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1. Introduction 

Kaluza-Klein theory has been developed in a number of geometrical settings and 
from various points of view. A most general setting involves viewing Kaluza-Klein space 
(the multidimensional universe) as a fibered manifold E over a manifold M (spacetime) 

7T:E + M. The geometry in such a setting was worked out by O’Neill [9], modulo 

the obvious modifications to the semi-Riemannian case, and more recently discussed 

by Hogan [6]. The principal fiber bundle case E = P was developed by Cho [3] and 

Kopczynski [7], while the generalization from P to the case where the standard fiber 

is a homogeneous space G/H was discussed by Coquereaux and Jadczyk [4,5] and 
Percacci and Randjbar [lo]. The text [l] contains some of the old and recent papers. 

I apologize for omissions in this brief historical overview. 
In all of these cases the Kaluza-Klein metric 3 is a fiber metric on TE and the basic 

assumptions are such as to force a splitting of the short exact sequence VE L) TE + 
E x TM of vector bundles over E. Then g splits into a gauge field potential c (which 

is the splitting map) and fiber metrics S,g on VE, E x TM, and g eventually gets 
identified with a metric on M. 

In this paper we look at the above situation in the general framework of splittings 
of short exact sequences A L) B --f C of vector bundles over some manifold and derive 

results on (1) the splitting of fiber metrics on B into their constituent parts and (2) 
the relation of the invariances of the parts to those of 3. After applying this to the 
settings mentioned above, we also formulate the Kaluza-Klein theory in terms of the 
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short exact sequence: 

VPfG c-, TPfG + TM 

of vector bundles over M. The theory here has a number of advantages. 

2. Preliminary generalities 

As a preface to the discussion of Kaluza-Klein theory we present here some generali- 

ties on its underlying geometrical structure. The mechanism for splitting the extended 

gravity metric into a gauge field, a spacetime metric, and a fiber metric arises in the 

more general setting of splittings of short exact sequences of vector bundles. 

2.1. Short Exact Sequences of Vector Bundles. Suppose N is a manifold and 

0 + A L) B -+ C + 0 is a short exact sequence of vector bundles over N: 

Here nA, Kg, nc are the projections on the base space N, i and p are linear fibered 

morphisms over N with i injective, p surjective and Ker p = Im i. In the sequel (for 

convenience) we will always consider A as a subbundle of B : A c B, and i as the 

inclusion map. In general a linear fibered morphism cr : A + B is fiber preserving map 
which is linear on the fibers. Denote the induced map on the base by C-UN : N -+ N 
and then ~(2, a,) = (oN(z), ozaZ) where oZ : A, -+ B,,(,) is linear. When a! induces 

the identity on the base: Ck!N = 1, then Q is called a linear fibered morphism over N. 

There is a natural category whose objects are such short exact sequences (A, B, C) and 

whose morphisms 4 : (A, B,C) + (A’, B’,C’) are triples 4 = (~A,&,+c) of linear 
fibered morphisms such that the following diagram commutes: 

AiB p, c 

In particular a morphism from (A, B, C) to itself consists of a pair of maps (bB and C$C 
which intertwine p : ,@+B = cjcp and such that 4~ leaves A invariant, i.e., +B(A) C A. 

Then 4= (4~ IA,+B,~c) = (4~~4~) is a morphism in the above sense. 
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2.2. Connections (Splitting maps). For any bundle B over N we let I’(B) denote 

the space of sections s : N --f B. Observe that any linear morphism (II : A ---f B, over 

N can also be viewed, in the obvious way, as a section cy : N ---f Hom(A, B) of the 

bundle of linear fibered morphisms from A to B, i.e., a E l?(Hom(A, B)). 
A connection for the short exact sequence (A, B, C), is a linear fibered morphism 

cr : C + B over N such that ,& = 1 (the identity map on C). Each connection u (also 
called a splitting map) induces a splitting (decomposition): 

B = A $ c(C) 

where the splitting of an element 6, in the fiber B, over 2 E N is given by 

Note that there is also a corresponding decomposition of the sections, i.e., a bijection 

I’(B) -+ I’(A) x r(C). Let C(C, B) c Hom(C, B) d enote the subbundle of Hom(C, B) 
whose fiber over z E N consists of those linear maps 6, : C, + B, such that /JZa, = 1. 

Then we can alternatively view a connection cr : C + B as a section u : N --f C(C, B). 
Note that each isomorphism 4 = (do, 4~) of the short exact sequence (A, B, C) induces 
a map 4~ : C(C, B) ---f C(C, B) on the bundle of connections: 

2.3. Fiber metrics. Let S2(A) be the vector bundle of symmetric forms on A, i.e., an 

element g$ E S2( A)= in the fiber over 2 is a symmetric bilinear map g.$ : A, x A, + R. 

The bundle of metrics on A is the subbundle M(A) C S2(A) with fibers consisting of 

non-degenerate forms (g~(uZ,a~) = 0 for every a, implies that u; = 0). The sections 

SA : N + M(A) are the fiber metrics on A. For each linear fibered morphism a : 

A -+ B such that the base map oN is bijective one gets a corresponding linear fibered 

morphism a* : S2(B) + S2(A), defined by cy*(z,gf) = (y,ozgf) where y = o&r(z) 
and 

of(s,B)(oy, o;> = 9%,a,, oYyo&). 

This also gives a map (pullback map) on the sections Q* : l?S2(B) + I’S2(A). Now 
S2 is a contravariant functor which (for obvious reasons) does not preserve exactness 

(likewise for the functor M), i.e., 

S2(A) z S2(B)xS2(C) 

is not exact. However one can achieve a splitting (decomposition) of a certain subbun- 
dle MA(B) of S2( B) by the following Kaluza-Klein mechanism: For the exact sequence 

A It B 4 C define a fibered morphism 

g : C(C, B) $ S2(A) 69 S2(C) --f S2(B) 
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Otherwise said, 

This induces a corresponding map on the sections 

g : rC(B,C) x I’S2(A) x W2(C) + W2(B) 

given by 

B(WA,SC) = Cl- 4*gA + @*SC. 
Thus the mapping g generates symmetric forms on B from symmetric forms on A, C 

and a connection (splitting) of 

Let MA(B) be th e subbundle of M(A) defined by MA(B) = (i*)-lM(A). This 

is the bundle of metrics on B whose restrictions to A are nondegenerate. For h E 

IMA let A*(h) be th e subbundle of B which is orthogonal to A. Then B = 

A $ A’(h). Define a map s : I%&@) + rc(c, B) as follows: 

where b, E /3;l{cI} and P, : B, + A’(h)% is the orthogonal projection. 

Theorem 1. The mapping 

g : rc(B,c) x rs2(A) x rs2(c) -+ rs2(q 
has the following properties: 

(1) i*g(a,gA,gC) = gA. 

(2) ~*ll(~,gA,gC) = SC. 
(3) o(C) C AL(g(c,gA,gC)) and equality holds if and only if gA is nondegenerate. 

(4) g(a,gA,gc) is nondegenerate if and only if both gA and gc are nondegenerate. 

In this case s(g(a, gA, gc)) = 6. 

(5) g : rC(B,C) x I‘M(A) x I’M(C) + rMA(B) is a bijection. (Indeed (l), (2) 

and (4) show that g is injective. On the other hand if gB is a metric on B which is 

nondegenerate on A then it’s easy to check that 

s(4sB>, i*gB, 4sB>*sB> = gB 
and thus g is surjective.) The connection d 5 s(gB) and metrics gA = i*gB, gc E 

s(gB)*gB are the Kaluza-Klein components of the extended gravity metric gB. 
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(6) SuPPose 4 = (~A7h h> : (4 B, c) + (A, B, C) is an isomorphism of the 

exact sequence, then 

where #~;‘*fl = 4i1 o u 0 i$c (and of course 4~ = #BIA, the restriction of +B to A). 
Thus in particular if gA and gc are metrics then 4~ is an isometry of the Kaluza- 
Klein metric gB z g(a, gA, gc) if and only if 4~ = 4~ IA and 4~ are isometries of gA 

and gc, and 4;’ leaves u invariant: 

3. Kaluza-Klein spaces 

In a most general setting, a Kaluza-Klein space (multidimensional universe) is a 
fibered manifold E over a base manifold M (spacetime) with ?r : E + M denoting the 
projection. For our purposes it suffices to assume that E is a fiber bundle. The metric 

structure arises from the foregoing generalities by specializing the exact sequence A --f 

B + C of vector bundles over N to the exact sequence 

VE - TE - ExTM 

\I/ 
E 

of vector bundles over E. Here VE is the usual vertical subbundle of TE (& E V,E 

iff dn je 2, = 0), and E x TM = {(e,X,) 1 e E E,X, E T,M and r(e) = z} is the 
fibered product of E and TM as bundles over M. The map ,O : TE --+ E x TM is 

given by p(e, Ze) = (e, dir le Ze). 

3.1. Connections on E. In keeping with the foregoing a connection on E is linear 
fibered morphism u : E x TM -+ TE over E such that /3cr = 1, i.e., with the notation 

a(e,X,) = (e, o,X,), oe : T&f ---f T,E is a linear map such that dlrl,a,X, = X,. 
Thus u gives rise to a horizontal lifting map u : FTM + I’TE defined by u(X)(e) = 
(e, u,X,(,)). The previous notation for the bundle C(E x TM,TE) of connections 
associated with the short exact sequence will be abbreviated to C(TE) - C(E x 
TM, TE), and is referred to as the bundle of connections on E. C(TE) can be thought 
of as a subbundle of the bundle A’(M,TE) = T*M &I TE and a connection u on E 
is also viewed as a section u : E + C(TE) E (A’M,TE), i.e., a horizontal, tangent- 

valued form which projects to the identity. 



(,6’,6‘46 = .6 

saunogag ‘a 28 
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Hence in particular we obtain the following special case of this. 

Proposition 1. Suppose K is a group of vertical, fibered isomorphisms f : E --f E 
which is transitive, i.e., each f induces the identity on the base fM = 1 and the 
restriction of K to each fiber E, is transitive. Then each K-invariant, Kalura-Klein 

metric gB on E is uniquely represented by 

gB = W&,gA,g) 

where 
(1) u is a K-invariant connection on E, i.e. ofte. = df le u, for every f E K; 

(2) gA is a K-invariant fiber metric on VE; 
(3) g is a metric on M. 

3.4. Examples (1) P rincipal fiber bundles over M. Let K = {R, ( a E G} where 

R, : P + P is right multiplication by a: R,u = ua. The K-invariant metrics on P 

are, in this case called equivariant metrics, or G-invariant metrics: 

The G-invariant connections on P are precisely the principal connections on P. The 
content of Proposition 1 can also be improved in this case since VP has a canonical 

vertical splitting a : P X G -+ VP given by o(u, [) 2 (u, dX le &) where X, : G + P is 

defined by A,(a) = ua. Here G is the Lie algebra of G (the set of left invariant vector 
fields on G, g S T,G, where e is the identity element of G). Note that G has a right 

action on Px6 : (u,[)g = (ug,Ad,-It) an d 1 t re a ive to this action a : PxG + VP is an 
equivariant map (and also a linear fibered isomorphism over P). Thus a* : I’M(VP) + 

l?M(P x G) is a bijection establishing a one to one correspondence between the fiber 

metrics on VP and P x G. Additionally gA is a G-invariant (equivariant) fiber metric 

on VP if and only if o*gA is an equivariant fiber metric on P x G (sometimes thought 
of as invariance with respect to the adjoint action Ad, : (7 --f G). This is so since if gA 

is equivariant then 

(o*gA)U,(Ad,-& Ad,-&) = s&(%, le (Act& d&a le (Ad&J 
= s,A,(dRu la d&t le &-, d& la & le I:) 
= s,AWu le Se, dk le td> 
= b*gA>& I’>. 

And similarly, equivariance of o*gA implies equivariance of gA. 

(2) Riemannian submersions. The paper [6] of Hogan, based on the work of O’Neill 

[9] provides a general setting for the Kaluza-Klein geometry. They consider a fibered 
manifold ?r : E --f M over M and assume that E and M are Riemannian manifolds 
with Riemannian metrics g and g, respectively, and that Ir’g = 3 on (VE)‘-. In this 
case then s = s&(3, i*S,s)- They g’ ive ( among other things) a calculation of the 
Ricci scalars of g and i’g, and the curvature of the gauge field potential s(G). (All of 

this relies upon the fibers E, = x-l(z) being totally geodesic submanifolds). 
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4. Kaluza-Klein theory on the adjoint bundle 

In this section we advocate the use of the adjoint bundle sequence as a convenient 

framework for the Kaluza-Klein theory. The main advantage in this is that all the 

differential forms of interest, like the gauge fields F” and their potentials o, as well as 
the Riemann curvature tensor R OJ are actual differential forms on M with values in 
a vector bundle over M. This is not the case if one uses the sequence VE + TE + 
E x TM to formulate the theory, since one has to deal with the forms on E with 
values in bundles over E. In this case one can use the calculus of tangent valued forms 

and the Frolicher-Nijenhuis bracket advocated by Mangiarotti and Modugno [8] to 

develope the Kaluza-Klein theory. This will be presented in a forthcoming paper. 

The adjoint bundle approach to Kaluza-Klein theory arises from taking a principal 

bundle sequence: VP t TP + P x TM and taking quotients by G to obtain the 

adjoint bundle sequence: 

VP/G- TP/G- ExTM 

As described in a previous paper [2] there is a basic functor from the category 

of equivariant bundles over P into the category of bundles over M which takes various 

equivariant geometric structures and forms on P over into their counterparts on M. 

In particular TP is an equivariant bundle over P with right action by a E G given 

by (21, &>a - ( ~a, dR, IU ZU). Then TP/G is just the bundle of equivalence classes: 
((u, ZU)) E TP/G determined by this equivalence relation on TP. As such there is a 
one-to-one correspondence between sections T : A4 + TP/G of TP/G and equivariant 

vector fields 2 : P + TP on P. Thus each r is represented by r(z) = ((u, &)), 

u E n-‘(z),2 q e uivariant. Note that for f E C”(M) the section fr corresponds to 

(f o n)Z, i.e. f(~)r(x) = ((u, f o x(u)Z~)). Th e sections of TP/G form a Lie algebra 
with Lie bracket defined by [r, T’](Z) s ((u, [Z, Z”JU)). The map ,f3 : TP/G + TM is 

defined by ,0((u, ZU)) = (a(u),dr Itl Zu) and g ives rise to a Lie algebra epimorphism 

# : I’(TP/G) + I’(TM) defined by T + r# = p o 7. Note that for f E C”O(M), 

(fT)# = f(T#) and as a vector field on M acting on Coo-functions: r#( f)(z) = 
Zu( f o r) where u E ?rS1 {z} and 2 is the equivariant vector field on P representing T. 
Hence the sections of VP/G form the kernel of # : I’(VP/G) = Ker(#), and as such 
l?(VP/G) is a Lie subalgebra of I’(TP/G). Th us v E r(VP/G) if and only if v#( f) = 0 
for every f. AdP s VP/G S (P x E)/G a k 1s nown as the adjoint bundle of P. Finally 
it is important to note that the Lie bracket on the sections of TP/G has the property 

hf4 = T#(f)e+ fW1. 
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4.1. Connections on VP/G -+ TP/G + TM. Here, as before, a connection u 

is a linear fibered morphism 0 : TM + TP/G over M such that pa = 1. Thus 
for each vector field X on M, a(X) on M, g(X) is the section of TP/G defined by 
a(X) = u o X. Otherwise said 0 is a differential l-form on M with values in the vector 
bundle TP/G d an such that a(X)# = X for every X. The notation for the connection 

bundle in this case is abbreviated to C(M) G C(TP/G,TM). Thus (T is a section of 

the subbundle C(M) c A’(M,TP/G). 

4.2. Kaluza-Klein calculus on TP/G. Specializing Theorem 1 to the present case 

one sees that each fiber metric ij on TP/G which is nondegenerate on VP/G (a Kaluza- 

Klein fiber metric on TP/G) is represented by 

where u is a connection on M, 4 is a fiber metric on VP/G and g is a metric on n/i. In 
this setting the Kaluza-Klein space (multidimensional universe) is the vector bundle 

TP/G together with the fiber metric ij. The Einstein-Yang-Mills equations for g and 

u can be formulated in this setting as follows. 

We use the standard calculus associated with a vector bundle E over M and the 
bundles AP(ME) = APT*M @ E of differential p-forms on M with values in E (cf., 

for example, Toth’s book [ll]; the calculus developed in [8] could also be used but 

is different from our approach). Thus a covariant derivative V on E (as a morphism 

V : rE + I’Hom(TM, E)) g ives for each vector field X on M a differential operator 

Vx : I’E + I’E, Vxr E I’E which is C”(M)-linear in X, R-linear in T and V~fr = 
X(f)r + f Vx T. Also V gives rise to an exterior derivative d on differential forms with 

values in E. In addition if a covariant derivative V’ on TM is given then V extends 
to a covariant derivative on each Ap(M, E) and furthermore gives rise to an exterior 

co-derivative operator 8 : rAp(M, E) + I’AP-‘(M, E) (simply defined without use of 
the Hodge star operator, cf. [ll]). 

The Kaluza-Klein fiber metric j on TP/G with connection component u gives rise 
to covariant derivatives VP and V” on TPIG and VP/G, respectively. The covariant 

derivative VJ arises from a differential operator V, which is not a covariant derivative 

but which is the analog of the Levi-Civita covariant derivative for J. This is the content 

of the following theorem. 

Definition. For notational simplicity we use a dot for the inner product, i.e., if 
T, 8 E I’(TP/G) then r * t9 = ij(r, 8) is the Co”-function on M defined by (r . e)(z) = 

&(T~, 0,). Likewise X . Y = g(X, Y) f or vector fields on M. Note in particular that 
u(X) + u(Y) = X. Y and u(X) - T = 0 for every r E I’(VP/G). 

Theorem 2. For each 7,~ E r(TP/G) let 0, r be given by the Koszul formula, i.e., 
V,r is the unique element of I’(TP/G) which satisfies 

2(Q) . 8 = Y#(T. e) + T#(Y .‘e) - e+. 7) 

+ 14 7-1 - 7 + p, 71 . T t [7, ~1 a0 
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for every 0. Then 0 has the following properties: 
(1) Vyr is Cm(M)-linear in 7 and R-linear in T; 

(2) V,(b) = r#m + f% 
(3) 7#(r * 0) = (T-J * 8 + 7 - (Tqq. 

Definition. Let Vg be the covariant derivative on TP/G defined by 

VpT = V,(X)7. 

Also let Vu be the covariant derivative defined on VP/G by 

V%T = [U(X)J]. 

Let V be the Levi-Civita covariant derivative on TM determined by the met- 
ric g on M and let Vg, Vu also denote the covariant derivatives on AP(M,TP/G), 

AP(M, VP/G) bt o ained by extending Va, V” as usual relative to the choice of V on 

TM. The respective exterior derivatives and exterior co-derivatives are denoted by 

&, da and 85, P. The curvature (gauge field) of the connection u is the VP/G-valued, 

2-form defined by 

F”(X, Y) = [u(X), u(Y)] - a[X,Y]. 

Proposition 2. The Bianchi identity 

d”F” = 0 (Bianchi) 

follows easily from the definition (and the Jacobi identity for the Lie bracket). The 

equation 

8°F” = 0 (W 

is identical to the Yang-Mills equation. In addition one has 

F” = dga. 

Consequently, 

d”dja = 0 7 

d”dga = 0. 

(Bianchi) 

(YW 

Definition. Let 

0(X,X’) = VXV X’ - VXlVX - V[X,X$ 

S=@,#) = V,V,l - O,lV, - Q,+]. 
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Theorem 3. It holds 

87 

Ou(X)O(Y) = a(VxY) + iFU(X,Y). 

Consequently, 

i=@(X), a(X’))a(Y) = a(R(X,X')Y) 

+ ;(dgFy(x,x',Y) - ;(vgyFFo)(x,x~) + V~(FU(X,X’)). 

Definition. Define a map 4x,y : I’TM + I’(TP/G) by 

4X,Y w> - wG>, 4X’))4V 

and let P be the orthogonal projection operator P, : (TP/G), + VP,’ = az(T&f). 
Then the Kaluza-Klein (KK)-Ricci tensor is defined to be the R-valued, %-form given 

by 
Ric(X, Y) = tr(P o +x,y) 

= &=+(X)P(&))“(Y) .o(&). t 
The KK-Ricci scalar and KK-Einstein tensor are defined as 

ii Z C,‘(Ric), 

- l- 
G E Ric - -R 

2 g 

(Note g is the metric on M). 

The metric (dot product) on TP/G and the metric on M yield, in the usual fashion, 

a dot product on TP/G-valued forms on M. Thus in particular F” - F” = FP. - F”‘j. 
Also let ix denote the usual contraction operator (derivation) on forms. &en the 

KK-energy momentum tensor is defined by 

T(X,Y)= ;(F0~Fu)g(X,Y)-ixFU4yF”. 

Theorem 4. It holds 

Ric = Ric tl(F” + Fc)g - 4 3T , 

R = R + ;(FO - F”), 

O=G-ZT. 

Thus the vacuum KK-Einstein equation G = 0 yields the Einstein equation G = ST. 
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