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A sufficient condition is developed for partial sums of a function of a stationary, ergodic Markov chain 

to be asymptotically normal. For Bernoulli and Lebesgue shifts, the condition may be related to the 

Fourier coefficients of the given function; and the latter condition is shown to be satisfied by most square 

integrable functions in the case of Bernoulli shifts. 
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1. Introduction 

Let X0, X,, X2, . . . denote a strictly stationary, ergodic Markov chain with values 

in a Polish space 5?, a transition function Q, and a (stationary) initial distribution 

T. Let 2 denote the collection of all 5~ L2( rr) for which j 5 dv = 0; and, given a 

5 E 3, consider the central limit question for 

In this context, Gordin and Lifsic (1978) have obtained the following result: if there 

is an h E 3 for which 5 = h - Qh, then S,,/& is asymptotically normal with mean 

0 and variance u2 = )I h /I2 - )I Qh )I*, where 1). 11 denotes the norm in L2( TT) and Q 

denotes the contraction of L’(rr) defined by Qg(x) =( g(y)Q(x; dy) for a.e. X(T) 

for all g E L2( T). Observe that the condition is satisfied if 

h,:= $ Qk&-h in L’(r) asn+co. 
k=O 

(1) 

Conversely, if the two-sided extension X0, X,, . . has a trivial left tail field, then 

(1) is necessary for the solution to 5 = h - Qh with h E 2. See Remark 2, below. 
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Let vTT1 denote the joint distribution of X,, and Xi. In Section 2, a related theorem 

is established in which (1) is replaced by the condition that there is a g E L’(r,) 

for which 

&(X, Y) := kg, K?“-‘!c(Y) - Ok5Wl+ g(x, Y) in L2( v,), 

as n + 00. If (1) holds, then so does (2), in which case g(x, y) = h(y) - @i(x) for 

a.e. (x, y); but the converse is false (Remark 2 and Example 2, below). Under the 

condition (2), it is shown that 

(3) 

is asymptotically normal, as n + ~0. In fact, a limit is obtained for the conditional 

distributions given X,. 

In Sections 3 and 4, the theorem is applied to the Bernoulli shift 

k=O 
(4) 

where &k, kE Z, are i.i.d. random variables which take the values 0 and 1 with 

probability 4 each and Z denotes the integers. This is perhaps the simplest process 

which is mixing, but not strongly mixing or irreducible. In this case 8?= [0, 1) and 

v = A is the restriction of Lebesgue measure to [0, l), so that L’(r) is a familiar 

space. A condition on the Fourier coefficients of 5 is shown to be sufficient for 

asymptotic normality of S,“(t), and the condition is shown to be satisfied by most 

5 in the following sense: let 5X denote the translate, l,(y) = [(x +y) for x, y E [0, l), 

where addition is mod 1; then for every 5~ L2(r), Sz(&) is asymptotically normal 

for a.e. x (Lebesgue). So, asymptotic normality is the rule, not the exception. 

In Section 5, the theorem is applied to the Lebesgue shift process 

x, = ( . . . , L2, Llr U,), n 20, (3 

where r/,, k E 27, are i.i.d. uniformly distributed random variables on [0, 1). Then 

% = [O, l)“, where M denotes the nonpositive integers; and r = AM. Since 55 is the 

countable product of the circle group, any 5 E L2( V) has a Fourier expansion; and 

it is possible to develop conditions for normality in terms of the Fourier coefficients. 

Bhattacharrya and Lee (1988) have also developed conditions for normality, 

which are applicable to many non-irreducible models, including (4). They too make 

use of the Gordon Lifsic Theorem; but otherwise their methods are quite different. 

When specialized to processes of the form (4), their conditions require more 

regularity of 5, but get stronger conclusions. Two other recent contributions are 

those of Guivarc’h and Hardy (1988) and Touati (1990). 

If X,, n E E, is as in (5), then any process of the form 5(X,,), n E E, is a stationary 

sequence with a trivial left tail field; and there is a partial converse, due to Hanson 

(1964). For recent surveys of central limit theory for stationary sequences under 

strong mixing conditions, see Bradley (1986) and Peligrad (1986). 
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2. A central limit theorem 

In this section X,, k =O, 1, 2,. . . , denotes a strictly stationary, ergodic Markov 

chain, as in the Introduction. The probability space on which X,, k = 0, 1, 2, . . . , 

are defined is denoted by (0, S$ P); .sJ, = a{X,,, . . . , X,} for j = 0, 1, 2, . . . ; it is 

assumed that ti = VEO &, ; and P, denotes the regular conditional probability given 

X0=x, obtained from the Markov Property. 

For x E S!?, z E R, and n = 1,2, . . . , let F,#(x; z) = Px{S,# G z}, where S,” is defined 

by (3); let d denote the Levy metric (that is, A(F, G) = inf{e > 0: F(z - E) - E c 

G(z) c F(z + E) + F, for all z E IR} for distribution functions F and G); and let @,, 

denote the normal distribution with mean 0 and variance a*. 

Theorem 1. If 5 E L& and relation (2) holds, then 

lim A[@<,,, F:(x; .)]rr(dx) =0 
**CC (6) 

where 

Proof. Writing S,,-E(SJ&)=Cy=, [E(S,(~j)-E(S,li;Q,-,)I, one finds 

where 

X = Ii? g(X,--, , X,) and X = lf k,-,+,(X,-,, X,) -g(X,-, , X,)1 
j=l ,=I 

for all n = 1, 2, . . . . Let FA(x; .) denote the conditional distribution of S:/V”%, given 

X,,=xforxEZE’andnzl.Then 

A[@,,, F,#(x; ~)l~A[@,,, F:,(x; ~)l+JE,IS::lJ;;I (7) 

for all such n and x, by an easy application of Markov’s Inequality. 

First it is shown that A[@_, FA(x; .)I-+0 as n + 00 for a.e. x (r). To see this first 

observe that g(X,_, , X,), j = 1,2, . . . , are martingale differences w.r.t. tij = 

U{X, ,,..., X,}, j=l, 2 ,..., on the probability space (a, d, p,) for a.e. x (CT), by 

the Markov Property. Next, let 

dx, y)*Q(x; dy) 
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for XE 2 and O< c<a, so that ag(X,_,)= E,{g(X,_,, X,)‘IsS,_,} w.p.1 (P,) for all 

j-1,2,... and a.e. x (v). Then 

lim 1 i: crf(X,_,) = ur .- 2 ._ 
a:(x) d4x) 

n+m n ,=, 

w.p.1 (P), by the Ergodic Theorem. So, (8) holds w.p.1 (P,) for a.e. x (rr) for all 

O~C<OO, since P(A)=jP,(A)r(dx) f or all A E d. Letting c = 0 in (8) shows the 

relative stability of the conditional variances; and letting c+cc in (8) verifies the 

Lindeberg-Feller Condition. The desired conclusion now follows from the martin- 

gale central limit theorem. See Hall and Heyde (1980, pp. 58-59). 

For the second term on the right side of (7), it is easily seen that gn_j+,(X,_, , X, ), 

j=l,..., n, are martingale differences for each n. So, 

as n + CO to complete the proof. 0 

When the (1) holds, a stronger conclusion is possible. For 0~ t 4 1 and 

n = 1, 2,. . . , let 5,(t) = S,,,,,/a&, where [x] denotes the greatest integer which 

is less than or equal to x. 

Theorem 2. If (1) holds, then the conditional distribution of B, given X0 = x converges 

weakly to the distribution of Brownian motion as n -+ ~0 in D[O, l] for a.e. x (rr). 

Proof. Letting BL( t) = S[n,l/~fi, 0~ t s 1, n = 1,2,. . . , where Sl, n = 1,2,. . . , are 

as in the proof of Theorem 1 (with g(x, y) = h(y) - Qh(x)), it is easily seen that 

‘B,(t) = K(t)+& [Qh(X,) - Qh(x,,,,,)l 

forallO~t<landn=1,2,.... The proof of Theorem 1 and Theorem 2.5 of Durrett 

and Resnick (1978), show that the conditional distribution of IBL given X,, = x 

converges to the distribution of standard Brownian motion for a.e. x (7~); and 

max,, ,,lQh(Xo) - Qh(Xk)lIfi+O as n+w w.p.1 (P) and, therefore w.p.1 (f’,) for 

a.e. x (fl). q 

Remark 1. Theorem 1 is related to Theorem 5.3 of Hall and Heyde (1980). A 

continuous time version of Theorem 2 appears in Bhattacharya (1982). 

Remark 2. The stationary sequence X,,, X,, . . . has a two sided extension Xi, k E Z, 

(Breiman, 1968, p. 105). If this process has a trivial left tail field, then (1) is necessary 

for the representation [= h - Qh with h E .Z. For then h = h, + Q”“l for all 

n=l, 2,..., and Q”[+O in L’(r) as n+m, since Q”.$(X!,,)=E{.$(X~,)/X; 

Vks-n} w.p.1 for all n = 1, 2,. . . 



M. Woodroofe 1 Markov CLT 

3. Bernoulli shifts 

In this section X,, k = 1, 2, . . . , denotes the Bernoulli shift (4). Then, letting 

w, = f 2_JEj, 
;=I 

Q”(x$)=++w&} 

forOSx<l, Borelsets Bc[O,l), and k=l, 2 ,.... 

Let i(k), k E Z, denote the (complex) Fourier coefficients of 5 E 3, so that i(r) = 

j: e-27’“[(x) dx VO # r E Z, 

llfl[2=Tf0~{(r)~2<m and t(x)= C i(r)xe2Tlirx 
rfo 

for a.e. x (A), using Carleson’s (1966) Theorem. 

Let E and 0 denote the even and odd integers; let 0+ denote the positive odd 

integers; and observe that any integer r # 0 may be written uniquely in the form 

r=s2k, where SEO and k>O. 

Lemma 1. 

and 

Qk[(Xo) = rso 5*(r2k) e2Tirxu 

@5(X,) - Qk+‘[(Xo) = C i3r2k) e2TiirXl 
t-E69 

w.p.l(P)forallk=l,2 ,... andall[~.Z’. 

Proof. Let e(x) = e2rrix for x E R. Then, for a.e. x, 

t($+ wk)=,~oi(r)e(~+rwk)=~oi(r)e(~) h e(z)y 
j=l 

so that 

okt(x) = .so i(r)bk,re $ , 
( ) 

where 

for r = 1, 2, . . . and k = 1, 2, . . . . Now, bk,r = 0 unless r is a integral multiple of 2k, 
in which case bkxr = 1. To see this write r = s2’, where 1 is a nonnegative integer and 

s is an odd integer. If I< k, then e( r/2’+‘) = e(s/2) = -1, so that bk,r = 0; and if 

13 k, then e(r/2’) = 1 for all j = 1,. . . , k. This establishes the first assertion of the 
lemma. 
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For the second, observe that X, =:(X0+ E,). So, e(2rX,) = e(rX,Je(r&,) = e(rX,) 

for all r # 0. It follows that 

O+TEE 5*(r2k)4rX1) = & i(r2k+‘)42rX1) = E0 8r2k+‘)4rX0) = 0k+‘5(X0), 

and therefore 

0k5(X,) - Qk”S(XO) = E. 6?r2k)4rX1) 

w.p.1 for all k = 1, 2,. . . . 0 

Theorem 3. I~[E 2, then (2), respectively, (l), holds ifs 

resp., 

(9) 

(10) 

Proof. By Lemma 1, for all 1 G m < n < 00, 

n-l 

w.P.1. 

for all such m and n, by the orthogonality of the complex exponentials. The first 

assertion follows immediately; and the second may be proved similarly. 0 

Combining Propositions 1 and 2 with Theorems 1 and 2 yields: 

Corollary. If (9) holds, then so does (6); and if (10) holds, then the conditional 

distribution of El,, given X,=x converges to that of Brownian motion for a.e. x. 0 

Remark 3. The condition imposed on the Fourier coefficients is not very restrictive. 

In fact, using Schwarz’ Inequality, it is easily seen that 
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So (6) and (9) hold if the last sum is finite when m and n are replaced by 1 and 

co. In particular, (6) and (9) hold if Cy_,,li(n)l* = O[(log m)-a] as m + co for some 

(Y > 2. Similar sufficient conditions may be given for (10). 

Remark4. AccordingtoZygmund(1968,p.45),1~(n)l~w(l/n)foralln=1,2,..., 

where w denotes the modulus of continuity of 5. So, (6) and (9) hold if ,$ satisfies 

a Lipschitz condition of order cr > i. By way of contrast, the conditions of 

Bhattacharrya and Lee (1988) are satisfied if 5 is Lipschitz condition of order cr = 1. 

Relation (9) does not even require continuity, however. 

Example 1. If 

6xX) = Ix ‘i,- sin 2r,; 4 ( > vxz;, 

for some O~CY<$, then it may be shown that li(n)l=O(nP”), where /?=:(3- 

2a)>$. So, (6) and (9) are satisfied. 

Example 2. If a,, r E Cl+, and bk, k = 0, 1, 2,. . . , are two real, square summable 

sequences, then there is a [E 2 for which 

for all rE0 and k=O, 1,2 ,.... In this case, it is easily seen that (9) holds iff 

b,+b,+b,+. . . converges and that (10) is satisfied only if b, + b, + b, + * . . conver- 

ges and I:=‘=, ICT=, bj/*< ~0. Since the extended Bernoulli Shift has a trivial left tail 

field, by the zero-one law, this example shows that (2) need not imply (1). 

Example 3. If 5 is as in Example 2, then it is easily seen that 

g,(XO, X,) = (b,+- . .+ b,_,)Y, n B 1, 

where 

Y= C a, cos(27rrX,). 
re0+ 

Let 

a2,= i (b,+. . .+bkpl)‘, n* 1, 
k=l 

and suppose that ai > 0 for all sufficiently large n. If (a,1 + (a,1 +. . . < 00, then (using 

the arguments of Section 2), it is easily seen that 
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where + denotes convergence in distribution. In particular, if lb,+ * . . + bkl, 

k = 0, 1,2, . . . , are bounded and u’, - n, as n + CO, then S,#+N(O, l), so that (9) is 
not a necessary condition for asymptotic normality of S,” . 

4. Translates 

The results of this section depend on the following lemma. In its statement f~ .Y 

has complex Fourier coefficients cj =f(j), j E E, 

S,(f; x) = i cj e*+l and 
j-0 

-%(f; xl = $ ;Yfl Sk(f; xl 

forallOGx<l and n-1,2,.... 

Lemma 2. There is an absolute constant C for which 

sup I&(f; x)l*dx~ C 

forallfELZ 

Proof. The lemma follows easily from Zygmund (1968, IV, 7.8 and VII, 7.32); but 

it requires some notation to explain why. Let ak = 2 5: cos(2rkx)f(x) dx and Pk = 

2 IA sin(2rkx)f(x) dx, k = 0, 1,2, . . . , denote the (real) Fourier coefficients ofJ; so 

that ck = $( czk - $k) for all k = 0, 1, 2, . . . ; let 

s,(f; x)=&f i $[aY, cos(2Tkx)+pk sin(2rkx)] 
k=l 

and 

&(f; x) = f. +[& Sin(257kX) -/& cos(2mkx)l 
k=O 

forOGxGlandn=1,2 ,... ;andleta,ande,,,n=1,2 ,..., denotethecesaro 

averages of Sk and $, k = 1, 2, . . . . Then 2J$,(f;x)=a,,(f;x)+i6,,(f;x) for all x 

and n, so that 

sup l.Z,,(f; x)]*dx+ sup la,(f; x)l*+sup F,(f; 4’ dx; 
nal nz, 1 

and if follows from Zygmund (op. cit.) that the right side of (10) is bounded by 

C Ii f(x)’ dx for some absolute constant C. 0 
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If 5 E 2 and 05 x < 1, then the translate of .$ is defined by &(y) = t(x+y), 

0~ y < 1, where addition is understood modulo one. Clearly ._& E _Y and i(r) = 

i(r) exp(2rirx) for r~ Z and x E [0, 1). 

Theorem 4. 

lim 1 ),; ii(r2”)J2=0 
m,n-tm *Eo+ m 

for a. e. x for every .$ E 3. 

Proof. For r E CD+ and m 3 1, the (real) lacunary series 

fr,m(x) = k!m [{(r2k)e(r2kx)+i(-r2k)e(-r2hx)] 

converges for a.e. x (A). See Zygmund (1968, p. 203). For n 2 m, 

The first term is nonincreasing in m = 1, 2,. . and, therefore, has a limit as m + 00 

for all x E [0, 11. So, it suffices to show that the last term approaches zero in the 

mean as m + CO. For fixed r E O+ and m B 1, 

sup j j &(f2’)J ~su~I~,(f,,;x)l~3supI~,,(f,,;x)l 
n3m m n2-l n -’ I 

for all x E [0, 11, where S, and 2, are as in Lemma 2, since f,, is a lacunary series. 

See Zygmund (1968, p. 79). It follows that 

~18C C 
rto+ 

{ ,-,, 1~(‘2*)l’), 

which approaches zero as m + ~0, since l;(k)]‘, k E Z, are summable. The theorem 

follows. 0 

5. Lebesgue shifts 

In this section, X, = (. . . , Unp2, U,_, , U,,), n E Z, denotes the Lebesgue shift process 

(5). Let M and N denote the nonpositive and nonnegative integers. Then %‘= [0, l)“, 
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Qkg(4 = j,, ,)L Ax, 4Ak(W, x E % (11) 

for bounded measurable functions g : St?+ R and k = 1, 2, . . . . 

If 2 is viewed as the direct product of circles, then 8 is a compact commutative 

group; and the character group r consists of all y = ( yO, y, , yz, . . .) E ZN for which 

yk = 0 for all but a finite number of k with the convention that 

where y. x = you,+ y,u_, +. . . for all x = (. . , x2, u_~, u,,) E 2f and all y. Any 

[E L’(T) has the Fourier expansion 

5(x) = E. i(Y) x Y(X), 

A 
where t(y) = 5 75 dr, for all y E r, the sum converges in L2( T), and the bar denotes 

complex conjugate. See Hewitt and Ross (1979, pp. 364 and 382). 

For k= 1, 2,. . . , let rk = { y E T: y, = 0 for j = 0,. . . , k - 1) and Ak = rk -r,+, ; 

and let A ={y~r: y,,fO}. Further, let yk = (yk, yk+[, . . .) for YET and ks 1; 

and let T denote the shift operator T(. . . , IL,, u,,) = (. . . , u-~, u-,) for 

x=(.. . ) u-1, 240) E 2. 

Lemma 3. If 5 E Lz( 7r), then 

Qkt==& itekv Yb Y 

and 

Qkt-Qk+‘to T==& i?ek, Y)% 

where ok = (0,. . . , 0) E Zk for all k = 1, 2, . . . . 

Proof. If k?=l, yEr, and x=( . . . . x_,,x,JE[O, l)“, then by (ll), 

and the last product is zero or one for y @ rk and y E rk. So, 

Qk5 = E; i(r) x yk 

and 
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There is some cancellation. For if YE r,+, , then yk(x) = yktl 0 T(X) for all x E %, 

so that 

and 

C ~(Y)xY~=..~~+,~^(Y)xY~+‘~ T 
YET!&+1 

Qk5-Ok+‘P T=YFA, :(Y)x yk. 

Finally, every y E rk (respectively, dk) may be written uniquely as y = (ok, p), where 

p = yk E r (respectively, A). So, 

Qk~=~~;i(r)x~‘=~~~~~(Hx,y)xy 

and 

Theorem 5. If 6 E 9, then (2), respectively, (l), holds if 

(12) 

resp., 

in which case the conclusion of Theorem 1, resp., Theorem 2, holds. 

Proof. By Lemma 3 and the orthogonality of characters, 

J kn-gm12dn= J I;f; (Qk5-Qk+‘@ T)j’dr 

for all 1~ m < n < ~0. The first half of the theorem follows easily and the respective 

half follows similarly. 0 

Remark 5. As in Remark 3, it is not difficult to see that 

zA /,;i.. s^(% Y)/2s{jkW j/x}27 

so that (12) holds if the right side converges when m = 1 and n = ~0. 

(13) 
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