Differential Geometry and its Applications 1 (1991) 77-88 North-Holland

77

Kaluza-Klein geometry*

David Betounes

Mathematics Department, **University of** *Southern Mississippi, Hattiesburg,* **Mississippi 39406,** *U.S.A.*

Received 1 September 1989

Betounes, D., Kaluza-Klein geometry, Diff. Geom. Appl. 1 (1991) 77-88.

Abstract: We formulate a Kaluza-Klein theory in terms of short exact sequences of vector bun**dles.**

Keywords: **KaIuza-Klein theories, Einstein-Yang-Mills fields, extended gravity, gauge fields, connections, fiber bundles, principal fiber bundles, short exact sequences of vector bundles, the adjoint bundle sequence.**

MS **classification: 83E10, 53AlO.**

1. Introduction

Kaluza-Klein theory has been developed in a number of geometrical settings and from various points of view. A most general setting involves viewing Kaluza-Klein space (the multidimensional universe) as a fibered manifold E over a manifold M (spacetime) $\pi: E \to M$. The geometry in such a setting was worked out by O'Neill [9], modulo the obvious modifications to the semi-Riemannian case, and more recently discussed by Hogan [6]. The principal fiber bundle case $E = P$ was developed by Cho [3] and Kopczynski [7], while the generalization from *P* to the case where the standard fiber is a homogeneous space G/H was discussed by Coquereaux and Jadczyk [4,5] and Percacci and Randjbar [10]. The text [1] contains some of the old and recent papers. I apologize for omissions in this brief historical overview.

In all of these cases the Kaluza-Klein metric \bar{g} is a fiber metric on TE and the basic assumptions are such as to force a splitting of the short exact sequence $VE \hookrightarrow TE \rightarrow$ $E \times TM$ of vector bundles over *E*. Then \bar{g} splits into a gauge field potential σ (which is the splitting map) and fiber metrics \bar{g},g on $VE, E \times TM$, and g eventually gets identified with a metric on M.

In this paper we look at the above situation in the general framework of splittings of short exact sequences $A \hookrightarrow B \rightarrow C$ of vector bundles over some manifold and derive results on (1) the splitting of fiber metrics on *B* into their constituent parts and (2) the relation of the invariances of the parts to those of \bar{g} . After applying this to the settings mentioned above, we also formulate the Kaluza-Klein theory in terms of the

***Lecture delivered to the International Conference on Differential Geometry and Its Applications, August 1989, Bmo, Czechoslovakia.**

short exact sequence:

 $VP/G \hookrightarrow TP/G \rightarrow TM$

of vector bundles over *M.* The theory here has a number of advantages.

2. Preliminary generalities

As a preface to the discussion of Kaluza-Klein theory we present here some generalities on its underlying geometrical structure. The mechanism for splitting the extended gravity metric into a gauge field, a spacetime metric, and a fiber metric arises in the more general setting of splittings of short exact sequences of vector bundles.

2.1. Short Exact Sequences of Vector Bundles. Suppose N is a manifold and $0 \to A \hookrightarrow B \to C \to 0$ is a short exact sequence of vector bundles over N:

Here π_A , π_B , π_C are the projections on the base space N, i and β are linear fibered morphisms over N with *i* injective, β surjective and Ker $\beta =$ Im *i*. In the sequel (for convenience) we will always consider A as a subbundle of $B : A \subset B$, and i as the inclusion map. In general a linear fibered morphism $\alpha : A \rightarrow B$ is fiber preserving map which is linear on the fibers. Denote the induced map on the base by $\alpha_N: N \to N$ and then $\alpha(x, a_x) = (\alpha_N(x), \alpha_x a_x)$ where $\alpha_x : A_x \to B_{\alpha_N(x)}$ is linear. When α induces the identity on the base: $\alpha_N = 1$, then α is called a linear fibered morphism over N. There is a natural category whose objects are such short exact sequences *(A, B, C)* and whose morphisms $\phi : (A, B, C) \to (A', B', C')$ are triples $\phi = (\phi_A, \phi_B, \phi_C)$ of linear fibered morphisms such that the following diagram commutes:

In particular a morphism from (A, B, C) to itself consists of a pair of maps ϕ_B and ϕ_C which intertwine β : $\beta' \phi_B = \phi_C \beta$ and such that ϕ_B leaves *A* invariant, i.e., $\phi_B(A) \subset A$. Then $\phi = (\phi_B |_A, \phi_B, \phi_C) \equiv (\phi_B, \phi_C)$ is a morphism in the above sense.

2.2. Connections (Splitting maps). For any bundle *B* over *N* we let $\Gamma(B)$ denote the space of sections $s : N \to B$. Observe that any linear morphism $\alpha : A \to B$, over N can also be viewed, in the obvious way, as a section $\alpha : N \to \text{Hom}(A, B)$ of the bundle of linear fibered morphisms from *A* to *B*, i.e., $\alpha \in \Gamma(\text{Hom}(A, B)).$

A connection for the short exact sequence (A, B, C) , is a linear fibered morphism $\sigma : C \to B$ over N such that $\beta \sigma = 1$ (the identity map on C). Each connection σ (also called a splitting map) induces a splitting (decomposition):

$$
B=A\oplus \sigma(C)
$$

where the splitting of an element b_x in the fiber B_x over $x \in N$ is given by

$$
b_x = (b_x - \sigma_x \beta_x b_x) + \sigma_x \beta_x b_x.
$$

Note that there is also a corresponding decomposition of the sections, i.e., a bijection $\Gamma(B) \to \Gamma(A) \times \Gamma(C)$. Let $\mathcal{C}(C, B) \subset Hom(C, B)$ denote the subbundle of $Hom(C, B)$ whose fiber over $x \in N$ consists of those linear maps $\sigma_x : C_x \to B_x$ such that $\beta_x \sigma_x = 1$. Then we can alternatively view a connection $\sigma : C \to B$ as a section $\sigma : N \to C(C, B)$. Note that each isomorphism $\phi = (\phi_B, \phi_C)$ of the short exact sequence (A, B, C) induces a map $\phi_c : C(C, B) \to C(C, B)$ on the bundle of connections:

$$
\phi_{\mathcal{C}}(\sigma) \equiv \phi_B \sigma \phi_C^{-1}
$$

2.3. Fiber metrics. Let $S^2(A)$ be the vector bundle of symmetric forms on A, i.e., an element $g_x^A \in S^2(A)_x$ in the fiber over x is a symmetric bilinear map $g_x^A : A_x \times A_x \to \mathbf{R}$. The bundle of metrics on *A* is the subbundle $\mathcal{M}(A) \subset S^2(A)$ with fibers consisting of non-degenerate forms $(g_{\tau}^{A}(a_{x},a_{\tau}')=0$ for every a_{x} implies that $a_{\tau}'=0$). The sections $g^A: N \to \mathcal{M}(A)$ are the fiber metrics on A. For each linear fibered morphism α : $A \rightarrow B$ such that the base map α_N is bijective one gets a corresponding linear fibered morphism α^* : $S^2(B) \to S^2(A)$, defined by $\alpha^*(x,g_x^B) = (y,\alpha_x^*g_x^B)$ where $y = \alpha_N^{-1}(x)$ and

$$
\alpha_x^*(g_x^B)(a_y,a_y') \equiv g_x^B(\alpha_y a_y, \alpha_y a_y').
$$

This also gives a map (pullback map) on the sections $\alpha^* : \Gamma S^2(B) \to \Gamma S^2(A)$. Now $S²$ is a contravariant functor which (for obvious reasons) does not preserve exactness (likewise for the functor M), i.e.,

$$
S^2(A) \stackrel{i^*}{\leftarrow} S^2(B) \stackrel{\beta^*}{\leftarrow} S^2(C)
$$

is not exact. However one can achieve a splitting (decomposition) of a certain subbundle $\mathcal{M}_A(B)$ of $S^2(B)$ by the following Kaluza-Klein mechanism: For the exact sequence $A \xrightarrow{i} B \xrightarrow{\beta} C$ define a fibered morphism

$$
\mathfrak{g}: \mathcal{C}(C, B) \oplus S^2(A) \oplus S^2(C) \to S^2(B)
$$

by

$$
\mathfrak{g}_x(\sigma_x,g_x^A,g_x^C)=(1-\sigma_x\beta_x)^*g_x^A+\beta_x^*g_x^C.
$$

Otherwise said,

$$
\mathfrak{g}_x(\sigma_x,g_x^A,g_x^C)(b_x,b_x')=g_x^A(b_x-\sigma_x\beta_xb_x,b_x'-\sigma_x\beta_xb_x')+g_x^C(\beta_xb_x,\beta_xb_x').
$$

This induces a corresponding map on the sections

$$
\mathfrak{g} : \Gamma \mathcal{C}(B, C) \times \Gamma S^2(A) \times \Gamma S^2(C) \to \Gamma S^2(B)
$$

given by

$$
\mathfrak{g}(\sigma,g^A,g^C)=(1-\sigma\beta)^*g^A+\beta^*g^C.
$$

Thus the mapping g generates symmetric forms on B from symmetric forms on A, C and a connection (splitting) of

$$
A \xrightarrow{i} B \xrightarrow{\beta} C.
$$

Let $\mathcal{M}_A(B)$ be the subbundle of $\mathcal{M}(A)$ defined by $\mathcal{M}_A(B) = (i^*)^{-1}\mathcal{M}(A)$. This is the bundle of metrics on B whose restrictions to A are nondegenerate. For $h \in$ $\Gamma M_A(B)$ let $A^{\perp}(h)$ be the subbundle of B which is orthogonal to A. Then $B =$ $A \oplus A^{\perp}(h)$. Define a map $s: \Gamma \mathcal{M}_A(B) \to \Gamma \mathcal{C}(C, B)$ as follows:

$$
s(h)_x(c_x)=P_xb_x,
$$

where $b_x \in \beta_x^{-1} \{c_x\}$ and $P_x : B_x \to A^{\perp}(h)_x$ is the orthogonal projection.

Theorem 1. *The mapping*

$$
\mathfrak{g} : \Gamma \mathcal{C}(B, C) \times \Gamma S^2(A) \times \Gamma S^2(C) \to \Gamma S^2(B)
$$

has the following properties:

(1) $i^*g(\sigma, g^A, g^C) = g^A$. $(2) \sigma^* \mathfrak{g}(\sigma, g^A, g^C) = g^C.$ (3) $\sigma(C) \subseteq A^{\perp}(\mathfrak{g}(\sigma, g^A, g^C))$ and equality holds if and only if g^A is nondegenerate. (4) $g(\sigma, g^A, g^C)$ is nondegenerate if and only if both g^A and g^C are nondegenerate. *In this case s*($g(\sigma, g^A, g^C)$) = σ .

(5) $g : \Gamma\mathcal{C}(B,C) \times \Gamma\mathcal{M}(A) \times \Gamma\mathcal{M}(C) \to \Gamma\mathcal{M}_A(B)$ is a bijection. (Indeed (1), (2) and (4) show that g is injective. On the other hand if g^B is a metric on *B* which is nondegenerate on *A* then it's easy to check that

$$
\mathfrak{g}(s(g^B), i^*g^B, s(g^B)^*g^B) = g^B
$$

and thus **g** is surjective.) *The connection* $\sigma \equiv s(g^B)$ and metrics $g^A \equiv i^*g^B$, $g^C \equiv$ $s(g^B)^*g^B$ are the Kaluza-Klein components of the extended gravity metric g^B .

(6) Suppose $\phi = (\phi_A, \phi_B, \phi_C) : (A, B, C) \rightarrow (A, B, C)$ is an isomorphism of the *exact sequence, then*

$$
\phi_B^* \mathfrak{g}(\sigma, g^A, g^C) = \mathfrak{g}(\phi_C^{-1*} \sigma, \phi_A^* g^A, \phi_C^* g^C)
$$

where $\phi_c^{-1*}\sigma = \phi_B^{-1} \circ \sigma \circ \phi_C$ (and of course $\phi_A = \phi_B|_A$, the restriction of ϕ_B to A). Thus in particular if g^A and g^C are metrics then ϕ_B is an isometry of the Kaluza *Klein metric* $g^B \equiv g(\sigma, g^A, g^C)$ *if and only if* $\phi_A = \phi_B|_A$ *and* ϕ_C *are isometries of* g^A and g^C , and ϕ_C^{-1} leaves σ invariant

$$
\phi_C^{-1*}\sigma=\sigma.
$$

3. **Kaluza-Klein spaces**

In a most general setting, a Kaluza-Klein space (multidimensional universe) is a fibered manifold E over a base manifold M (spacetime) with $\pi : E \to M$ denoting the projection. For our purposes it suffices to assume that E is a fiber bundle. The metric structure arises from the foregoing generalities by specializing the exact sequence $A \rightarrow$ $B \to C$ of vector bundles over N to the exact sequence

of vector bundles over *E*. Here *VE* is the usual vertical subbundle of TE ($Z_e \in V_eE$ iff $d\pi|_e$ $Z_e = 0$, and $E \times TM = \{(e, X_x) | e \in E, X_x \in T_xM \text{ and } \pi(e) = x\}$ is the fibered product of *E* and *TM* as bundles over *M*. The map $\beta : TE \rightarrow E \times TM$ is given by $\beta(e, Z_e) = (e, d\pi|_e, Z_e)$.

3.1. Connections on E. In keeping with the foregoing a connection on *E* is linear fibered morphism $\sigma : E \times TM \rightarrow TE$ over *E* such that $\beta \sigma = 1$, i.e., with the notation $\sigma(e,X_e) = (e,\sigma_e X_x), \sigma_e : T_x M \to T_e E$ is a linear map such that $d\pi|_e \sigma_e X_x = X_x$. Thus σ gives rise to a horizontal lifting map $\sigma : TTM \to TTE$ defined by $\sigma(X)(e) =$ $(e, \sigma_e X_{\pi(e)})$. The previous notation for the bundle $C(E \times TM, TE)$ of connections associated with the short exact sequence will be abbreviated to $C(TE) \equiv C(E \times$ *TM, TE),* and is referred to as the bundle of connections on *E. C(TE)* can be thought of as a subbundle of the bundle $A^1(M, TE) = T^*M \otimes TE$ and a connection σ on *E* is also viewed as a section $\sigma : E \to C(TE) \subseteq (A^1M, TE)$, i.e., a horizontal, tangentvalued form which projects to the identity.

3.2. Kaluza-Klein metrics. In keeping with the customery terminology, a metric g^B on E is just a fiber metric on TE, i.e., $g^B \in \Gamma \mathcal{M}(TE)$. A Kaluza-Klein metric on E is a metric g^B on E which is nondegenerate on VE , i.e., $g^B \in \Gamma \mathcal{M}_{VE}(TE)$. The general theory gives us that g^B is represented by:

$$
g^B = \mathfrak{g}(\sigma, g^A, g^C)
$$

where σ is a connection on E (viewed as a gauge field potential), g^A is a fiber metric on $A = VE$ and q^C is a fiber metric on $C = E \times TM$. Without further assumptions q^C is not a fiber metric on TM, i.e., a metric on M. Thus q^C is viewed as a generalized spacetime metric, since in realistic physical theories the standard fiber F of Kaluza-Klein space is small and thus locally and approximately $E \times TM \cong (M \times F) \times TM \cong$ $M \times TM \cong TM$. Alternately and more precisely we will see below that the requirement that the Kaluza-Klein metric q^B possesses certain types of isometries forces q^C to arise from a metric on M. We note here however that the map $\pi': E \times TM \to TM$ given by $\pi'(e, X_x) = (\pi(e), X_x)$ induces a pullback $\pi'^* : \Gamma \mathcal{M}(TM) \to \Gamma \mathcal{M}(E \times TM)$ which is injective and defining $\mathfrak{g}_{\#} = \mathfrak{g} \circ (1 \times 1 \times \pi'^*)$ gives an injection $\mathfrak{g}_{\#} : \Gamma \mathcal{C}(E) \times \Gamma \mathcal{M}(VE) \times$ $\Gamma \mathcal{M}(TM) \to \Gamma \mathcal{M}_{VE}(TE)$. One could thus restrict attention to those Kaluza-Klein metrics which are in the image of $g_{\#}$.

3.3. Isomorphisms of $(VE, TE, E \times TM)$ **.** There is a natural group of isomorphisms for the short exact sequence $(VE, TE, E \times TM)$. Namely consider those fiber morphisms $f: E \to E$ which are diffeomorphisms and let $f_M M \to M$ denote the induced diffeomorphism on the base space. Then $(Tf|_{VE}, Tf, f \times Tf_M)$ is easily seen to be an isomorphism of $(VE, TE, E \times TM)$. For the corresponding pullback maps $(Tf|_{VE}^*, Tf^*, (f \times Tf_M)^*)$ acting on the fiber metrics, it is customary to write Tf^* as f^* , and so likewise we will abbreviate the notation for the other pullbacks induced by $f: Tf|_{VE^*} \equiv f^*, (f \times Tf_M)^* \equiv f^*.$ Also note that for a fiber metric g^C on $E \times TM$ the pullback induced by f works out to be:

$$
(f^*g^C)_e(X_x,Y_x)=g^C_{f(e)}(df_M|_x\ X_x,df_M|_x\ Y_x).
$$

The pullback action induced by f on connections $\sigma : E \times TM \to TE$ ($\sigma(e, X_x) \equiv$ $(e, \sigma_e X_e)$, and $\sigma_e : T_x M \to T_e E$) has the following formula. First by definition $f^*(\sigma) \equiv$ $Tf \circ \sigma \circ (f \times Tf_M)^{-1}$ and so (using f^{-1} instead of f for notational convenience):

$$
(f^{-1*}\sigma)_e X_x = df^{-1}|_{f(e)} \sigma_{f(e)} df_M|_x X_x.
$$

Now suppose that K is a group of fibered bundle isomorphisms $fE \rightarrow E$. Let $\Gamma_K MTE$ denote the set of metrics g^B on E which are invariant under K (K-invariant metrics): $f^*g^B = g^B$ for every $f \in K$ (i.e. each f is an isometry of g^B). Similarly $\mathcal{C}_K(TE)$ denotes the set of K-invariant connections on E , etc. Then by Theorem 1, part (5), the restriction g_K of g gives us a bijection

$$
\mathfrak{g}_K: \Gamma_K \mathcal{C}(TE) \times \Gamma_K \mathcal{M}(VE) \times \Gamma_K \mathcal{M}(E \times TM) \to \Gamma_K \mathcal{M}(TE).
$$

Hence in particular we obtain the following special case of this.

Proposition 1. Suppose K is a group of vertical, fibered isomorphisms $f : E \to E$ *which is transitive, i.e., each f induces the identity on the base* $f_M = 1$ *and the restriction of K to each fiber* E_x *is transitive. Then each K-invariant, Kaluza-Klein metric gB on E is uniquely represented by*

$$
g^B = \mathfrak{g}_K(\sigma, g^A, g)
$$

where

(1) σ is a K-invariant connection on E, i.e. $\sigma_{f(e)} = df \mid_e \sigma_e$ for every $f \in K$;

(2) g^A is a K-invariant fiber metric on VE ;

(3) g is a metric on M.

3.4. Examples (1) *Principal fiber bundles over M.* Let $K = \{R_a \mid a \in G\}$ where $R_a: P \to P$ is right multiplication by *a*: $R_a u = ua$. The *K*-invariant metrics on *P* are, in this case called equivariant metrics, or G-invariant metrics:

$$
g_{ua}^B(dR_a|_u Z_u, dR_a|_u Z_u') = g_u(Z_u, Z_u')
$$

The G-invariant connections on *P* are precisely the principal connections on *P.* The content of Proposition 1 can also be improved in this case since *VP* has a canonical vertical splitting α : $P \times G \to VP$ given by $\alpha(u,\xi) \equiv (u, d\lambda|_{e} \xi_{e})$ where $\lambda_{u} : G \to P$ is defined by $\lambda_u(a) = ua$. Here G is the Lie algebra of G (the set of left invariant vector fields on G, $\mathcal{G} \cong T_eG$, where e is the identity element of G). Note that G has a right action on $P \times \mathcal{G} : (u,\xi)g \equiv (ug, \text{Ad}_{g^{-1}}\xi)$ and relative to this action $\alpha : P \times \mathcal{G} \to VP$ is an equivariant map (and also a linear fibered isomorphism over P). Thus $\alpha^*: \Gamma \mathcal{M}(VP) \rightarrow$ $\Gamma \mathcal{M}(P \times \mathcal{G})$ is a bijection establishing a one to one correspondence between the fiber metrics on *VP* and $P \times G$. Additionally q^A is a *G*-invariant (equivariant) fiber metric on *VP* if and only if $\alpha^* g^A$ is an equivariant fiber metric on $P \times G$ (sometimes thought of as invariance with respect to the adjoint action $Ad_a: \mathcal{G} \to \mathcal{G}$). This is so since if g^A is equivariant then

$$
(\alpha^* g^A)_{ua}(Ad_{a^{-1}}\xi, Ad_{a^{-1}}\xi') = g^A_{ua}(d\lambda_{ua}|_e (Ad_a\xi)_e, d\lambda_{ua}|_e (Ad_a\xi')_e)
$$

= $g^A_{ua}(dR_u|_a d\lambda_u|_e \xi_e, dR_u|_a d\lambda_u|_e \xi'_e)$
= $g^A_u(d\lambda_u|_e \xi_e, d\lambda_u|_e \xi'_e)$
= $(\alpha^* g^A)_u(\xi, \xi').$

And similarly, equivariance of $\alpha^* q^A$ implies equivariance of q^A .

(2) *Riemannian submersions.* The paper [6] of Hogan, based on the work of O'Neill [9] provides a general setting for the Kaluza-Klein geometry. They consider a fibered manifold $\pi : E \to M$ over *M* and assume that *E* and *M* are Riemannian manifolds with Riemannian metrics \bar{g} and g , respectively, and that $\pi^*g = \bar{g}$ on $(VE)^{\perp}$. In this case then $\bar{g} = g_{\#}(s(\bar{g}), i^*\bar{g}, g)$. They give (among other things) a calculation of the Ricci scalars of g and i^*g , and the curvature of the gauge field potential $s(\bar{g})$. (All of this relies upon the fibers $E_x = \pi^{-1}\{x\}$ being totally geodesic submanifolds).

4. Kaluza-Klein theory on the adjoint bundle

In this section we advocate the use of the adjoint bundle sequence as a convenient framework for the Kaluza-Klein theory. The main advantage in this is that all the differential forms of interest, like the gauge fields F^{σ} and their potentials σ , as well as the Riemann curvature tensor $\Omega^{\sigma,g}$ are actual differential forms on M with values in a vector bundle over M. This is not the case if one uses the sequence $VE \rightarrow TE \rightarrow$ $E \times TM$ to formulate the theory, since one has to deal with the forms on E with values in bundles over *E.* In this case one can use the calculus of tangent valued forms and the Frolicher-Nijenhuis bracket advocated by Mangiarotti and Modugno [8] to develope the Kaluza-Klein theory. This will be presented in a forthcoming paper.

The adjoint bundle approach to Kaluza-Klein theory arises from taking a principal bundle sequence: $VP \rightarrow TP \rightarrow P \times TM$ and taking quotients by G to obtain the adjoint bundle sequence:

As described in a previous paper [2] there is a basic functor from the category of equivariant bundles over *P* into the category of bundles over M which takes various equivariant geometric structures and forms on *P* over into their counterparts on M. In particular TP is an equivariant bundle over P with right action by $a \in G$ given by $(u, Z_u)a \equiv (ua, dR_a|_u Z_u)$. Then TP/G is just the bundle of equivalence classes: $\langle (u, Z_u) \rangle \in TP/G$ determined by this equivalence relation on *TP*. As such there is a one-to-one correspondence between sections $\tau : M \to TP/G$ of TP/G and equivariant vector fields $Z : P \to TP$ on *P*. Thus each τ is represented by $\tau(x) = \langle (u, Z_u) \rangle$, $u \in \pi^{-1}\lbrace x \rbrace$, Z equivariant. Note that for $f \in C^{\infty}(M)$ the section $f\tau$ corresponds to $(f \circ \pi)Z$, i.e. $f(x)\tau(x) = \langle (u, f \circ \pi(u)Z_u) \rangle$. The sections of *TP/G* form a Lie algebra with Lie bracket defined by $[\tau, \tau'](x) \equiv \langle (u, [Z, Z']_u) \rangle$. The map $\beta : TP/G \to TM$ is defined by $\beta((u, Z_u)) = (\pi(u), d\pi|_u Z_u)$ and gives rise to a Lie algebra epimorphism $\# : \Gamma(TP/G) \to \Gamma(TM)$ defined by $\tau \to \tau^* = \beta \circ \tau$. Note that for $f \in C^{\infty}(M)$, $(f\tau)^{\#} = f(\tau^{\#})$ and as a vector field on M acting on C^{∞} -functions: $\tau^{\#}(f)(x) =$ $Z_u(f \circ \pi)$ where $u \in \pi^{-1}{x}$ and Z is the equivariant vector field on P representing τ . Hence the sections of VP/G form the kernel of $# : \Gamma(VP/G) = \text{Ker}(\#)$, and as such $\Gamma(VP/G)$ is a Lie subalgebra of $\Gamma(TP/G)$. Thus $\nu \in \Gamma(VP/G)$ if and only if $\nu^*(f) = 0$ for every f. AdP $\equiv VP/G \cong (P \times G)/G$ is known as the adjoint bundle of P. Finally it is important to note that the Lie bracket on the sections of *TP/G* has the property

$$
[\tau, f\theta] = \tau^{\#}(f)\theta + f[\tau, \theta].
$$

4.1. Connections on $VP/G \rightarrow TP/G \rightarrow TM$ **. Here, as before, a connection** σ is a linear fibered morphism $\sigma : TM \rightarrow TP/G$ over M such that $\beta \sigma = 1$. Thus for each vector field X on M, $\sigma(X)$ on M, $\sigma(X)$ is the section of TP/G defined by $\sigma(X) = \sigma \circ X$. Otherwise said σ is a differential 1-form on M with values in the vector bundle TP/G and such that $\sigma(X)^{\#} = X$ for every X. The notation for the connection bundle in this case is abbreviated to $C(M) \equiv C(TP/G, TM)$. Thus σ is a section of the subbundle $C(M) \subseteq A^1(M, TP/G)$.

4.2. **Kaluza-Klein calculus on TP/G.** Specializing Theorem 1 to the present case one sees that each fiber metric \bar{q} on TP/G which is nondegenerate on VP/G (a Kaluza-Klein fiber metric on *TP/G)* is represented by

$$
\bar{g} = \mathfrak{g}(\sigma, \tilde{g}, g)
$$

where σ is a connection on M, \tilde{g} is a fiber metric on *VP/G* and g is a metric on M. In this setting the Kaluza-Klein space (multidimensional universe) is the vector bundle *TP/G* together with the fiber metric \bar{g} . The Einstein-Yang-Mills equations for g and σ can be formulated in this setting as follows.

We use the standard calculus associated with a vector bundle E over M and the bundles $A^p(ME) = \Lambda^p T^*M \otimes E$ of differential p-forms on M with values in E (cf., for example, Toth's book [ll]; the calculus developed in [8] could also be used but is different from our approach). Thus a covariant derivative ∇ on E (as a morphism $\nabla : \Gamma E \to \Gamma$ Hom (TM, E)) gives for each vector field X on M a differential operator $\nabla_X : \Gamma E \to \Gamma E$, $\nabla_X \tau \in \Gamma E$ which is $C^{\infty}(M)$ -linear in X, R-linear in τ and $\nabla_X f \tau =$ $X(f)\tau + f\nabla_X\tau$. Also ∇ gives rise to an exterior derivative *d* on differential forms with values in E. In addition if a covariant derivative ∇' on TM is given then ∇ extends to a covariant derivative on each $A^p(M, E)$ and furthermore gives rise to an exterior co-derivative operator $\partial : \Gamma A^p(M, E) \to \Gamma A^{p-1}(M, E)$ (simply defined without use of the Hodge star operator, cf. [ll]).

The Kaluza-Klein fiber metric \bar{g} on TP/G with connection component σ gives rise to covariant derivatives $\nabla^{\bar{g}}$ and ∇^{σ} on TP/G and VP/G , respectively. The covariant derivative $\nabla^{\bar{g}}$ arises from a differential operator $\bar{\nabla}_{\gamma}$ which is not a covariant derivative but which is the analog of the Levi-Civita covariant derivative for \bar{q} . This is the content of the following theorem.

Definition. For notational simplicity we use a dot for the inner product, i.e., if $\tau, \theta \in \Gamma(TP/G)$ then $\tau \cdot \theta = \bar{g}(\tau, \theta)$ is the C^{∞} -function on M defined by $(\tau \cdot \theta)(x) =$ $\bar{g}_x(\tau_x, \theta_x)$. Likewise $X \cdot Y = g(X, Y)$ for vector fields on M. Note in particular that $\sigma(X) \cdot \sigma(Y) = X \cdot Y$ and $\sigma(X) \cdot \tau = 0$ for every $\tau \in \Gamma(VP/G)$.

Theorem 2. For each $\gamma, \tau \in \Gamma(TP/G)$ let $\overline{\nabla}_{\gamma} \tau$ be given by the Koszul formula, i.e., $\bar{\nabla}_{\gamma}\tau$ *is the unique element of* $\Gamma(TP/G)$ *which satisfies*

$$
2(\bar{\nabla}_{\gamma}\tau) \cdot \theta = \gamma^{\#}(\tau \cdot \theta) + \tau^{\#}(\gamma \cdot \theta) - \theta^{\#}(\tau \cdot \gamma) + [\theta, \tau] \cdot \gamma + [\theta, \gamma] \cdot \tau + [\gamma, \tau] \cdot \theta
$$

for every θ *. Then* $\overline{\nabla}$ *has the following properties:*

- (1) $\bar{\nabla}_{\gamma}\tau$ *is C*[∞](*M*)-linear in γ and **R**-linear in τ ;
- $(2) \overline{\nabla}_{\gamma}(f\tau) = \gamma^{\#}(f)\tau + f\overline{\nabla}_{\gamma}\tau;$
- $(3) \gamma^{\#}(\tau \cdot \theta) = (\bar{\nabla}_{\gamma}) \cdot \theta + \tau \cdot (\bar{\nabla}_{\gamma} \theta).$

Definition. Let $\nabla^{\bar{g}}$ be the covariant derivative on TP/G defined by

$$
\nabla^g_X \tau = \overline{\nabla}_{\sigma(X)} \tau.
$$

Also let ∇^{σ} be the covariant derivative defined on VP/G by

$$
\nabla^{\sigma}_X \tau = [\sigma(X), \tau].
$$

Let ∇ be the Levi-Civita covariant derivative on TM determined by the metric g on M and let $\nabla^{\bar{g}}$, ∇^{σ} also denote the covariant derivatives on $A^p(M,TP/G)$, $A^p(M, VP/G)$ obtained by extending $\nabla^{\tilde{g}}$, ∇^{σ} as usual relative to the choice of ∇ on *TM.* The respective exterior derivatives and exterior co-derivatives are denoted by $d^{\bar{g}}$, d^{σ} and $\partial^{\bar{g}}$, ∂^{σ} . The curvature (gauge field) of the connection σ is the VP/G -valued, 2-form defined by

$$
F^{\sigma}(X,Y) = [\sigma(X), \sigma(Y)] - \sigma[X,Y].
$$

Proposition 2. *The Bianchi identity*

$$
d^{\sigma}F^{\sigma}=0 \tag{Bianchi}
$$

follows easily from *the definition* (and *the* Jacobi *identity for the Lie bracket). The equation*

$$
\partial^{\sigma} F^{\sigma} = 0 \tag{YM}
$$

is identical to the Yang-Mills equation. In addition one has

 $F^{\sigma} = d^{\bar{g}} \sigma$.

Consequently,

$$
d^{\sigma}d^{\bar{g}}\sigma = 0,
$$
 (Bianchi)

$$
\partial^{\sigma}d^{\bar{g}}\sigma = 0.
$$
 (YM)

Definition. Let

$$
\Omega(X, X') = \nabla_X \nabla_{X'} - \nabla_{X'} \nabla_X - \nabla_{[X, X']},
$$

$$
\overline{\Omega}(\tau, \tau') = \overline{\nabla}_{\tau} \overline{\nabla}_{\tau'} - \overline{\nabla}_{\tau'} \overline{\nabla}_{\tau} - \overline{\nabla}_{[\tau, \tau']}.
$$

Theorem 3. It *holds*

$$
\bar{\nabla}_{\sigma(X)}\sigma(Y)=\sigma(\nabla_XY)+\frac{1}{2}F^{\sigma}(X,Y).
$$

Consequently,

$$
\bar{\Omega}(\sigma(X), \sigma(X'))\sigma(Y) = \sigma(\Omega(X, X')Y) \n+ \frac{1}{2}(d^{\bar{g}}F^{\sigma})(X, X', Y) - \frac{1}{2}(\nabla^{\bar{g}}_Y F^{\sigma})(X, X') + \nabla^{\sigma}_Y(F^{\sigma}(X, X')).
$$

Definition. Define a map $\phi_{X,Y} : \Gamma TM \to \Gamma(TP/G)$ by

$$
\phi_{X,Y}(X') \equiv \bar{\Omega}(\sigma(X), \sigma(X'))\sigma(Y)
$$

and let P be the orthogonal projection operator P_x : $(TP/G)_x \to VP_x^{\perp} = \sigma_x(T_xM)$. Then the Kaluza-Klein (KK)-Ricci tensor is defined to be the R -valued, 2-form given by

$$
\overline{\text{Ric}}(X,Y) \equiv \text{tr}(P \circ \phi_{X,Y})
$$

= $g^{ij}\overline{\Omega}(\sigma(X), \sigma(\frac{\partial}{\partial x_i}))\sigma(Y) \cdot \sigma(\frac{\partial}{\partial x_j}).$

The KK-Ricci scalar and KK-Einstein tensor are defined as

$$
\bar{R} \equiv C_1^1(\overline{\text{Ric}}),
$$

$$
\bar{G} \equiv \overline{\text{Ric}} - \frac{1}{2}\bar{R}g
$$

(Note q is the metric on M).

The metric (dot product) on *TP/G* and the metric on M yield, in the usual fashion, a dot product on TP/G -valued forms on M. Thus in particular $F^{\sigma} \cdot F^{\sigma} = F_{ij}^{\sigma} \cdot F^{\sigma_{ij}}$. Also let i_X denote the usual contraction operator (derivation) on forms. Then the KK-energy momentum tensor is defined by

$$
T(X,Y)=\frac{1}{2}(F^{\sigma}\cdot F^{\sigma})g(X,Y)-i_XF^{\sigma}\cdot i_YF^{\sigma}.
$$

Theorem 4. It *holds*

$$
\overline{\text{Ric}} = \text{Ric} + \frac{3}{8} (F^{\sigma} \cdot F^{\sigma}) g - \frac{3}{4} T,
$$

$$
\overline{R} = R + \frac{3}{4} (F^{\sigma} \cdot F^{\sigma}),
$$

$$
\overline{G} = G - \frac{3}{4} T.
$$

Thus the vacuum KK-Einstein equation $\bar{G} = 0$ yields the Einstein equation $G = \frac{3}{4}T$.

References

- **[I]** T. Appelquist, A. Chodos and P. Freund, Modern *Kaluza-Klein Theories* (Addison-Wesley, Reading, 1987).
- [2] D. Betounes, The geometry of gauge-particle field interaction: a generalization of Utiyama's theorem, J. Geom. Phys. 6 (1989) 107-125.
- [3] M. Cho, Higher-dimensional unifications of gravitation and gauge theories, J. *Math. Phys.* 16 (1970) 2029-2035.
- [4] R. Coquereaux and A. Jadczyk, Geometry of multidimensional universes, Commun. *Math. Phys. 90* (1983) 79-100.
- [5] R. Coquereaux and A. Jadczyk, Symmetries of Einstein-Yang-Mills fields and dimensional reduction, Commun. *Math. Phys.* 98 (1985) 79-104.
- [6] P.A. Hogan, Kaluza-Klein theory derived from a Riemannian submersion, J. *Math Phys. 25* (1984) 2301-2305.
- [7] W. Kopczynski, Fiber bundle description of coupled gravitational and gauge fields, in: Lecture Notes in Math. 836 (1980) 462-483.
- [8] L. Mangiarotti and M. Modugno, Connections and differential calculus on fibered manifolds, Preprint 1989.
- [9] B. O'Neill, The fundamental equations of a submersion, Michigan *Math. J.* 13 (1966) 459-469.
- [10] R. Percacci and S. Randjbar-Daemi, Kaluza-Klein theories on bundles with homogeneous fibers, J. *Math. Phys.* 24 (1983) 807-814.
- [ll] G. T&h, Harmonic *and* Minimal *Maps: With Applications* in *Geometry and Physics* (Wiley, New York, 1985).