(Uα−1h(x))

= UTh(x)hT (x)UT
α−1

= UT UT
α−1h(x) = Uαh(x), (35)

we have similar relation for β . So, the components of Uα and Uβ can be computed in terms of components of unknown
vector U .

4. Numerical examples

In this section we implemented our method on four different examples. Our results achieved by a proper value for m
(this feather is experimental) and different values for n. The results are tabulated in four tables, in these tables the exact
solutions are compared with hybrid function solutions and also in the first example we compared hybrid functions results
by triangular functions results [19] for NVFID equations. It is noticed that our method has quite acceptable results but it is
clear for lower values of nwe have less accuracy in some end points of the interval that by increasing n, the results become
better.

We consider the following examples.

Example 4.1. Consider the NVFID equation, as follows:

u′(x)+ u(x)+
1
2

∫ x

0
xu2(s)ds −

1
4

∫ 1

0
su3(s)ds = f (x), (36)

where f (x) = 2x + x2 +
1
10x

6
−

1
32 , with the initial condition u(0) = 0, and the exact solution u(x) = x2 [19]. The

comparison among the hybrid solution with n = 2,m = 8, n = 4,m = 8 and n = 8,m = 8 besides the solutions of
triangular functions [19] and exact solutions are shown in Table 1.

Example 4.2. Consider the following nonlinear Volterra integro-differential equation,

u′(x)−

∫ x

0
cos(x − s)u2(s)ds = −2 sin x −

1
3
cos x −

2
3
cos(2x), (37)

with the initial condition u(0) = 1, and the exact solution u(x) = cos x − sin x [8]. The comparison among the hybrid
solution with n = 2,m = 8, n = 4,m = 8 and n = 8,m = 8 besides the exact solutions are shown in Table 2.
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Table 2
Approximate and exact solutions for Example 4.2.

x Solution with
n = 2,m = 8

Solution with
n = 4,m = 8

Solution with
n = 8,m = 8

Exact

0.0 0.999987 0.999995 0.999999 1
0.1 0.894924 0.894912 0.895186 0.895170
0.2 0.779971 0.780797 0.781653 0.781397
0.3 0.657525 0.659114 0.659732 0.659816
0.4 0.529719 0.530699 0.530699 0.531642
0.5 0.398671 0.397870 0.398169 0.398157
0.6 0.260321 0.259787 0.260969 0.260693
0.7 0.121015 0.120360 0.120671 0.120624
0.8 −0.017300 −0.020600 −0.020638 −0.020649
0.9 −0.152906 −0.161466 −0.161638 −0.161716
1.0 −0.284295 −0.298740 −0.301983 −0.301168

Table 3
Approximate and exact solutions for Example 4.3.

x Solution with
n = 2,m = 8

Solution with
n = 4,m = 8

Solution with
n = 8,m = 8

Exact

0.0 0.999999 0.999999 0.999999 1
0.1 1.091923 1.098183 1.100625 1.1
0.2 1.189700 1.197715 1.200373 1.2
0.3 1.291151 1.298043 1.300626 1.3
0.4 1.393565 1.399590 1.400681 1.4
0.5 1.493661 1.498178 1.500599 1.5
0.6 1.603138 1.605163 1.601830 1.6
0.7 1.716121 1.706799 1.702132 1.7
0.8 1.827504 1.812136 1.806721 1.8
0.9 1.931639 1.920991 1.913578 1.9
1.0 2.022688 2.015233 2.009838 2

Table 4
Approximate and exact solutions for Example 4.4.

x Solution with
n = 2,m = 8

Solution with
n = 4,m = 8

Solution with
n = 8,m = 8

Exact

0.0 −0.000000 0.000077 0.000032 0
0.1 0.099435 0.099801 0.099825 0.099833
0.2 0.198304 0.198740 0.198678 0.198669
0.3 0.295493 0.295664 0.295603 0.295520
0.4 0.389688 0.390016 0.389605 0.389418
0.5 0.479311 0.480537 0.479398 0.479425
0.6 0.562965 0.566730 0.563598 0.564642
0.7 0.640005 0.647439 0.642606 0.644217
0.8 0.708103 0.721968 0.715049 0.717356
0.9 0.764843 0.790216 0.779882 0.783326
1.0 0.807845 0.849043 0.837683 0.841470

Example 4.3. Consider the NVFID equation, as follows:

u′(x)+ x2u(x)−

∫ x

0
(x − s)u2(s)ds +

∫ 1

0
esu(s)ds = f (x), (38)

where f (x) = 1+e+
x2
2 +

2x3
3 −

x4
12 , with the initial condition u(0) = 1, and the exact solution u(x) = x+1. The comparison

among the hybrid solution with n = 2,m = 8, n = 4,m = 8 and n = 8,m = 8 besides the exact solutions are shown in
Table 3.

Example 4.4. Consider the following nonlinear Volterra integro-differential equation,

u′(x)+ u(x)− 2
∫ x

0
sin(x)u2(s)ds = cos x + (1 − x) sin x + cos x sin2 x, (39)

with the initial condition u(0) = 0, and the exact solution u(x) = sin x. The comparison among the hybrid solution with
n = 2,m = 8, n = 4,m = 8 and n = 8,m = 8 besides the exact solutions are shown in Table 4.
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5. Conclusion

The hybrid Legendre polynomials and Block-Pulse functions operational matrices of integration D, operational matrix
P , product matrix H and coefficient matrix C which are sparse matrices, are used to converting an NVFID equation to a
nonlinear system of equations that can be solved by known iterative methods. By making use of these operational matrices,
the problem has been reduced to solve a set of algebraic equations that can simply appeared in matrix form. The solution
obtained using the suggested method shows that this approach can solve NVFID equations effectively. Although we do not
claim this method shows superiority over other methods from the viewpoint of accuracy, it seems that this method is more
practical, quite good accurate and has lower calculation.
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