
Journal of Algebra 372 (2012) 35–55
Contents lists available at SciVerse ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

On the Cohen–Macaulayness of the conormal module
of an ideal

Paolo Mantero a,∗, Yu Xie b

a Department of Mathematics, Purdue University, West Lafayette, IN 47906, United States
b Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 June 2011
Available online 15 September 2012
Communicated by Steven Dale Cutkosky

MSC:
primary 13H05
secondary 13H10, 13H15

Keywords:
Cohen–Macaulay
Gorenstein
Multiplicity
Hilbert function
Conormal module

In the present paper we investigate a question stemming from
a long-standing conjecture of Vasconcelos: given a generically
complete intersection perfect ideal I in a regular local ring R , when
is it true that the Cohen–Macaulayness of I/I2 (or R/I2) implies
that R/I is Gorenstein? This property is known to hold for licci
ideals and, essentially, squarefree monomial ideals. We show that
a positive answer actually holds for every monomial ideal. We then
give a positive answer for several special classes of ideals and
provide application to algebroid curves with low multiplicity. We
also exhibit prime ideals in regular local rings and homogeneous
level ideals in polynomial rings for which the answer is negative
and use them to show the sharpness of our main result, as they
lie in the first class of ideals not covered by it. The homogeneous
examples have been found thanks to the help of J.C. Migliore. As
a by-product, we exhibit several classes of Cohen–Macaulay ideals
whose square is not Cohen–Macaulay. Our methods work both in
the homogeneous and in the local settings.

Published by Elsevier Inc.

1. Introduction

For an ideal I in a Noetherian local ring R , the first conormal module I/I2 plays an important
role in the process of understanding the structure of I . One (and the first) main result in this sense
is a celebrated theorem of Ferrand and Vasconcelos stating that, if the ideal I has finite projective
dimension, the freeness of I/I2 (as R/I-module) is equivalent to I being a complete intersection
[9,22]. Later, Vasconcelos [23] proposed that one could relax the assumptions in the above statement,
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namely he conjectured that if the projective dimension of I/I2 over R/I is finite, i.e., pdR/I (I/I2) < ∞,
then I must be a complete intersection. This conjecture has been proved for some classes of ideals in
a Noetherian local ring by Vasconcelos (see for instance [23] and [24]) and, in the characteristic zero
case, for any homogeneous ideal by Avramov and Herzog [3].

In the present paper, we investigate a question in this spirit, stemming out from two old-standing
conjectures of Vasconcelos, see [25, Conjecture B] and [20, Conjecture 3.12]. Historically, these conjec-
tures are the reason why this question (for short, we will call it ‘the question’) was first considered,
in [15]. The question is the following: Let R be a regular local ring and I a perfect R-ideal that is generically
a complete intersection, for which ideals I does the Cohen–Macaulayness of I/I2 imply that R/I is Gorenstein?.
Equivalently, one could ask for which perfect, generically complete intersection ideals I in a regular
local ring R does the Cohen–Macaulayness of R/I2 imply that R/I is Gorenstein. Ideals enjoying this
property, indeed, highlight an intriguing connection between the Cohen–Macaulayness of the square
of an ideal I and the Gorenstein property of I .

Earlier work by several authors showed that the following ideals have the property conjectured in
the question:

• perfect prime ideals of height 2 (see work of Herzog [11]);
• licci ideals (proved by Huneke and Ulrich in [15]);
• squarefree monomial ideals in a polynomial ring whose square is Cohen–Macaulay over any field

(proved recently by Rinaldo, Terai and Yoshida [18]).

Also, work of Minh–Trung and Trung–Tuan gives a complete description of all 2- or 3-dimensional
Stanley–Reisner ideals whose second power is Cohen–Macaulay whereas the third power is not
Cohen–Macaulay and it is shown that in all these cases, the ideal is Gorenstein (independent of the
base field) [17,21]. However, in general, the question is wide open.

In the present paper we prove that the question has a positive answer if I is any monomial ideal
(extending a result of Rinaldo–Terai–Yoshida) and for ideals defining stretched algebras, short algebras
or algebras with low multiplicity (precise definitions will be given later in the paper). We use several
different techniques and ad hoc methods, including careful estimates (both in the local and homoge-
neous settings) of the Hilbert function of the square of the ideal I by means of the Hilbert function
of I .

We also provide examples for which the question has a negative answer (to our best knowledge
these are the first negative examples in the literature) and employ them to prove the sharpness of
our main result (see below).

Combining together the main results of the first five sections, we prove the following:

Theorem 1.1. Let R be a regular local ring containing a field k (resp. a polynomial ring over a field k) of
characteristic �= 2 and I a Cohen–Macaulay (resp. homogeneous Cohen–Macaulay) ideal that is generically a
complete intersection. Assume that one of the following conditions holds:

(a) I is a monomial ideal (Theorem 4.2);
(b) R/I is a stretched algebra (Theorem 3.5);
(c) R/I is a short algebra with socle degree at least 3 (Theorem 5.3);
(d) R/I is a short algebra with socle degree 2 and its multiplicity satisfies some numerical conditions (Propo-

sition 5.5);
(e) e(R/I) < ecodim(R/I) + 5, where ecodim(R/I) is the embedding codimension of R/I (Theorems 6.2

and 6.4).

If I/I2 (equivalently, R/I2) is Cohen–Macaulay then R/I is Gorenstein.

Parts (d) and (e) are sharp. In fact, with the help of J.C. Migliore, we produced – using CoCoA [5]
– a computer-generated homogeneous level ideal defined by a set of 10 (general) points in P5 that
is a counterexample to the question. Remarkably, this ideal I belongs to the first class of ideals not
covered by Theorem 1.1. Indeed, it defines a short algebra with socle degree 2 (showing the sharpness
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of the numerical conditions of Theorem 1.1(d)) and e(R/I) = c + 5 (which shows the sharpness of
Theorem 1.1(e))

We then apply the theory of universal linkage to modify the above example and produce a prime
ideal p in a regular local ring S with e(S/p) = htp + 5 such that S/p and p/p2 are Cohen–Macaulay
but S/p is not Gorenstein. It shows that the question of Vasconcelos has a negative answer even for
prime ideals. Furthermore, this method shows that the whole question can be reduced to the case of
prime ideals (at least in the local setting) – see Proposition 2.8 and the discussion after it.

Finally, notice that in the cases where R/I is not Gorenstein (e.g. most short algebras), the question
reduces to proving that R/I2 cannot be Cohen–Macaulay.

The structure of the paper is the following. In Section 1, we prove basic facts that will be used
throughout the paper, and we reduce the question to the case of non-degenerate prime ideals. At
the end of the section we explain the structure of the proof of our main results. In Section 2, we
prove the case of stretched ideals. In Section 3 we generalize the result of Rinaldo–Terai–Yoshida
to every monomial ideal. In Section 4 we prove that almost every ideal I defining a short algebra
has the property that I2 is not Cohen–Macaulay. Somewhat surprisingly, the few missing cases pro-
vide counterexamples to the question. In Section 5, we employ results from Sections 2 and 4 to
deal with the case of ideals defining algebras whose multiplicity is at most the embedding codimen-
sion plus 4. We then provide an application to algebroid curves (e.g. monomial curves). In Section 6,
we provide both local and homogeneous examples showing that the general answer to Vasconce-
los questions is negative, even for prime ideals. They rely on a computer-generated example found
with the help of J.C. Migliore. These examples also yield the sharpness of Theorem 1.1. We also
make the following conjecture: For any embedding codimension c � 5, the homogeneous ideal I
defined by a set of c + 1 + � c(c−1)

6 � general points in Pc has the property that I/I2 is Cohen–
Macaulay, but R/I is not Gorenstein. This would provide an entire class of counterexamples. We
checked this conjecture with the help of J.C. Migliore and CoCoA [5] for small values of c, namely, for
5 � c � 10.

2. Preliminaries and reduction to the non-degenerate case

In this section we fix some notation and prove basic facts that will be used throughout the paper.
In particular, we show that in Question 2.1 one can always assume the ideal I to be ‘non-degenerate’,
i.e., I ⊆m2 (see Proposition 2.6), and prime (see Proposition 2.8).

Recall that in a Noetherian ring R , an ideal I is generically a complete intersection if Ip is a complete
intersection Rp-ideal for every p ∈ AssR(R/I), the set of associated prime ideals of R/I . We are now
able to state Vasconcelos’s question in the form that appears in [15].

Question 2.1. (See [15].) Let R be a regular local ring (resp. a polynomial ring over a field) and I a Cohen–
Macaulay (resp. homogeneous Cohen–Macaulay) generically complete intersection ideal. When is it true that
the Cohen–Macaulayness of I/I2 implies that R/I is Gorenstein?

Notice that from the Cohen–Macaulayness of I and the short exact sequence

0 −→ I/I2 −→ R/I2 −→ R/I −→ 0

it follows that I/I2 is Cohen–Macaulay if and only if R/I2 is. Hence one can phrase Question 2.1 in
the following slightly different way, involving only I and I2.

Question 2.2. Let R be a regular local ring (resp. a polynomial ring over a field) and I a generically complete
intersection, Cohen–Macaulay (resp. homogeneous Cohen–Macaulay) ideal. For which I does the Cohen–
Macaulayness of R/I2 imply that R/I is Gorenstein?

The classes of ideals for which Question 2.2 has a positive answer, show an interesting connection
between the Cohen–Macaulayness of I2 and the Gorenstein property of I . As it was mentioned in the
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introduction, the only known cases were licci ideals [15, 2.8] and, essentially, squarefree monomial
ideals [18]. Furthermore, in the case of 2- and 3-dimensional squarefree monomial ideals, one can
actually give a description of the ideals having the desired property [17,21].

Since Questions 2.1 and 2.2 are equivalent, from now on we will only refer to Question 2.1. To
study this question, we first reduce it to the ‘non-degenerate’ case, i.e., I ⊆ m2, where m is the max-
imal ideal of R . This is accomplished in Proposition 2.6. In order to prove it, we first need to collect
a couple of lemmas. The first one gives a condition for the conormal module I/I2 to contain a free
summand as R/I-module.

Lemma 2.3. Let R be a Noetherian ring and I = (x) + J , where J is an R-ideal and x = x1, . . . , xt forms a
regular sequence on R/ J . Then I/I2 has a free summand (as R/I-module) of rank t. In fact, (x + I2)/I2 

(R/I)t and I/I2 = (x + I2)/I2 ⊕ K for some submodule K of I/I2 .

Proof. If I = R then we are done. So we may assume that I is a proper R-ideal. Set R = R/ J and
denote by − the images in R , then I = (x1, . . . , xt) is a complete intersection R-ideal. Hence I/I 2 is
a free R/I-module of rank t . Now the first part of the lemma follows by the exact sequence I/I2 →
I/( J + I2) → 0 and the fact that I/( J + I2) 
 (I/ J )/(I/ J )2 
 I/I 2 
 (R/I)t 
 (R/I)t . Finally since
(x + I2)/I2 
 I/( J + I2) 
 (R/I)t , the second part of the lemma follows from the split exact sequence
0 → K → I/I2 → (x + I2)/I2 → 0. �

Recall that a Noetherian local ring R is said to be equicharacteristic if it contains a field. R has
mixed characteristic if it does not contain a field. We are now able to prove the following result.

Proposition 2.4. Let (R,m) be an equicharacteristic regular local and I an R-ideal containing an element
x ∈m\m2 . Then I/I2 contains a free summand (as R/I-module) of rank 1.

Proof. The statement is trivial if I = R , hence we may assume that I is a proper R-ideal. We first
prove that one can always reduce to the case where R is complete. Set S = R/I , M = I/I2, let N =
(xR + I2)/I2 = xS ⊆ M be the cyclic S-submodule of I/I2 generated by the image of x and assume that
N̂ is a free direct summand of M̂ of rank 1. We need to show that N is a free direct summand of M
of rank 1. Let K be the kernel of the presentation map φ : S → N → 0 defined by φ(1S ) = x. Since
the induced map φ̂ : Ŝ → N̂ → 0 is an isomorphism of Ŝ-modules, it follows that K = 0, proving the
freeness of N . Next, notice that, by assumption, we have the epimorphism of Ŝ-modules ĵ : M̂ → N̂
with ĵ(x) = x and ĵ( f̃ i) = 0, 1 � i � r, where x, f̃1, . . . , f̃ r form a set of minimal generators of M̂ .
Since Hom Ŝ(M̂, N̂) 
 ̂HomS (M, N), there exists a homomorphism of S-modules π : M → N such that

ĵ − π̂ ∈ m ̂HomS (M, N) 
 mHomŜ (M̂, N̂), where π̂ : M̂ → N̂ denotes the map induced by π . Hence
( ĵ − π̂ )(M̂) ⊆ mN̂ and thus π̂ (M̂) +mN̂ = ĵ(M̂) = N̂ . By Nakayama’s lemma, π̂ (M̂) = N̂ , i.e., π̂ : M̂ →
N̂ is surjective. Since Ŝ is faithfully flat over S , the map π : M → N is also surjective. Therefore
π(x) = μx for some unit μ in S . If one denotes by ι the injective map N ↪→ M defined by ι(x) = x/μ,
then we have π ◦ ι ≡ idN , and hence N is a free direct summand of M .

We may then assume that R is a complete regular local ring containing a field k. Write R 

k[[x, x1, . . . , xs]] for some s and I = (x, J ) for some R-ideal J = ( f1, . . . , fr). Now use x to write I =
(x, J ′) with J ′ = ( f ′

1, . . . , f ′
r ) and each f ′

i is in k[[x1, . . . , xs]]. Then x is clearly regular on R/ J ′ and by
Lemma 2.3, I/I2 contains a free direct summand of rank 1, finishing the proof. �

Notice that the assumption of R containing a field cannot be removed. In [12], Hochster con-
structed an example to provide an obstruction to Grothendieck’s Lifting Problem. We employ it here
to show that the assumption of R being equicharacteristic is needed: if we assume R to have mixed
characteristic, Proposition 2.4 fails to be true even in the unramified case.

Example 2.5. (See [12, Example 1].) There exists an unramified complete regular local ring (A,n) and
an A-ideal I with x ∈ I and x /∈ n2 such that the A/I-submodule N of I/I2 generated by the image of
x has non-zero annihilator. In particular, N is not even a free A/I-submodule of I/I2.
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Proof. Let V be a complete discrete valuation ring with maximal ideal generated by 2, and let
A = V [[X1, X2, Y1, Y2, Z1, Z2]] be a power series ring in 6 analytic variables over V . Set q = X1 X2 +
Y1Y2 + Z1 Z2, x = 2 and I = (2,q, X2

1, X2
2, Y 2

1 , Y 2
2 , Z 2

1, Z 2
2)A. We show that I2 : 2A � I . In fact, set

D = X1 X2Y1Y2 + Y1Y2 Z1 Z2 + X1 X2 Z1 Z2, then 2D = q2 − X2
1 X2

2 − Y 2
1 Y 2

2 − Z 2
1 Z 2

2 ∈ I2 (since all the
summands are in I2). To show that D /∈ I , set K = V /2V , H = (2, X2

1, X2
2, Y 2

1 , Y 2
2 , Z 2

1, Z 2
2)A and denote

by ′ residues modulo H . Then I ′ is a principal ideal generated by q′ and any degree 4 element in I ′
is in the K -span of q′ f ′ where f ∈ V runs over all squarefree monomials of degree 4. It is not hard
to see that D ′ is not in this span, proving that D /∈ I . �

Similar examples can be produced in any positive characteristic, showing that Proposition 2.4 does
not hold true in the mixed characteristic case.

As a result of Proposition 2.4 and Lemma 2.3, we can now reduce Vasconcelos’s question to the
non-degenerate case.

Proposition 2.6 (Reduction to the non-degenerate case). Let (R,m) be an equicharacteristic regular local ring
and I an R-ideal containing an element x ∈ m\m2 . Set R = R/(x) and I = I R. Then Question 2.1 holds true for
I if and only if it holds true for I .

Proof. Since R/I 
 R/I , R/I is Cohen–Macaulay or Gorenstein if and only if R/I is. It is also easy
to see that I is generically a complete intersection if and only if I is. Also, by Proposition 2.4 and
Lemma 2.3, (x + I2)/I2 
 R/I and I/I2 = (x + I2)/I2 ⊕ K for some submodule K of I/I2. Therefore
I/I 2 
 K and it follows that I/I2 is Cohen–Macaulay if and only if I/I 2 is. �

Recall that for an ideal I in a regular local ring R , the embedding codimension of R = R/I is
defined to be ecodim(R) = μ(m) − dim R , where μ(m) denotes the minimal number of generators
of the maximal ideal m of R . Notice that in general the height of I is greater than or equal to the
embedding codimension, and if I is non-degenerate, i.e., I ⊆ m2, then ht I = ecodim(R/I).

The following lemma, consequence of work of Huneke and Ulrich, gives a positive answer to Ques-
tion 2.1 for all ideals with ecodim(R/I) � 2. Therefore, throughout the paper we will always deal with
the case where the embedding codimension is at least 3.

Lemma 2.7. (See [15, 2.8].) Question 2.1 has a positive answer if ecodim(R/I) � 2 and either R is equichar-
acteristic or I ⊆ m2 .

Proof. Let m be the maximal ideal or the homogeneous maximal ideal of R . By Proposition 2.6, one
can assume I ⊆ m2. Then ht I = ecodim(R/I) � 2. If ht I = 1, it is easy to see that I is a licci ideal. If
ht I = 2, I is licci by a classical result of Apèry–Gaèta (see [2,10]). In both cases, [15, 2.8] implies that
Question 2.1 is true for I . �

Next, we want to show that Question 2.1 can be reduced to the case of prime ideals. To do it, we
first recall some definitions from linkage theory. For more details we recommend [14].

Let (S, J ) and (R, I) be pairs, where (S,n) and (R,m) are Noetherian local rings and J ⊆ S and
I ⊆ R are ideals. One says that (S, J ) and (R, I) are isomorphic, written (S, J ) 
 (R, I), if there is an
isomorphism of rings φ : S → R such that φ( J ) = I . (S, J ) is called a deformation of (R, I) if there is a
sequence x = x1, . . . , xt in S regular both on S and on S/ J such that (S/(x), J + (x)/(x)) 
 (R, I). Let
Z = Z1, . . . , Zt be variables over R , a = a1, . . . ,at elements in R and Z − a = Z1 − a1, . . . , Zt − at .
Let J ⊆ R[Z ](m,Z−a) be an ideal. One says that (R[Z ](m,Z−a), J ) is a specialization of (R, I) if
(R[Z ](m,Z−a), J ) is a deformation of (R, I) via the regular sequence Z − a.

Let R be a Gorenstein ring and I = ( f1, . . . , fn) an unmixed R-ideal of grade g > 0. Let X be a
generic g × n matrix of variables over R and α = α1, . . . αg the regular sequence in R[X] defined by
(α)t = X( f )t , where f = f1, . . . , fn . Then L1( f ) = (α)R[X] :R[X] I R[X] is the first generic link of I . Since
L1( f ) is independent of the generating set f = f1, . . . , fn, up to isomorphism of pairs (after adjoining
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variables) [14, 2.11], we then write L1(I) = L1( f ) and by iteration of this process one defines the i-th
generic link Li(I) as Li(I) = L1(Li−1(I)) for any i � 1.

Using tools from linkage, we now prove that, when dealing with Question 2.1, one can always
work with prime ideals instead of generically complete intersection ideals. More precisely:

Proposition 2.8 (Reduction to the case of prime ideals). Any generically complete intersection ideal that gives
a negative answer to Question 2.1 admits a deformation that is a prime ideal of the same height as the original
ideal and gives a negative answer to Question 2.1 too.

Proof. Let I be generically a complete intersection with R/I and I/I2 Cohen–Macaulay, and assume
R/I is not Gorenstein. Let L2(I) ⊆ R[Z ] be the second generic link of I in a polynomial extension of
R . By [14, Theorem 2.17(a)], there exists a sequence a of R such that if one sets S = R[Z ](m,Z−a) and
p = L2(I)S , then p is a prime ideal of the same height as I and (S,p) is a deformation of (R, I). By
[13, 2.1], one has that p/p2 is also Cohen–Macaulay. Since (S,p) is a deformation of (R, I), it is easy
to see that S/p is Cohen–Macaulay but not Gorenstein. �

As a consequence, if one could prove that Question 2.1 has a positive answer for any prime
ideal then, by Proposition 2.8, the question would automatically be settled in full generality. At
the same time, if there exists a counterexample to the question, by 2.8 there exists also a prime
ideal that is a counterexample. Therefore, one can always assume that the ideal I in Question 2.1
is prime.

However, in the following we will not use the extra assumption that I is a prime ideal. In fact,
in this paper we prove results regarding the conormal module (or the square) of some classes
of ideals and it seems natural to present them in the most general context, that is for generi-
cally complete intersection ideals. Proposition 2.8 will be employed in the last section to produce
a prime ideal providing a negative answer to the general version of Question 2.1, see Exam-
ple 7.1(b).

The last result of this section is a useful formula for computing the multiplicity of the square of
any generically complete intersection ideal in terms of the multiplicity of the ideal itself.

Proposition 2.9. Let R be an equidimensional catenary Noetherian local ring and I an ideal that is generically
a complete intersection of height c. Then e(R/I2) = (c + 1)e(R/I).

Proof. By the associativity formula, one has

e
(

R/I2) =
∑

P

λ
(

R P /I2
P

)
e(R/P ),

where P ranges over all minimal primes of I of maximal dimension. Since R is equidimensional and
catenary, I P is a complete intersection of height c and hence I P /I2

P is a free R P /I P -module of rank c.
Now consider the short exact sequence

0 −→ I P /I2
P −→ R P /I2

P −→ R p/I P −→ 0,

by additivity of lengths, we obtain that λ(R P /I2
P ) = (c + 1)λ(R P /I P ). Therefore

e
(

R/I2) =
∑

P

λ
(

R P /I2
P

)
e(R/P )

=
∑

(c + 1)λ(R P /I P )e(R/P )
P
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= (c + 1)
∑

P

λ(R P /I P )e(R/P )

= (c + 1)e(R/I)

where the last equality follows again by the associativity formula. �
Proposition 2.9 will be used frequently to prove the main results of the next several sections. Also,

since some of the proofs of these results may look technical, we want to sketch here the underlying
ideas. The main steps are:

I. using the fact that I is generically a complete intersection and R/I and R/I2 are Cohen–Macaulay,
reduce Question 2.1 to proving that e(R/I2) = (c + 1)e(R/I), where c = ecodim(R/I);

II. after going modulo a (special) minimal reduction of the maximal ideal of R/I , reduce to the case
where I is m-primary (I may no longer be generically a complete intersection, but this is not
needed in the rest of the proof);

III. use the Hilbert function of R/I to estimate the Hilbert function of R/I2 – this step is the longest
and hardest, especially in the local setting. It requires the assumptions on the structure of R/I
(e.g. stretched, short, etc.) and involves several ad hoc methods and strategies;

IV. use step III to estimate the multiplicity of R/I2 in terms of the multiplicity of R/I and show that
it leads to a contradiction with the equality found in step I.

We would also like to remark that in this paper we mainly focus on the local case, since it is the
most problematic one. In fact, all our proofs work also in the homogeneous settings, and for some
results (e.g. stretched algebra case or the reduction to the non-degenerate case) the homogeneous
setting actually allows one to give much simpler proofs.

3. Stretched algebras

In this section, we study the conormal module of ideals defining stretched algebras and show that
it is almost never Cohen–Macaulay. We start by setting up some notation.

Let (A,n) be an Artinian local ring. We recall that the socle degree of A, socdeg(A), is the unique
positive integer s with ns+1 = 0 and ns �= 0. Notice that with this definition, socdeg(A) is exactly one
unit smaller than the Loewy length of A. The socle of A, soc(A) = 0 :A n, is a subset of A consisting of
the elements of A annihilated by the maximal ideal n. Soc(A) is a non-trivial A/n-vector space whose
dimension, τ (A) = dimA/n soc(A), is called the (Cohen–Macaulay) type of A. In general if (R,m) is a
Cohen–Macaulay local ring with infinite residue field, the socle degree, socdeg(R), the socle, soc(R),
and the type, τ (R), are defined respectively to be socdeg(R/ J ), soc(R/ J ) and τ (R/ J ), where J is any
minimal reduction of m. The ring R is Gorenstein if in addition τ (R) = 1. Finally for any Noetherian
local ring R , we will use e = e(R) to denote the Hilbert–Samuel multiplicity of R with respect to its
maximal ideal m.

We now recall the definition of stretched algebras which is one of the main classes of ideals that
we will study in this paper.

Definition 3.1. An Artinian local ring (A,n) is said to be stretched if n2 is a principal ideal. In gen-
eral, for a Cohen–Macaulay local ring (R,m) we say that R is stretched if R/ J is stretched for some
minimal reduction J of m generated by a system of parameters for R . A Cohen–Macaulay ideal I in a
Noetherian local ring R is stretched if R/I is.

Notice that if (R,m) is a Cohen–Macaulay local ring with infinite residue field, then every minimal
reduction J of m is generated by a system of parameters.

Recall that the Hilbert function of an Artinian local ring (A,n) is defined to be the function
H F A : N0 → N0 where H F A(t) = dimA/nn

t/nt+1 for every t ∈ mathbbN0. An immediate consequence



42 P. Mantero, Y. Xie / Journal of Algebra 372 (2012) 35–55
of Definition 3.1 is that one can easily describe the Hilbert function of a stretched Artinian local ring
(A,n):

H F A : 1 c 1 1 . . . 1 0 . . . 0 . . . .

In fact, if A has the above Hilbert function then μ(n2) = 1, which implies that A is stretched. On the
other hand, if μ(n2) = 1, then H F A(2) = H Fgrn(A)(2) = 1. Now Macaulay’s bound (see for instance
[4, Theorem 4.2.10]) applied to grn(A) shows that H F A(i) = H Fgrn(A)(i) is at most 1 for any i � 2,
proving that A has the above Hilbert function.

Another easy consequence is that in a stretched Artinian algebra (A,n) if the initial degree of a
socle element f does not equal socdeg(A), then f must be part of a minimal generating set of n. This
is proved in the following lemma.

Lemma 3.2. (See [8, 3.2].) Let (A,n) be a stretched Artinian local ring with socle degree s and let f ∈ n be a
socle element. If f /∈ ns then f /∈ n2 .

Proof. If s � 2 we are done. So we may assume that s � 3. By assumption of stretchedness, one has
the following Hilbert function for A:

H F A : 1 c 1 1 . . . 1 0−→.

Assume f ∈ n2 and let i be the smallest integer with f /∈ ni+1. Since f /∈ ns we have 2 � i � s − 1.
Then H F A(i) = 1, which implies ni = ( f ). Since f · n = (0), then ni+1 = ni · n = f · n = (0). Hence
i + 1 � s + 1, contradicting that i < s. Therefore f /∈ n2. �

A classical result of Sally [19] gives the structure of stretched Gorenstein Artinian local algebras.
Recently, Elias and Valla [8] generalized it to any stretched Artinian local algebras as follows:

Theorem 3.3. (See [19, 1.2], [8, 3.1].) Let (R,m) be a c-dimensional regular local ring such that the charac-
teristic of the residue field is 0. Let I ⊆ m2 be an m-primary ideal with R/I stretched of socle degree s. Write
τ (R/I) = r + 1 for some 0 � r � c − 1. Then there exist minimal generators x1, . . . , xc for the maximal ideal
m and elements ur+1, . . . , uc−1 /∈ m with

I = (x1m, . . . , xrm) + J

where

J =
{

(xr+i xr+ j | 1 � i < j � c − r) + (xs
c − ur+i x2

r+i | 1 � i � c − r − 1), if r < c − 1;
(xs+1

c ), if r = c − 1.

In a forthcoming paper [16] we are actually able to slightly improve 3.3, showing that the structure
theorem holds for any regular local ring whose residue field has characteristic �= 2. Hence, this will
be our only requirement on the residue field in the following.

In a Noetherian local ring (R,m), let x1, . . . , xr be a regular sequence in m; we recall that a mono-
mial in x1, . . . , xr is an element in R of the shape xa1

1 xa2
2 · · · xar

r . An R-ideal I is dubbed monomial (in
x1, . . . , xr ) if it can be generated by monomials in x1, . . . , xr .

As an application of Theorem 3.3 we prove that the square of a stretched m-primary ideal I can
be very tightly estimated by using a monomial ideal. This fact will be crucial as it will allow us to
compute explicitly, or estimate tightly, e(R/I2) (see the comment after 3.5, or the proof of 6.4).
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Proposition 3.4. Let (R,m) be a c-dimensional regular local ring with char R/m �= 2. Let I ⊆ m2 be an m-
primary ideal with R/I stretched of socle degree s. Write τ (R/I) = r + 1 for some 0 � r � c − 1. Then there
exist minimal generators x1, . . . , xc for the maximal ideal m such that

I2 ⊆ L = (x1, . . . , xc−1)H + (x1, . . . , xc−1)xs+1
c + (

x2s
c

)
,

where H is the monomial ideal generated by all monomials of degree 3 in x1, . . . , xc except for x3
c . The above

inclusion is strict if and only if r � c − 2, and in this case λ(R/I2)� λ(R/L) + 2.

Proof. By Theorem 3.3, there exist minimal generators x1, . . . , xc for m and units ur+1, . . . , uc−1 with
I = (x1m, . . . , xrm) + J , where J is as in Theorem 3.3. It is now easy to verify that every element in
I2 is a linear combination of the elements of L, proving the inclusion I2 ⊆ L.

To prove the second part of the statement, observe that if r � c − 3 then both xs
c − uc−2x2

c−2 and
xs

c −uc−1x2
c−1 are in I , hence their product is in I2. Since x2

c−2x2
c−1 ∈ I2 and x2

c−i x
s
c = (xc−i xc)

2xs−2
c ∈ I2

for any i = 1,2, we have x2s
c ∈ I2 as well. Therefore

(x1m, . . . , xrm, xr+i xr+ j | 1 � i < j � c − r)2 + (
x2s

c

) ⊆ I2.

Again, for any 1 � i � c − r − 1, the fact that (xs
c − ur+i x2

r+i)
2 ∈ I2 implies that x4

r+i ∈ I2, since both x2s
c

and x2
r+i x

s
c are in I2. Now let 1 � i � c − 1, there exists 1 � j � c − r − 1 such that i �= r + j. Since both

xi xc(xs
c − ur+ j x2

r+ j) ∈ I2 and xi xcx2
r+ j = (xi xr+ j)(xr+ j xc) ∈ I2, we must have that xi xs+1

c ∈ I2. Finally,

for any 1 � i � c − r − 1 and j �= r + i, since xr+i x j(xs
c − ur+i x2

r+i) ∈ I2, we have x3
r+i x j ∈ I2. These

arguments show that all the generators of L are in I2 thus proving the equality in the case r � c − 3.
Now assume r = c − 2. Then L = (M, x4

c−1, x3
c−1xc, xc−1xs+1

c , x2s
c ) and I2 = (M, xc−1xs+1

c − ux3
c−1xc,

x2s
c +u2x4

c−1), where u is a unit and M = (x1, . . . , xc−2)H + (x1, . . . , xc−2)xs+1
c + (x2

c−1x2
c ) is a monomial

ideal. Observe that L/I2 = (x4
c−1, x3

c−1xc) and none of the two generators of L/I2 is redundant. This
shows that I2 �= L and λ(R/I2) � λ(R/L) + 2.

Finally if r = c − 1 then the claim is easily proved, since I = (x1, . . . , xc−1)m+ (xs+1
c ) and one can

easily compare the two monomial ideals I2 and L. �
The next theorem is the main result of this section. It shows that unless the embedding codimen-

sion is 3, the first conormal module (hence square) of any generically complete intersection stretched
Cohen–Macaulay ideal is not Cohen–Macaulay.

Theorem 3.5. Let (R,m) be a regular local ring with char R/m �= 2 and I a stretched Cohen–Macaulay ideal
that is generically a complete intersection. Assume that either R is equicharacteristic or I ⊆ m2 , and write
c = ecodim(R/I).

(a) If c = 3 and I/I2 (or R/I2) is Cohen–Macaulay then R/I is Gorenstein.
(b) If c � 4 then I/I2 and R/I2 are not Cohen–Macaulay.

Proof. If R contains a field, by Proposition 2.6 we can reduce at once to the case where I ⊆ m2.
Hence, in either case we may assume that I ⊆ m2 and then c = ht I . Let s = socdeg(R/I). Since R/I
is stretched, we have that e(R/I) = c + s. Hence, by Proposition 2.9, e(R/I2) = (c + 1)(c + s). We will
show by contradiction that I/I2 is not Cohen–Macaulay if c � 4 or if c = 3 and R/I is not Gorenstein.
So assume I/I2 is Cohen–Macaulay. Since R/I is also Cohen–Macaulay, the short exact sequence

0 −→ I/I2 −→ R/I2 −→ R/I −→ 0
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shows that R/I2 is Cohen–Macaulay as well. Hence, after possibly extending the residue field of R ,
there exists an R-ideal J whose images in R/I and R/I2 are minimal reductions of mR/I and mR/I2 ,

respectively, generated by systems of parameters. Let R be the regular local ring R = R/ J . Then
λ(R/I 2) = λ(R/I2 + J ) = e(R/I2) = (c + 1)(c + s). However, by assumption R/I is a stretched Artinian
algebra of socle degree s, hence by Proposition 3.4 there exist minimal generators x1, . . . , xc of m such
that I 2 ⊆ L, where L is the R-ideal defined as L = (x1, . . . , xc−1)H + (x1, . . . , xc−1)xs+1

c + (x2s
c ), and H

is the monomial ideal in R generated by all the monomials of degree 3 in x1, . . . , xc except for x3
c .

Now, it is easy to see that the monomials xi xt
c and x j

c are not in L for any 1 � i � c − 1, 3 � t � s
and 4 � j � 2s − 1. Since L is a monomial ideal in x1, . . . , xc , the initial forms of the monomials xi xt

c

and x j
c , where 1 � i � c − 1, 3 � t � s and 4 � j � 2s − 1, are actually R/m-linearly independent of

grm(R/L) (see also the comment at the end of the proof). Therefore, if one writes

1 c h2 h3 . . .

for the Hilbert function of R/L, the above statement shows that h j+1 � c for every 3 � j � s and
h j � 1 for every s + 2 � j � 2s − 1. Then λ(R/L) � 1 + c + (c+1

2

) + (c+2
3

) + c(s − 2) + s − 2. An easy

computation shows that, if c � 4 then 1 + c + (c+1
2

) + (c+2
3

) + c(s − 2) + s − 2 > (c + 1)(c + s). Hence
we obtain λ(R/I 2) � λ(R/L) > (c + 1)(c + s) which is a contradiction. Assume then c = 3. Since R/I
is not Gorenstein, then R/I is not Gorenstein as well and we have c − 2 = 1 � r = τ (R/I) − 1. Now,
by Proposition 3.4, we have that λ(R/I 2) > λ(R/L) � (c + 1)(c + s), which gives the desired contra-
diction. �
Remark 3.6. In the proof, the key point is to estimate the Hilbert function of R/I 2 using the existence
of some R/m-linearly independent elements in R/L. We would like to explain this step better.

In the local case it is usually hard to estimate the Hilbert function at a given degree using lin-
early independent elements. In fact, even if there are A/n-linearly independent elements a1, . . . ,an of
ni\ni+1 in an Artinian local ring (A,n), their initial forms in the associated graded ring A∗ = grn(A)

need not be A/n-linearly independent. For instance, the elements x + y2, x + xy, x + x2 are clearly
k-linearly independent in A = k[x, y](x,y)/(x, y)3, but their initial forms in A∗ are all equal! However,
let (R,m) be a regular local ring and fix a regular system of parameters x = x1, . . . , xc , so that every
‘monomial’ item in the following is referred to the regular sequence x. If L is an m-primary monomial
ideal and there are distinct monomial elements a1, . . . ,an in R with a j /∈ L for every j and all a j ’s
have the same initial degree i, then their initial forms are R/m-linearly independent, proving that
H F R/L(i) � n. In the proof of Theorem 3.5, we use that I 2 is contained in the monomial ideal L to
translate the problem into estimating the Hilbert function of L, which is a much easier task by the
above. This approach is successful because L estimates very tightly I 2, as explained in Proposition 3.4.

As a consequence of Theorem 3.5 and Lemma 2.7, we can now give a positive answer to Ques-
tion 2.1 for stretched algebras.

Corollary 3.7. Assume charR/m �= 2. Then Question 2.1 is true for I defining a stretched algebra.

4. Monomial ideals

In the present section we prove that Question 2.1 has a positive answer for monomial ideals.
Recall that in a regular local ring (R,m), fixed a regular system of parameters x = x1, . . . , xc , an

element a ∈ R is said to be a monomial in x, if there exist non-negative integers a1, . . . ,ac with
a = xa1

1 xa2
2 · · · xac

c . An R-ideal I is said to be a monomial ideal in x, if it can be generated by monomial
elements in x.

Rinaldo, Terai and Yoshida recently proved the following result.
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Theorem 4.1. (See [18].) Let 	 be a simplicial complex on V = [n], and I	 ⊆ S = K [X1, . . . , Xn] be the
Stanley–Reisner ideal of 	. If S/I2

	 is Cohen–Macaulay for every field K , then I	 is Gorenstein.
Equivalently, Question 2.1 holds true for any squarefree monomial ideal J with the property that S/ J 2 is

Cohen–Macaulay for any field K .

We can now prove that Question 2.1 holds true for any monomial ideal.

Theorem 4.2. In the setting of Question 2.1, further assume that R is equicharacteristic and I is a monomial
ideal in a regular system of parameters x whose corresponding monomial ideal Ĩ in R̃ = K [[x]] is Cohen–
Macaulay for every field K . If either Ĩ/ Ĩ2 or R̃/ Ĩ2 is Cohen–Macaulay for any field K then R/I is Gorenstein.

Proof. Without loss of generality we may assume that R is complete, hence we may assume that
R = k[[x]] is a power series over a field k. Let J ⊆ S = k[[x, y]] be a squarefree monomial ideal obtained

by polarization from I . Then, (S, J ) is a deformation of (R, I). Fix a field K . Set S̃ = K [[x, y]] and let Ĩ

and J̃ be the corresponding monomial ideals in R̃ and S̃ , respectively. Notice that R̃/ Ĩ and R̃/ Ĩ2 are
Cohen–Macaulay, by our assumption on I and I2 (if Ĩ/ Ĩ2 is Cohen–Macaulay, then by the short exact
sequence displayed after the statement of Question 2.1 we also have that R̃/ Ĩ2 is Cohen–Macaulay).

Since Ĩ is generically a complete intersection, a proof similar to the one of [13, Theorem 2.1] shows
that S̃/ J̃ and S̃/ J̃ 2 are Cohen–Macaulay for any field K , because R̃/ Ĩ and R̃/ Ĩ2 are. We have then just
proved that J is a squarefree monomial ideal with S̃/ J̃ 2 Cohen–Macaulay for any field K . Then, by
Theorem 4.1 (applied to R = k[[x]]), S/ J is Gorenstein. Finally, since (S, J ) is a deformation of (R, I)
and S/ J is Gorenstein then R/I is Gorenstein, finishing the proof. �
Corollary 4.3. With notation as in Theorem 4.2, Question 2.1 holds true for all monomial ideals I with the
property that R̃/ Ĩ and Ĩ/ Ĩ2 are Cohen–Macaulay for every field K .

5. Short algebras

In this section we will study the conormal module of ideals defining short algebras. We will prove
that for these ideals the conormal module (equivalently, the square) is almost never Cohen–Macaulay.
Again, the information on the Hilbert function of such algebras will play a crucial role.

Recall that in a Noetherian local ring (R,m), the associated graded ring of R with respect to m

is defined as the graded algebra R∗ = grm(R) = ⊕
i�0 m

i/mi+1. For an element 0 �= a ∈ R , there is

a unique integer i with a ∈ mi\mi+1. This integer is called the initial degree of a, denoted in deg(a).
The initial form of a is a∗ = (a + mi+1)/mi+1 ∈ R∗ . Similarly, the ideal of initial forms of an R-ideal J
is defined as J∗ = (a∗ | a ∈ J )R∗ . It is well known that grm(R/ J ) 
 R∗/ J∗ . The definition of short
algebra can be found, for instance, in [7].

Definition 5.1. An Artinian local algebra (A,n) is short if there exist integers c and s with H F A( j) =
H F A/n[X1,...,Xc ]( j) for every j < s, and H F A(s + 1) = 0 (i.e., if A∗ is a short graded algebra). A Cohen–
Macaulay local ring (R,m) is short if R/ J is short for some minimal reduction J of m generated by a
system of parameters of R .

Notice that if (R,m) is a Cohen–Macaulay local ring with infinite residue field, then every minimal
reduction J of m is generated by a system of parameters.

The second part of the next remark will be used to deal with Artinian short algebras. It shows that
one can reduce any computation on the length of R/I or R/I2 to the homogeneous case.

Remark 5.2. Let (R,m,k) be a d-dimensional regular local ring containing a field and I an m-
primary ideal. Then R/I 
 R̃/ Ĩ , where R̃ = k[x1, . . . , xd] and Ĩ is generated by polynomials of degree
at most s + 1, where s = socdeg(R/I). Furthermore, if I defines a short algebra, then Ĩ can be
taken to be generated by homogeneous polynomials. In particular, (I∗)n = (In)∗ for any n � 1 and
λ(R/In) = λ(R∗/(I∗)n).
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Proof. For the first part of the statement, since R/I is Artinian, then R/I 
 R̂/I 
 R̂/ Î . Since
R contains a field, one has R̂ 
 k[[x1, . . . , xd]], and since I is m-primary with ms+1 ⊆ I , one
may assume that Î = ( f1, . . . , fr,m

s+1), where f1, . . . , fr are of degrees at most s. However,
since k[x1, . . . , xd]/( f1, . . . , fr,m

s+1) is Artinian, one has that k[x1, . . . , xd]/( f1, . . . , fr,m
s+1) 


k[[x1, . . . , xd]]/( f1, . . . , fr,m
s+1), finishing the proof.

The second part follows from the first one and the definition of short algebra. �
For instance, let (R,m) be a regular local ring of dimension 4 with m = (x1, . . . , x4) and coefficient

field k. Assume I = (x1x3
2, x2x2

3x4, x3
1x2, x4

4,m
5). Then R/I is a short algebra, with

k[X1, . . . , X4]/
(

X1 X3
2, X2 X2

3 X4, X3
1 X2, X4

4, M5) 
 R/I,

where M = (X1, . . . , X4).
The following theorem is the main result of this section. It shows that the conormal module

(equivalently, the square) of a short algebra is not Cohen–Macaulay if the socle degree is at least 3.
Somewhat surprisingly, in 7.1 we exhibit examples showing that, if the socle degree is 2, the conormal
module (equivalently, the square) can actually be Cohen–Macaulay. These examples give a negative
answer to Question 2.1.

Theorem 5.3. Let R be an equicharacteristic regular local ring and I a Cohen–Macaulay ideal that is gener-
ically a complete intersection. Let c = ecodim(R/I) � 2 and s = socdeg(R/I) � 3. If R/I is short then I/I2

(equivalently, R/I2) is not Cohen–Macaulay.

Proof. As in Theorem 3.5, one can always assume that I ⊆ m2. Let J be an R-ideal, whose image in
R/I is a minimal reduction of mR/I , generated by a system of parameters (after possibly extending the
residue field of R , the existence of J is guaranteed). Now, write m = (x1, . . . , xc) + J for the maximal
ideal of R , where x1, . . . , xc is part of a regular system of parameters of R . Let ni be the number of
monomials of degree i in a polynomial ring in c variables and Ni the number of monomials of degree
i in c + 1 variables. An elementary combinatorial argument shows that

s−1∑
i=0

ni = Ns−1 for any s � 1.

Hence e(R/I) = ∑s−1
i=0 ni +

(c+s−1
s

) − q = ∑s
i=0 ni − q = Ns − q, where 0 � q <

(c+s−1
s

)
is the number of

minimal generators of I lying in ms\ms+1. To show that I/I2 is not Cohen–Macaulay, it is enough to
show that

e
(

R/I2) = λ
(

R/I2 + J
)
> (c + 1)(Ns − q).

Write n = (x1, . . . , xc). Since R/I + J is short, then I + J = ( f1, . . . , fq,n
s+1)+ J where the f i ’s are all

homogeneous of degree s in the variables x1, . . . , xc in the sense of Remark 5.2. Therefore I2 + J ⊆
n2s + J and

λ
(

R/I2 + J
)
� λ

(
R/n2s + J

) =
2s−1∑
i=0

ni = N2s−1.

Hence, to finish the proof, it is enough to show that N2s−1 > (c + 1)(Ns − q) for all c � 2 and s � 3.

To do this, we write N2s−1
c+1 = (c+2s−1

2s−1 )
c+1 =

∏c−1
j=0(

2s+ j
j+1 )

c+1 = ∏c−1
j=0(

2s+ j
j+2 ) and similarly, Ns = ∏c−1

j=0(
s+ j+1

j+1 ).
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Then we are down to show that
∏c−1

j=0(
2s+ j
j+2 ) − ∏c−1

j=0(
s+ j+1

j+1 ) + q > 0. Set Q (c, s) = ∏c−1
j=0(

2s+ j
j+2 ) −∏c−1

j=0(
s+ j+1

j+1 ), we will show that Q (c, s) + q > 0.

Claim. If Q (c, s) > 0 for some positive integers c and s, then Q (c, s) > 0 for every c � c and s � s.

Assume the claim is proved. Since Q (5,4) = 6 > 0, Q (4,5) = 17 > 0, Q (3,6) = 7 > 0 and
Q (2,8) = 1

3 > 0, it follows from the claim that Q (c, s) > 0 either if c � 5, s � 4, or if c � 4, s � 5, or
if c � 3, s � 6 or if c � 2, s � 8. We are left to check the following several cases.

If c = 3, s = 5 then Q (3,5) = −1 < 0. However, if q � 2 then λ(R/I2 + J ) − (3 + 1)(N5 − q) �
(3 + 1)(Q (3,5) + q) > 0 and we are done. Assume now q � 1. One has

λ
(

R/I2 + J
)
� λ

(
R/n10 + J

) +
[(

c − 1 + 10

10

)
− q(q + 1)/2

]
� λ

(
R/n10 + J

) + 65.

Thus λ(R/I2 + J ) − (3 + 1)(N5 − q)� (3 + 1)(Q (3,5) + q) + 65 �−4 + 65 = 61 > 0.
If c = 3, s = 4 then Q (3,4) = −5. In this case, if q � 6 then λ(R/I2 + J ) − (3 + 1)(N4 − q) �

(3 + 1)(Q (3,4) + q) > 0 and we are done. So we may assume q � 5. Then, λ(R/I2 + J ) −
(3+1)(N4 −q) � (3+1)(Q (3,4)+q)+(45−q(q+1)/2) = −1/2(q2 −7q−50) > 0 whenever 0 � q � 5.

The cases c = 3, s = 3, or c = 4, s = 3,4, or c = 5, s = 3, or c = 2 and 3 � s � 7 can be proved
similarly. Thus, our result is proved modulo the proof of the above claim. This is accomplished in the
next lemma. �
Lemma 5.4. For any c ∈ Z+ and s ∈ Z+ , define Q (c, s) = ∏c−1

j=0(
2s+ j
j+2 ) − ∏c−1

j=0(
s+ j+1

j+1 ). Then

(a) Q (c, s + 1) � Q (c, s);
(b) if c � 2 and s � 3 then Q (c + 1, s) � Q (c, s).

In particular, if Q (c, s) > 0 for some fixed positive integers c � 2 and s � 3 then Q (c, s) > 0 for all c � c and
s � s.

Proof. For any two positive integers c and s,

Q (c, s + 1) =
c−1∏
j=0

(
2s + 2 + j

j + 2

)
−

c−1∏
j=0

(
s + 1 + j + 1

j + 1

)

=
[

c−1∏
j=0

(
2s + 2 + j

2s + j

)
·
(

2s + j

j + 2

)]
−

[
c−1∏
j=0

(
s + 1 + j + 1

s + j + 1

)
·
(

s + j + 1

j + 1

)]

�
[

c−1∏
j=0

(
s + 1 + j + 1

s + j + 1

)
·
(

2s + j

j + 2

)]
−

[
c−1∏
j=0

(
s + 1 + j + 1

s + j + 1

)
·
(

s + j + 1

j + 1

)]

=
[

c−1∏
j=0

s + 1 + j + 1

s + j + 1

]
·
[(

c−1∏
j=0

2s + j

j + 2

)
−

(
c−1∏
j=0

s + j + 1

j + 1

)]

� Q (c, s)

where the first inequality holds since 2s+2+ j
2s+ j � s+1+ j+1

s+ j+1 , for all j � 0.
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Similarly to show part (b), write

Q (c, s) =

Q 1(c,s)︷ ︸︸ ︷
c−1∏
j=0

(
2s + j

j + 2

)
−

Q 2(c,s)︷ ︸︸ ︷
c−1∏
j=0

(
s + j + 1

j + 1

)
.

Then

Q (c + 1, s) = Q 1(c + 1, s) − Q 2(c + 1, s)

= Q 1(c, s)
c + 2s

c + 2
− Q 2(c, s)

c + 1 + s

c + 1

� Q 1(c, s) − Q 2(c, s)

= Q (c, s)

where the inequality holds since c+2s
c+2 � c+s+1

c+1 � 1, for all s � 3 and c � 2. �
The following proposition deals with the case of socle degree 2. Sharp numerical conditions on the

multiplicity are provided to ensure that the conormal module is not Cohen–Macaulay.
The idea of the proof is to assume that I/I2 is Cohen–Macaulay, reduce to the case where I is

m-primary and produce a contradiction showing that

e
(

R/I2) > (c + 1)e(R/I). (1)

If the number q of quadric minimal generators of I is ‘large’ (part (a)), then the multiplicity of R/I
is ‘small’, hence the right-hand side in (1) is ‘small’ and we can prove the above strict inequality. On
the other hand, if the number q of quadric minimal generators of I is ‘small’ (parts (b)–(c)), then I2

has a fairly small amount of minimal generators in degree 4, hence the multiplicity of R/I2 becomes
‘large’. In this case, then, the left-hand side of (1) is ‘large’ and we are again able to prove the above
strict inequality. Finally, notice that if q is ‘intermediate’ there may be no contradiction, as I/I2 may
actually be Cohen–Macaulay – see Example 7.1.

We are grateful to A. Conca for bringing our attention to [6, Theorem 2.4], that finishes the proof
of 5.5.

Proposition 5.5. Let (R,m) be an equicharacteristic regular local ring with |R/m| = ∞ and I a Cohen–
Macaulay ideal that is generically a complete intersection with s = socdeg(R/I) = 2 and
c = ecodim(R/I) � 3. Write e(R/I) = 1 + c + (c+1

2

) − q, for some non-negative integer q <
(c+1

2

)
. Then

I/I2 is not Cohen–Macaulay if q satisfies one of the following numerical conditions:

(a) q > c2+2c
3 ,

(b) 2c+1−√
K

2 < q < 2c+1+√
K

2 , where K = (2c + 1)2 + 8(N4 − (c + 1)N2) and N2, N4 are defined as in the
proof of Theorem 5.3,

(c) 2c+1−2n3−√
K

2 < q <
2c+1−2n3+√

K
2 , where K = (2n3 − 2c − 1)2 + 8(N5 − (c + 1)N2), where N2, N5,n3

are defined as in the proof of Theorem 5.3.

Furthermore, I/I2 and R/I2 are not Cohen–Macaulay if c = 3, R/I is not Gorenstein and char R/m �= 2, or if
c = 4.
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Proof. By Proposition 2.6, we may assume that I ⊆ m2 and then c = ht I . By Proposition 2.9,
e(R/I2) = (c + 1)e(R/I) = (c + 1)(N2 − q). As before, let J be an ideal whose image in R/I gives
a minimal reduction of mR/I , and notice that, since |R/m| = ∞, J is generated by a system of param-
eters. Then λ(R/I2 + J ) � (c + 1)(N2 −q), where equality holds if and only if I/I2 is Cohen–Macaulay.
A computation shows that

λ
(

R/I2 + J
) − (c + 1)(N2 − q)

� N3 − (c + 1)N2 + (c + 1)q + max
{

0,n4 − q(q + 1)/2
} + max{0,n5 − qn3}.

Now, (a) follows from the fact that

λ
(

R/I2 + J
) − (c + 1)(N2 − q) � N3 − (c + 1)N2 + (c + 1)q = 1

6
(c + 1)

(−2c2 − 4c + 6q
)

which is strictly greater than zero if q > c2+2c
3 .

Since

λ
(

R/I2 + J
) − (c + 1)(N2 − q) � N3 − (c + 1)N2 + (c + 1)q + n4 − q(q + 1)/2

= −1

2

[
q2 − (2c + 1)q − 2

(
N4 − (c + 1)N2

)]
,

it is easy to see that λ(R/I2 + J ) − (c + 1)(N2 − q) > 0 if q satisfies the numerical condition given
in (b). Part (c) follows from the inequality

λ
(

R/I2 + J
) − (c + 1)(N2 − q) � −1

2

[
q2 − (2c + 1)q − 2

(
N4 − (c + 1)N2

)] + n5 − qn3

= −1

2

[
q2 + (2n3 − 2c − 1)q − 2

(
N5 − (c + 1)N2

)]
.

Finally, it follows from parts (a), (b) and (c) that λ(R/I2 + J ) − (c + 1)(N2 − q) > 0 if c = 3, q �= 5
or if c = 4, q �= 8. If c = 3, q = 5, we are done by Theorem 3.5(a). Assume c = 4, q = 8. Set R = R/ J .
By Remark 5.2, we may assume that R 
 k[[X1, . . . , X4]] and I is a homogeneous ideal generated by
8 quadric polynomials. Since e(R/I2) = λ(R/I 2) � λ(R/m4) = 35 = (c + 1)λ(R/I) = (c + 1)e(R/I), if
we show that I 2 �= m4, then e(R/I2) > (c + 1)e(R/I), that gives a contradiction. However, since I is
generated by polynomials, it is enough to show that the ideal L in k[X1, . . . , X4] generated by the
same 8 quadrics generating I has the property that L2 �= m4, where m = (X1, . . . , X4). This is achieved
in [6, Theorem 2.4], where it was shown that any homogeneous ideal L in k[X1, . . . , X4] generated by
8 quadrics has the property that L2 �= m4, if char k = 0. Similar methods can be actually employed to
show that the same result holds if char k �= 2; this finishes the proof. �

Example 7.1 shows that the numerical conditions given in Proposition 5.5 are actually very sharp.
When c = 5, indeed, I/I2 cannot be Cohen–Macaulay if either q > c2+2c

3 = 11 2
3 (by Proposition 5.5(a))

or q < 2c+1+√
K

2 = 11 (by Proposition 5.5(b)). Hence, the only case left out by our numerical crite-
ria is q = 11. However, Example 7.1 has exactly c = 5 and q = 11 and gives a negative answer to
Question 2.1!

A combination of Theorem 5.3, Proposition 5.5 and Lemma 2.7 shows that the question has a
positive answer for most short algebras.

Corollary 5.6. Question 2.1 is true for any ideal defining an equicharacteristic short algebra with socle degree
at least 3, or socle degree 2 and multiplicity satisfying one of the numerical conditions in Proposition 5.5.
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6. Algebras having low multiplicity

For a Cohen–Macaulay local ring (R,m), it is well known (by Abhyankar’s inequality) that the
Hilbert–Samuel multiplicity of R with respect to m is at least c + 1, where c denotes as usual the
embedding codimension of R . In this section we show that Question 2.1 holds true for any ideal I
with e(R/I)� c + 4. In Section 5, we then show that this result is sharp by exhibiting an ideal I with
e(R/I) = c + 5 that is a counterexample to Question 2.1. We will call ideals I with e(R/I) � c + 4
‘ideals with low multiplicity’.

We begin this section by proving a general statement that will be used in the next results. After
fixing the multiplicity of a Cohen–Macaulay algebra R/I , we provide a lower bound on the embedding
codimension of R/I that ensures that I/I2 is not Cohen–Macaulay.

Proposition 6.1. Let R be a regular local ring and I a Cohen–Macaulay R-ideal that is generically a complete
intersection. Assume that either R is equicharacteristic or I ⊆ m2 . Write e(R/I) = c + t for some positive

integer t, where c = ecodim(R/I). If c >
1+√

1+24(t−1)
2 then I/I2 (equivalently, R/I2) is not Cohen–Macaulay.

Proof. Let m be the maximal ideal of R . After possibly invoking Proposition 2.6 (if R contains a field),
we may assume I ⊆ m2 and then c = ht I . Assume I/I2 is Cohen–Macaulay, in which case R/I2 is
Cohen–Macaulay. Let J be an R-ideal whose image in R/I is generated by a system of parameters of
mR/I . By Proposition 2.9,

λ
(

R/I2 + J
) = e

(
R/I2) = (c + 1)e(R/I) = (c + 1)(c + t) = c2 + (t + 1)c + t.

Notice that I2 ⊆ m4, so λ(R/I2 + J ) � λ(R/m4 + J ) = 1 + c + (c+1
2

) + (c+2
3

) = 1
6 (c3 + 11c) + c2 + 1.

However, 1
6 (c3 + 11c) + c2 + 1 > c2 + (t + 1)c + t if 1

6 (c3 − c(6t − 5) − 6(t − 1)) > 0, or equivalently, if
(c + 1)(c2 − c − 6(t − 1)) > 0. Since c is positive, it is enough to have c2 − c − 6(t − 1) > 0, which holds

true if c >
1+√

1+24(t−1)
2 . Hence if c >

1+√
1+24(t−1)

2 , then e(R/I2) = λ(R/I2 + J ) � λ(R/m4 + J ) >

(c + 1)(c + t) which gives a contradiction. Therefore I/I2 cannot be Cohen–Macaulay. �
We now employ results from Sections 2 and 3 together with Proposition 6.1 to show that Ques-

tion 2.1 has a positive answer for ideals with multiplicity at most c + 4. We first deal with ideals of
multiplicity at most c + 3.

Theorem 6.2. Let (R,m) be a regular local ring containing a field of characteristic �= 2 and I a Cohen–
Macaulay R-ideal that is generically a complete intersection. Assume that e(R/I) � c + 3, where c =
ecodim(R/I). If I/I2 (or R/I2) is Cohen–Macaulay then R/I is Gorenstein.

Proof. Thanks to Lemma 2.7 we can assume that c � 3 and, thanks to Proposition 2.6, we can always
assume I ⊆ m2 so that c = ht I . By Proposition 2.9, e(R/I2) = (c + 1)e(R/I). Now, let J be an ideal
whose image in R/I is a minimal reduction of mR/I generated by a system of parameters (after
extending the residue field such a J always exists). After going modulo J , we may further assume that
I is m-primary and λ(R/I2) = e(R/I2) = (c + 1)e(R/I) = (c + 1)λ(R/I). Notice that I may no longer
be generically a complete intersection. We already used this assumption to establish that e(R/I2) =
(c + 1)e(R/I) and we will not need it for the rest of the proof.

We now show that if R/I is not Gorenstein then λ(R/I2) > (c + 1)λ(R/I), giving a contradiction.
The first case, e = c + 1, simply follows from Proposition 6.1 with t = 1, because c � 3. If e = c + 2,
then R/I is a stretched algebra of socle degree 2 and the statement follows from Corollary 3.7. Assume
e = c + 3. If R/I is a stretched algebra of socle degree 3 then we are done again by Corollary 3.7. We
may assume that R/I is not stretched. Then, its Hilbert function is

H F R/I : 1 c 2 0 . . . 0 . . .
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and Proposition 6.1 concludes the proof for all value of c, except c = 3 or c = 4. However, both these
cases follow from Proposition 5.5. �

Next, we deal with the case e(R/I) = c + 4. We will need the following lemma, which shows how
the Hilbert function and the associated graded ring are affected by factoring out a socle element.

Lemma 6.3. Let (R,m) be a Noetherian local ring and 0 �= f ∈ soc(R). Then f ∗ is a non-zero socle element
of R∗ = grm(R) and R∗/ f ∗R∗ 
 grm(R/ f R). Furthermore, if f ∈ m j\m j+1 , then H F R/ f R(i) = H F R(i) for
every i �= j, and H F R/ f R( j) = H F R( j) − 1.

Proof. Since f ∗m∗ ⊆ ( f m)∗ = (0), we deduce that 0 �= f ∗ is a socle element of grm(R). To prove that
R∗/ f ∗R∗ 
 grm(R/ f R), it is enough to show the equality ( f R)∗ = f ∗R∗ . Clearly f ∗ ∈ ( f R)∗ showing
one inclusion. For the other inclusion, take b ∈ R , we show that (bf )∗ ∈ f ∗R∗ . Indeed, if b /∈ m the
statement is trivial, so we may assume that b ∈ m. But then bf = 0 concluding the proof. Finally,
notice that for every i, H F R/ f R(i) = H F R∗/( f R)∗(i) = H F R∗/ f ∗ R∗ (i) and H F R(i) = H F R∗ (i). Therefore,
it is enough to prove the statement in the homogeneous settings, which is a well-known result. �

We now show that Question 2.1 holds true for ideals defining algebras with multiplicity c + 4.

Theorem 6.4. Let (R,m) be a regular local ring containing a field of characteristic �= 2 and I a Cohen–
Macaulay R-ideal that is generically a complete intersection. Assume e(R/I) = c +4, where c = ecodim(R/I).

(a) If c � 5, then I/I2 (equivalently, R/I2) is not Cohen–Macaulay.
(b) If c � 4 and I/I2 (or R/I2) is Cohen–Macaulay, then R/I is Gorenstein.

Proof. First of all, we employ Lemma 2.7 and Proposition 2.6 to assume that c � 3, I ⊆ m2 and
ht I = c. Then, by Proposition 2.9, we have that e(R/I2) = (c +1)e(R/I). As before, after factoring out a
minimal reduction of the maximal ideal of R/I generated by a system of parameters, we may assume
that I is an m-primary ideal (not necessarily generically a complete intersection) with multiplicity (or,
equivalently, length) c + 4. Now, (a) simply follows from Proposition 6.1. For (b), since c = 3 or 4, the
only possible Hilbert functions of R/I are:

(I) 1 c 3 0 . . . . . . . . . 0 . . .

(II) 1 c 2 1 0 . . . . . . 0 . . .

(III) 1 c 1 1 1 0 . . . 0 . . .

Since in case (I) the algebra is short, Proposition 5.5 completes the proof. In case (III), the algebra
is stretched, hence the conclusion follows by Theorem 3.5. We are then left with case (II). Assume by
contradiction that R/I is not Gorenstein. We show that this forces λ(R/I2) > (c + 1)(c + 4), contra-
dicting the previously proved equality e(R/I2) = (c + 1)e(R/I).

Since R/I is not Gorenstein, R/I has a socle element of initial degree 1 or 2. We first deal with the
case where there exists a socle element of initial degree 1. Since it is part of a minimal generating set
of the maximal ideal, we may write m = (x1, . . . , xc), where x1 is a socle element of R/I . Notice that,
after passing to the completion, we may assume that R is a power series ring over k in the variables
x1, . . . , xc .

Let c = 4. Then I = (x1m,q1, . . . ,q4, g,m4), where g is a combination (with unit coefficients) of
monomials of degree 3 in x2, x3, x4 and all the q′

i s have initial degree 2 and involve only x2, x3, x4.
Since x1 is a socle element, by Lemma 6.3 the Hilbert function of R/(I, x1) is

1 3 2 1 0−→ .

Hence (x1m
2, (q1, . . . ,q4)m) �= m3 and (x2

1m
2, x1(q1, . . . ,q4)m) is strictly contained in x1m

3. Now
I2 ⊆ (x2

1m
2, x1(q1, . . . ,q4)m,qiq j,1 � i � j � 4,m5) � (x1m

3,qiq j,1 � i � j � 4,m5),
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λ
(

R/I2) > λ
(

R/
(
x1m

3,qiq j,1 � i � j � 4,m5))
� 1 + 4 + 10 + 20 + 5 = 40 = (c + 1)e(R/I),

and we are done.
Now, assume c = 3. Since (c + 1)e(R/I) = 28, our goal is to show that λ(R/I2) � 29. Similarly

to the above argument, I = (x1m,q, g,m4), where q and g involve only x2, x3, q has initial de-
gree 2 and g is a combination (with unit coefficients) of monomials of degree 3 in x2, x3. Then
I2 ⊆ (x2

1m
2, x1qm,q2, x1 gm,qg,m6) and similar to the above one gets that

λ
(

R/I2) � λ
(

R/
(
x2

1m
2, x1qm,q2, x1 gm,qg,m6))� 1 + 3 + 6 + 10 + 6 + 3 = 29.

Hence, from now on we may assume that R/I has no socle elements in m\m2.
First, consider c = 4. Then, there exists an element q9 ∈ m2\m3 with q9 ∈ soc(R/I) and q∗

9 /∈ I∗ .
By Lemma 6.3, K := (I,q9) defines a stretched Artinian algebra of socle degree 3 and there exist
x1, . . . , x4 in m\m2 so that a generating set of K can be described as in Theorem 3.3. Observe that
I2 ⊆ L = (x1, x2, x3)H + (x1, x2, x3)x4

4 + (x6
4), where H is as in Proposition 3.4. Since

e
(

R/I2) = λ
(

R/I2) � λ(R/L) � 1 + 4 +
(

4 + 1

2

)
+

(
4 + 2

3

)
+ 4 + 1 = 40 = (c + 1)e(R/I),

to finish the proof, it is enough to prove that I2 � L. If R/K has type 3 or 4, we are done by Propo-
sition 3.4. So assume R/K has type 1 or 2, then K has nine minimal generators, say, q1, . . . ,q9. The
same idea of Remark 5.2 shows that we can further assume that R is k[x1, . . . , x4] and I is gen-
erated by polynomials whose homogeneous components have degrees 2 and 3 (this follows from
m4 ⊆ I ⊆ m2 and the fact that k[x1, . . . , x4]/I 
 k[[x1, . . . , x4]]/I).

Notice that I = (q1, . . . ,q8,q9m). Also, the description of K yields that for every i one has
qi = Q i + ai x3

4 for some Q i homogeneous of degree 2 and ai (either zero or unit) in R . Since
I2 = (qiq j,qiq9m,1 � i, j � 8,q2

9m
2) ⊆ K 2 = (qiq j,1 � i, j � 9) ⊆ L, if I2 = K 2 = L, an application

of Nakayama’s lemma – after going modulo (qiq j,1 � i, j � 8) – shows that L = (qiq j,1 � i, j � 8) =
(q1, . . . ,q8)

2.
Set R̃ = R[t], where t is a variable over R . For 1 � i � 9, let q̃i be obtained from qi by replacing x3

4
by x2

4t , and set K̃ = (q̃1, . . . , q̃9)R̃ and J̃ = (q̃1, . . . , q̃8)R̃ . It is easy to see that K̃ 2 = L̃ = (x1, x2, x3)H +
(x1, x2, x3)x3

4t + (x4
4t2). Now we have J̃ 2 ⊆ L̃.

Let π(·) denote the images modulo t − x4. We have that π( J̃ 2) = π(L̃) = L. Since L̃ is a monomial
ideal, one can check that t − x4 is regular on R̃/L̃. Hence L̃ = J̃ 2 + (t − x4)R̃ ∩ L̃ = J̃ 2 + (t − x4)L̃. By
Nakayama’s lemma, L̃ = J̃ 2. Now set t = 1. Then, q̃1, . . . , q̃8 become homogeneous of degree two, say
q′

1, . . .q′
8 and we have that (q′

1, . . .q′
8)

2 = m2. This fact yields a contradiction to [6, Theorem 2.4] (see
also the proof of Proposition 5.5).

Assume, finally, that c = 3. Observe that I = (g1, g2, g3, g4, g5m), (I, g5) = (g1, g2, g3, g4, g5),
where all the g′

i s have initial degree 2 and g5 ∈ Soc(R/I), g5 /∈ I . There are two cases. First
case, (I, g5) is a stretched Gorenstein ideal. Then, I2 = (gi g j,1 � i, j � 4, gi g5m,1 � i � 4, g2

5m
2) ⊆

(I, g5)
2 = (gi g j,1 � i, j � 5) = (x1, x2)H + (x1, x2)x4

3 + (x6
3). Since the number of minimal generators

of (I, g5)
2 is 15, it is generated minimally by gi g j,1 � i, j � 5. The ideal I2 contains only 10 mini-

mal generators of them, hence λ((I, g5)
2/I2) � 5. Therefore λ(R/I2) = λ(R/(I, g5)

2)+λ((I, g5)
2/I2) �

(1 + 3 + (3+1
2

) + (3+2
3

) + 3 + 1) + 5 = 29 > 28 = (c + 1)e(R/I).
Second case, R/(I, g5) is not Gorenstein. If τ (R/(I, g5)) = 2, then (I, g5)

2 = (x1, x2)H + (x2x4
3 −

ux3
2x3, x6

3 + u2x4
2) which has 13 minimal generators. I2 contains at most 10 of them. Hence,

λ
(

R/I2) = λ(R/L) + λ
(
L/(I, g5)

2) + λ
(
(I, g5)

2/I2) � 24 + 2 + 3 = 29,



P. Mantero, Y. Xie / Journal of Algebra 372 (2012) 35–55 53
and the proof is finished. Finally, if τ (R/(I, g5)) = 3, then (I, g5) = (x1, x2)m + (x4
3). Hence

λ(R/(I, g5)
2) = 1 + 3 + 6 + 10 + 3 + 3 + 1 + 1 = 28. Since (I, g5) has 12 minimal generators, then

λ(R/I2) � 28 + 2 = 30, providing the desired contradiction. �
As a consequence of Theorems 6.2 and 6.4, we give a positive answer to Question 2.1 for ideals

defining algebras with low multiplicity.

Corollary 6.5. Question 2.1 holds true for I with e(R/I)� c + 4, where c = ecodim(R/I).

In particular, Question 2.1 holds true for some irreducible algebroid curves.

Corollary 6.6. Let S = k[[ f1(t), . . . , fn(t)]] for some power series f1, . . . , fn in k[[t]] and assume none of the
fi ’s is redundant. Let R = k[[X1, . . . , Xn]] and p the prime R-ideal defining S. If ai := in deg( f i) � n + 3 for
some i, then Question 2.1 holds true for p.

In particular, if S = k[[ta1 , . . . , tan ]] 
 R/p, where none of the tai is redundant, and ai � n + 3 for some i,
then Question 2.1 holds true for p.

Proof. In this setting, it is well known that n = c + 1 and e(R/p) � a j for every j. Hence ai � n + 3
for some i implies that e(R/p)� c + 4. Now apply Corollary 6.5. �
7. Counterexamples and sharpness of the main result

In this section we provide examples of ideals for which Question 2.1 has a negative answer. To our
best knowledge, they are the first negative examples for the question. We employ these examples to
show the sharpness of Theorem 1.1(d)–(e).

We begin by exhibiting an example found with the help of J.C. Migliore and CoCoA [5]. Then, we
deform it using the theory of universal linkage (see Proposition 2.8) to obtain also a prime ideal (with
the same multiplicity) that does not enjoy the property stated in Question 2.1. Finally, we conjecture
that in Pc a certain number of points (function of c) gives a counterexample to Question 2.1 in any
embedding codimension c � 5.

Example 7.1. (a) Let S = k[a,b, c,d, e, f ] be a polynomial ring over k, where k is either Q or Z/31991Z
and let M = (a,dots, f ). Then a homogeneous level ideal I in S defining 10 general points gives a
negative answer to the homogeneous version of Question 2.1, i.e., I/I2 and S/I2 are Cohen–Macaulay
but S/I is not Gorenstein. Also, S/I is a short algebra with socdeg(S/I) = 2, τ (S/I) = 4, c = 5 and
e(S/I) = c + 5.

(b) There exist a regular local ring (R,m) and a prime ideal p such that p/p2 and R/p2 are Cohen–
Macaulay but R/p is not Gorenstein. R/p has multiplicity c + 5, where c = ecodim(R/p).

Proof. (a) In S = k[a,b, c,d, e, f ], using the package ‘IdealOfProjectivePoints’ (see [1]), one obtains the
following homogeneous ideal which defines a set of 10 general points in P5:

I = (
e2 f + 2963bf 2 + 4964cf 2 + 5333df 2 − 13261ef 2,

af − 13894bf + 12842cf + 4036df − 2985ef ,de + 3056bf + 12160cf + 971df + 15803ef ,

ce − 2357bf − 14460cf + 3040df + 13776ef ,be − 8504bf + 1159cf − 1581df + 8925ef ,

ae − 9147bf + 1379cf + 4167df + 3600ef , cd + 7380bf + 5885cf + 6255df + 12470ef ,

bd − 11676bf − 2833cf − 13277df − 4206ef ,ad + 5555bf + 2017cf + 2100df − 9673ef ,

bc + 5653bf − 6596cf − 8208df + 9150ef ,ac − 2335bf − 10387cf + 514df + 12207ef ,
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ab − 8324bf − 7688cf − 4252df − 11728ef ,

b2 f + 15536bf 2 + 1265cf 2 + 9888df 2 + 5301ef 2,

d2 f + 10625bf 2 − 11725cf 2 + 9514df 2 − 8415ef 2,

c2 f + 11390bf 2 + 7112cf 2 − 10319df 2 − 8184ef 2).
Using CoCoA for instance, one can see that the H-vector of S/I is

1 5 4

proving that c = 5, e(S/I) = c + 5, and S/I is a short algebra with socdeg(S/I) = 2. By the Betti
diagram of S/I , one has that S/I is level which implies that τ (S/I) = 4. Finally the Betti diagram of
S/I2 shows that S/I2 is Cohen–Macaulay, yielding that I/I2 is Cohen–Macaulay too.

(b) The first statement follows from part (a) and Proposition 2.8. For the second part of the state-
ment, since (R,p) is a deformation of a (SM , J M) one gets automatically

e(R/p) � e(SM/ J M) = c + 5.

In general, this inequality may be strict, however in this case it must be an equality. Indeed, assume
by contradiction that e(R/p) < c + 5. Then, p is an ideal satisfying the assumptions of Question 2.1
and for which the question has a negative answer. However, since the multiplicity of R/p is at most
c + 4, p would contradict Theorems 1.1(d) and Theorem 6.5. Therefore, one must have

e(R/p) = c + 5. �
Since both these examples have multiplicity c + 5, they show that Corollary 6.5 is sharp. Further-

more, Example 7.1 shows that the numerical estimates presented in Proposition 5.5 are very sharp too.
Indeed, for the case c = 5, Proposition 5.5 implies that I/I2 is not Cohen–Macaulay for any q �= 11 (us-
ing the notation of Proposition 5.5). While for q = 11, we have the above counterexample, showing
that I/I2 is Cohen–Macaulay.

Similarly, when c = 6, Proposition 5.5(a) and (b) show that I/I2 is not Cohen–Macaulay for any
q �= 16. However, for q = 16, J.C. Migliore found with CoCoA [5] a set of 12 general points in P6 with
I/I2 Cohen–Macaulay but R/I not Gorenstein.

It would be natural to conjecture that a set consisting of 2c general points in Pc gives a negative
answer to Question 2.1 for any c � 5. However, this is false. Indeed, a set of 14 general points in P7

does not give a counterexample to the question.
Instead, we conjecture that the estimate of Proposition 5.5 is sharp and if we go past this num-

ber we get counterexamples to Question 2.1 in any codimension at least 5. We now state this
more precisely. Let �x� denote the smallest integer bigger than or equal to a given real number x.
Then,

Conjecture 7.2. For any c � 5, the homogeneous ideal I defined by a set of 1 + c + � c(c−1)
6 � general points in

Pc has the property that I/I2 is Cohen–Macaulay, but R/I is not Gorenstein.

Our conjecture is supported by data obtained by J.C. Migliore. In fact, using CoCoA, he checked
that, for any c � 10, Conjecture 7.2 holds true and indeed provides the smallest set of (general) points
in Pc giving a counterexample to Question 2.1.
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