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Lipschitz Functions on Classical Spaces 

W. T. GOWERS 

We show that, for every E > 0 and every Lipschitz function f from the unit sphere of the 

Banach space c,, to R, there is an infinite-dimensional subspace of cO, on the unit sphere of 

which f varies by at most E. This result is closely related to a theorem of Hindman, and a well 

known open problem in Banach space theory. 

A famous question in Banach space theory, known as the distortion problem, asks 
whether, given 1 <p <CO and E > 0, it is true that every space isomorphic to 1, has a 
subspace which is (1 + &)-isomorphic to 1,. While a straightforward result of James [lo] 
shows that the corresponding question for 1, or c0 has a positive answer, there has 
been very little progress on the distortion problem itself. The reason the question is 
easier for I, and co is that it is possible to use the triangle inequality in a very strong 
way to obtain a bound in one direction for the equivalent norm. On the other hand, 
when 1 <:p < m, it is known, and not hard to show, that the problem is equivalent to 
the following question. Given E > 0 and a real-valued Lipschitz function f on the unit 
sphere of I,, does there exist an infinite-dimensional subspace of I, on the unit sphere 
of which f varies by at most E? Since arbitrary Lipschitz functions need not obey the 
triangle inequality, it is clear that this is a very different problem from the I, or co case. 

It also suggests very naturally the question of whether Lipschitz functions on the unit 
spheres of I, and cg can be restricted to unit spheres of infinite-dimensional subspaces 
on which they are almost constant. This question is certainly not equivalent to the 
result of James. Indeed, a positive answer for 1, would imply a positive answer when 
1 <p < ~0. In this paper we shall give a positive answer for co. This suggests that it is 
not unreasonable to hope for a positive answer in general. On the other hand, there 
are of course special features of co that make it easy to deal with. We shall discuss this 
at the end of the paper. 

The main idea of the proof is to exploit analogies with an important result of 
Hindman [8]. In 1975 he proved a conjecture of Graham and Rothschild by showing 
that, given any finite colouring of N, there exists an infinite sequence n,, n2, . . such 
that, for any finite set A c N, the colour of CieA ni is the same. This theorem has an 
equivalent formulation in terms of colourings of N (-J) the set of finite subsets of N. , 
Given X, YE N”“‘, let us write X < Y if max X < min Y. Then, given any finite 
colouring of N”“‘, there exists an infinite sequence X, < X2 < . . . of elements of fVi”‘) 
such that, for any A E N (<o), the colour of lJisA X, is the same. Hindman’s theorem in 
this form can be regarded as the natural discrete analogue of the distortion problem. 

The ‘finite unions version’ of Hindman’s theorem can be regarded as a theorem 
about finite words in an alphabet consisting of the two letters 0 and 1, and as such has 
been generalized by Carlson and Simpson [4], Carlson [3] and Furstenberg and 
Katznelson [6] to theorems concerning larger alphabets. The theorem of Carlson and 
Simpson is an infinite version of the Hales-Jewett theorem, while that of Furstenberg 
and Katznelson is a refinement of the Carlson-Simpson theorem. In both these 
theorems, the alphabet concerned is a finite set with no order (although for 
Furstenberg and Katznelson it has preferred elements). In this paper we prove another 
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natural generalization of Hindman’s theorem, this time using a totally ordered alphabet 
and proving a result which respects the order. Our proof has certain obvious 
similarities with the methods of [3] and [6], and generalizes Glazer’s remarkable proof 
of Hindman’s theorem (cf. [7]). In particular, the inductive step of our Lemma 3 is 
standard (cf. [6, Theorem 1.31). Since our proof is quite short, we give it in full, except 
for Lemma 2, which is well known, and a number of elementary facts that need to be 
checked, and have been checked elsewhere (see, e.g., [9]). 

As a consequence, we shall deduce easily that a Lipschitz function on the unit sphere 
of c0 which does not depend on the signs of the co-ordinates of any vector can be 
restricted to the unit sphere of an infinite-dimensional subspace on which it is almost 
constant. The general case is a little harder, because the obvious candidate for a 
combinatorial result which would imply it is false. Instead, we prove an ‘approximate 
Ramsey result’ which states, roughly speaking, that if a certain discrete structure is 
coloured with finitely many colours, then it has an infinite substructure, all of the 
points of which are close to a point of one particular colour. This turns out to be 
sufficient for our purposes. 

Before stating our first theorem, we shall introduce some notation. Let us write 
No = N U (0). Then, for any k E lV, let the shift T: N,“+ FVt be defined by 

T: (~tr, 122, . . . , n,c)-(0, n,, . . , ~-1) 

and let X, = N$TN,k= {(n,, . . . , nk): n, f O}. Given a subset A = {ni: i E I} c X, 
indexed by a set I, we shall say that the subspace generated by A is the set of elements 
of IV; of the form 

5 2 Tj-'ni, 
j=l ietl, 

where Bi, . . . , Bk are disjoint subsets of I and B1 is non-empty. Note that the 
conditions that A c X, and that B, is non-empty ensure that the subspace generated by 
A is in fact a subset of X,. Later, it will become clear why we use the word ‘subspace’, 
when we use this combinatorial structure to obtain results about the unit sphere of cO. 

Given any set X, a fifinite colouring of X is a partition of X into finitely many subsets 
c,u.* - U c,. We shall refer to a finite colouring as simply a colouring. The subsets 

Cl, . . . 3 c, are said to be colour classes, and a subset Y CX is said to be 
monochromatic if Y is contained in a single colour class. We can now state our first 
result. 

THEOREM 1. Let k, r E N and let X, = c1 U. - . U c, be a colouring of X, with r 
colours. Then there exists a monochromatic subspace of X, generated by an infinite set, 

The case k = 1 of Theorem 1 is simply Hindman’s theorem. In order to prove the 
result in general, we rely heavily on the following lemma, which was also used by 
Glazer. 

LEMMA 2. Let (S, +) be a compact Hausdofl semigroup such that the function 
y HY +x on S is continuous for every x E S. Then there exists an idempotent; that is, 
an element x E S such that x + x = x. 

The compact semigroup used by Glazer was the set of ultrafilters on N, with the 
product topology and an addition which we shall soon describe. We shall also use 
ultrafilters a great deal, and the following notation will be very useful for simplifying 
the presentation of proofs (cf. [l]). Given a set X and an ultrafilter (Y on X, let the 
symbol A, be defined as follows. If P(x) is any proposition involving the elements of 
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X, then when we write (A&)P( x we mean {x E X: P(x)} E o. (‘(&x)P(x)’ can be ) 
read ‘for a lot, of x, P(x)‘.) Syntactically, A, behaves like a quantifier, and there 
seems to be no harm in calling it one. If X is a semigroup, then the set U(X) of 
ultrafilters on X can be turned into a compact semigroup by giving it the product 
topology and setting 

In the case X = N, this was the addition used by Glazer. It is not hard to verify that 
this operation on U(X) is right-continuous. By Lemma 2, it follows that U(X) contains 
an idempotent. 

Given k * 2, let a ‘shift’ operator S: U(X,)-, c/(X,_,) be defined as follows. For any 
CY E U(X,+) we define S(CY) E U(Xk_-l) to be the set 

{A c X,_,: (A,x)Tx E A}. 

It is not hard to check that the operator S is continuous. 
Given any j < k E N, there is an obvious identification between Xj and Tk-‘X,. We 

may therefore define a map +: (Xj, Xk)* Xk by 

(ml,. . . , mi)+(nl,. . . , nk)=(nl,. . . , n&;, ml +n.&,+], . . . , mj+fla). 

We aiS0 define the map +: (Xk, Xj)+ Xk in a similar way. We can define correspond- 
ing maps on the spaces of ultrafilters. For example, the map +: (u(Xk), U(X,))- 
u(Xk) is defined by setting 

(Y + p = {A c Xk: (A,X E Xk)(Aoy E Xj)X + y E A}. 

It is not hard to verify that these maps are all right-continuous. It is also not hard to 
verify that, if j, k 3 2, then S((Y + /3) = Sa + S/3 for any (Y E U(X,), /3 E U(X,), and, if 
lsj<k, then S(a+/3)=S(/3+(~)=@ f or any cr E U(X,), 0 E u(Xk). Finally, one 
can check that K’cr is non-empty for every LY E U(Xk-,). 

We may now state and prove the main lemma upon which Theorem 1 depends. As 
we mentioned in the introduction, the basic idea of the proof is now fairly standard. 

LEMMA 3. For every k E N there exists an ultrajilter (Y E V(X,J such that Sja + (Y =: 
m+Sja=mforeachO<j<k-1. 

PROOF. We use induction on k. The case k = 1 follows from Lemma 2 and the 
remarks just after it. Indeed, we take the semigroup to be V(X,) = V(N), with the 
addition as defined above. So now let us suppose that there exists /3 E u(X&,) such 
that SjB+B=/I+Sj#I=/l for every Ocj < k - 2. Then, since S is continuous and 
u(Xk) iS COmpaCt, s-‘/3 iS a COIqXd subset Of v(&). Since addition is right- 
continuous, the set S-‘/z? + /3 is also compact. It is closed under addition, since, if 

SY, = SY, = B, then s(y,+/ZI+yz)=syI+s/3+Sy:=/3+s/3+/3=/3+p=~~. 
Therefore, by Lemma 2, there exists y E S-‘/l such that (y + /3) + (y + /3) = y + 0. 

To complete the proof, set (Y = /3 + y + /I. Then, if 1 <j 6 k - 1, we have 

(Y + s’cu = /3 + y + J3 + sj/3 + P/3 + sjg = /3 + y + /3 = Cr. 

Similarly, Sjcu + (Y = a: Furthermore, 

CY+cu=/.I+y+/3+~+y+/3=/3+(y+/3)+(y+/3)=fi+(y+@)=cu. 

Therefore, (Y will do. 

PROOF OF THEOREM 1. Given a finite sequence n,, . . . , n, of elements of X,, let 
(n,, . . , n,) denote the subspace generated by {n,, . . , n,}. Let (Y E U(X,) be an 
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ultrafilter of the kind guaranteed to exist by Lemma 3, and let us write A for A,. It 
follows immediately from Lemma 3 that, given any subset A c X,. we have (hr)x E A 
iff (A)(Ay)(x, y) CA. Given an r-colouring of X,, let c, be the unique colour for 
which (Ax)x E c, and set Al = c,. By the above remarks, we have (hr)(Ay)(x, y > c A,. 
Pick x1 E X, such that (Ay)(x,, y) CA, and set A2 =A1 n {y: (x,, y) CA,}. Then, 
since (Y is a filter, (A.K)x E A,, and this implies that (Ax)(Ay)(x, y ) CA*. Pick x2 such 
that (Ay)(x2, y) cA2 and note that this implies that (Ay)(x,, x2, y) c Al. Continuing 
this process, we produce an infinite sequence x1, x2, . . . such that the subspace it 
generates is contained in A 1; that is, is monochromatic of colour c,. 0 

We come now to a ‘finite unions version’ of Theorem 1. Let us set Yk to be the set of 
functions f: N-, (0, 1, . . . , k} which are finitely supported and take the value k at 
least once. Given f E Yk, we write supp(f) f or its support. Define a shift operator 
T: Yk+ Yk_l by setting (Tf)(n) = (f(n) - 1) v 0. If I = N or [n] for some integer n, 
and A = {jj: i E I} c Yk is a set of functions with the property that max supp(JJ < 
min supp(f,) whenever i <j, then the subspace generated by A is the collection of 
functions of the form &T’;L, where ri = k in all but finitely many cases and rj = 0 at 
least once. There is an obvious isomorphism between Y, and any infinitely generated 
subspace. Indeed, if the subspace is generated by fi, f2, . . . , then the isomorphism is 
given by 

(Xl, x2, . . . ) ++ 2 Tk--xlf;. 
i=l 

It will be helpful to identify RJCCo) with Yi in the obvious way, i.e. by associating each 
set in N(‘“) with its characteristic function. 

In order to deduce our next theorem from Theorem 1 we shall need a simple lemma. 

LEMMA 4. Let n,, n2, . . . be an infinite sequence of elements of I$. Then, for every 
ME N, there exists a finite subset A c N such that every co-ordinate of CieA ni is 
divisible by M. 

PROOF. By the pigeonhole principle, there exists integers tl, . . . , tk and an infinite 
subset S c N such that the jth co-ordinate of ni is tj, modulo 2”, for every 1 c j < k and 
i E S. Let A be any subset of S of cardinality 2”. q 

THEOREM 5. Let k, n E N, and let Yk be coloured with r colours cl, . . . , c,. Then Yk 
contains a monochromatic subspace generated by an infinite set. 

PROOF. Let 4: N+ Iv--) be the usual binary correspondence and let f#~: Xk + Yk 
be defined by 

+: (4,. . . , nk)~m={kd44), (k - l)4(n2), . . . I $<nk)} 

where this is, of course, a pointwise maximum of functions. 
Let X, be as defined before Theorem 1, and let it be coloured by setting the colour 

of n to be the colour of #(n) in Yk. By Theorem 1, Xk contains a monochromatic 
subspace generated by an infinite sequence n,, n2, . . . . Note that, given any sequence 

Ai, A2,. . . of disjoint finite subsets of N, if we set n,! = CjeA, nj, then the subspace 
generated by ni, II& n,, n2, . . . and hence 
is monochromatic of the same colour. We shall choose such a subspace inductively as 
follows. Let Al = 1, and, having chosen A,, . . . , A,, let n: = C,ea,nj. Then +(n:) is 

certainly supported on { 1,2, . . . , m} for some m. By Lemma 4, we may choose A,,, 
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so that every co-ordinate of II:+, = CjsA,+, nj is divisible by 2”. It is easy to see that 

min supp(#(n:+l)) is therefore greater than m. Setting 5 = @(I$), we now have 
max supp(f;:) > min supp(f,) w h enever i < j. It is also easy to check that the image of 
the subspace of X, generated by n;, n;, . . . is the subspace of Yk generated by 
f,, f2, . . The result follows. ci 

We are only a short step away from the first of our results about Lipschitz functions 
on co. Let us recall and introduce some definitions concerning normed spaces and 
bases. If X is a normed space, let S(X) denote its unit sphere; that is, the set of vectors 
in X of norm 1. If x1, x2, . . . is a given basis for X, and a E X, then a = CT=, a,~, for 
some a,, u2, . . . : the support of a, written supp(a), is defined to be the set 
{i E N: a, ZO}. A vector a is said to be finitely supported if its support is finite. A 
blockbasisofx,,n2 ,... isasequence)i,,y, ,... of finitely supported vectors with the 
property that max supp(yi) < min supp(yj) whenever 1 s i < j < w. In particular, the 
supports of two distinct vectors in a block basis are disjoint. A basis x1, x2, . . . is said 
to be normalized if all the vectors in it are of norm 1. If a = CT=, UiXi E X, we write Ial 
for CT=, IaiJ Xi E X. Then ~1, ~2, . . . is said to be unconditional if la] E X whenever 
a E X, and l-unconditional if llall = Illalll f or every a E X. Note that the obvious bases 
of c0 and 1, (1 <p < 03) are normalized and l-unconditional. If X is a normed space 
with a given l-unconditional basis xl, x2, . . . and F: S(X)+ R is a real-valued 
function, we shall say that it is unconditional if F(a) = F(la1) for every a E S(X), and 
we shall call the set of vectors in S(X) with non-negative co-ordinates the positive part 
of S(X), denoted Z’S(X). If a E X, we shall say that it is positive if all its co-ordinates 
(with respect to x1, x2, . . . ) are non-negative; and if y,, y2, . . . is a block basis of 
x,, x2, . . . we shall say that it is positive if all the vectors in it are positive. Finally, a 
subspace of X generated by a (positive) block basis will be called a (positive) block 

subspace. 
Our immediate aim is to show that, given any unconditional Lipschitz function on 

S(c,) and E > 0, there is an infinite-dimensional block subspace on the unit sphere of 
which it varies by at most e. Now the condition that the function is unconditional 
allows us to restrict our attention to RS(c,). The importance of the collection of 
functions Yk that we have been discussing is that there is a natural bijection between Yk 

and a &net of Z’S(c,) (where, of course, 6 depends on k) with the property that the 
subspaces of Y,, as defined earlier, correspond to &nets of the positive parts of 
positive block subspaces of co. This explains our use of the word ‘subspace’. To deduce 
the next theorem from Theorem 5, we have to do little more than exhibit the bijection. 

THEOREM 6. Let F be an unconditional Lipschitz function on S(c,). Then, for uny 
e > 0, there exists an infinite-dimensional positive block subspace X of c,, such that F 
varies by at most E on S(X). 

PROOF. Without loss of generality, F has Lipschitz constant 1. Let 6 = c/2. There is 
a natural b-net of RS(c,); namely, the collection of functions f: N--P { 1, (1 + 
a)-‘, . . , (1 + 6)-“‘-*I} which are finitely supported and take the value 1 at least 
once, where k is chosen so that (1 + 8)--(k-1) < 6. Let us write A for this collection of 
functions. 

Since F is Lipschitz, there exists an interval [a, b) c R such that F(S(c,)) c [a, b). 
Let I’ be such that a + r& 3 b and let the intervals Z1, . . . , Z, be defined by 
4 = [u + (j - 1)6, a +jS) for each 1 ~j c r. Given f E A, let us colour f according to 
the interval Zj in which F(f) falls. 
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Now there is an obvious bijection between A and Y,. Indeed, let us define a map 
q~: A-Y, by 

k + h3+* f(n) (Vf)(n) = (o f(n)#O 
f(n)=0 

The colouring on A induces a colouring on Yk. By Theorem 5, Yk contains a 
monochromatic subspace in this colouring, generated by an infinite set. This set 
corresponds to a block basis of co, and it is not hard to see that the subspace 
generated by the set corresponds to a b-net of the positive part of the unit sphere of 
the subspace generated by the block basis in c o. Therefore, since F is unconditional and 
varies by at most 6 on this set, it can vary by at most 26 = E on the whole of the unit 
sphere of the subspace. This completes the proof of Theorem 6. 0 

We shall now extend Theorem 6 to arbitrary Lipschitz functions. The proof becomes 
harder, because, as we commented earlier, the most obvious combinatorial approach 
does not work, and must be replaced with an ‘approximate Ramsey result’, rather than 
an exact one. 

To begin with, let us define a new discrete structure, which will be in a natural l-l 
correspondence with a &net of the whole of the unit sphere of co, rather than just the 
positive part. Given k E N, let 2, be the set of functions f: N+ {-k, -(k - l), . . . , k} 
which take the value 0 all but finitely many times and one of the values fk at least 
once. Let the shift T be defined by 

Uf )W = sidf W>((lf (4 - 1) v 0). 

If the functions {A: i E Z} are disjointly supported, then let fhe subspace generated by 
{f;:: i E Z} be defined to be the set of functions of the form 

whereA,, . . . ,Ak, B1,. . . , Bk are all finite and disjoint, and at least one of Ak and Bk 
is non-empty. Note that the subspace generated by {f;: i E Z} is, as we would wish, a 
subset of Zk. 

If every colouring of Zk yielded an infinite monochromatic subspace, then we would 
be done, by imitating the deduction of Theorem 6 from Theorem 5. However, it does 
not take long to see that this is not the case. For example, if we colour each function f 
by the sign of its first non-zero co-ordinate, then f and -f are always coloured 
differently. Alternatively, if we color f RED if the first and last non-zero co-ordinates 
have the same sign and BLUE otherwise, then, given any two disjointly supported 
functions f, g E zk, the colours off + g and f -g are different. This second colouring 
shows that it is no use dealing with the first one by restricting our attention to 
colourings for which the colour off is always the same as the colour of -f. 

One might think that a small adaptation of the above examples would be enough to 
produce a Lipschitz function on S(co) that varied by at least E on the unit sphere of any 
infinite-dimensional subspace, for some E > 0. However, a little experiment should 
convince the reader that this is not so. The next result is the ‘approximate Ramsey 
result’ which will enable us to show that there is no such function. The proof will take 
up most of the rest of the paper, and will need several lemmas. We shall need a 
small piece of notation for the statement. Given a set A c zk, we define k to be 

{f EZk:(3gEA) iif -gbsl). 
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THEOREM 7. Let 2, be finitely coioured. Then there exists a colour class A c Zk and 
an infinite subspace W c Z, such that W c A. 

Thus, loosely speaking, the theorem claims that, given any finite colouring of Z,, 
there exists a colour A and an infinite subspace of Zk every point of which is close to a 
point in A. In order to prove this approximation of a Ramsey result, we shall construct 
a filter that approximates an ultrafilter, in a sense that will become clear. 

The next lemma is in a sense the finite-dimensional version of what we want. It is 
perhaps surprising that the finite-dimensional version should be useful for providing 
the infinite-dimensional version, but this seems to be the case. The meanings of the 
terms block basis and block subspace in a finite-dimensional context are the obvious 
ones. Also, if A is a subset of a metric space Y, then A, stands for the set 
{ y E Y: d( y, A) 6 E}. 

LEMMA 8. Let k, n E N and E > 0. If N = N(n, E) is suficiently large, then, given any 
decomposition S(ff) = A, U * - - U Ak, there exists a block subspace X c 12 and 1 s i c k 
such that dim(X) = n and X c (A&. 

PROOF. We begin by proving a similar result for a decomposition of S(c,) in the 
case k = 2. Let S(cO) = A U B and let a Lipschitz function F be defined on S(c,) by 
F(x) = d(x, A). By an obvious adaptation from norms to Lipschitz functions of the 
methods of [2] or [5], one can find, for any M E N, a block subspace X = {x1, . . , x,+,) 
of cg such that, whenever x = CE, aixi, y = Cfr, bixi are in S(X) and Jail = l&l for each 
i, we have /F(x) - F(y)/ s e/2. Let us pick such a subspace X and let G be the 
unconditional Lipschitz function defined on S(I,“) by 

Iall = (ai1 for each i . 

By the finite version of Theorem 6, which follows easily from the compactness of the 
unit sphere of Zz for every n (cf., e.g., [7]), we have that if M is large enough then 1,” 
has an n-dimensional block subspace, on the unit sphere of which G varies by at most 
c/2. It follows easily that X has a block subspace on which F varies by at most E. 
Hence, we must either have Y c A, or Y c A’ c B. 

This establishes the result for S(Q) when k = 2. By compactness once again, we 
deduce the lemma as stated for k = 2. The general case follows easily. q 

Let us say that a subset A c S(c,) is n-large if, for every n-dimensional block 
subspace X of co, A fl X # 0. We shall call a subset that is n-large for some n finitely 
Large. Given a set S of elements of Yk, Zk, let (S) denote the subspace generated by 
S, when this is defined, and if S c X for a normed space X, let (S) denote the unit 
sphere of the subspace generated by S. We shall suppress set brackets when they 
appear; so, for example, if {x1, . . . , x,} is a subset of co, then (x1, . . . , x, ) denotes 
the unit sphere of the subspace generated by {x1, . . . , x,}. Also, if the space X under 
discussion is c,, or 1, for 1 <p < co., let e,, e2, . _ . be the standard basis of X. Let us 
write X,, for the set (e,, e,,,, . . .). Given a filter LY on S(c,) or S(I,), we shall say that 
it is cojinite if, for every n E N, X, E cr. Note that the sets X, are all finitely large. 

COROLLARY 9. Let /? = {A, fl Xn: E > 0, A c S(c,) is finitely large, n E fW}. Then j3 is 
a Biter-base. 
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PROOF. Since we can restrict our attention to an appropriate X,, it is clearly 
enough to show that if A and B are finitely large and E > 0, then there exist C c S(c,,) 
and 6 > 0 such that C is finitely large and C, c A, n B,. Pick a such that A and B are 
both n-large. Let N = N(n, s/4) be as given by Lemma 8 and let X be any 
n-dimensional block subspace of co. Then X is isometric to I,” and X c AE,2 U A&. By 
Lemma 8, X has an n-dimensional block subspace Y which is either contained in A3E,4 
or A&. Since A is n-large, the former must be the case. But then, since B is also 
n-large, B rl Y # 0. However, X was arbitrary, so Ajti4 fl B is N-large. But(A,,,, rl 
B)E,4 c A, fl B,, so we may set C = A3e,4 fl B and 6 = c/4. cl 

COROLLARY 10. There exists a cofinite filter a on S(c,) with the following two 
properties. First, whenever LJyCI Ai = S(c,) and E > 0, there exists 1 c i s n such that 
(A& is in au; and, second, whenever A E a, the set -A is aLso in a. 

PROOF. Let cy be a maximal filter on S(c,) with the following two properties. First, 
(Y extends the filter generated by /3 (and is therefore cofinite); and, second, -A, E a 
whenever A E a and E > 0. That such a maximal filter exists follows easily from Zorn’s 
lemma. We shall show that (Y has the first of the two properties in the statement of the 
theorem in the case n = 2. Indeed, suppose that A U B = S(c,) and let X c S(c,) be any 
2-dimensional block subspace. We claim that, for every 6 > 0, there exists x E X such 
that x E (A6 rl -A6) U (Bb n - B6). This is easy to see. If X c A or X c B then we are 
done. Otherwise, since X is connected, X n A n B # 0, and therefore there exists 
x E X rl A rl Bg. We are then obviously done, whether -x is in A or B. Thus, the set 
E(6) = (A6 n -A6) U (B6 n -B6) is 2-large, for every E > 0. It follows that E(6), E /3 
for every 6, 9 > 0 and hence that E(S), E (Y. 

Now suppose that neither A, nor B, is in (Y for some E > 0. Since (Y is maximal, there 
must be some C E (Y such that 

(cnA,)n-(cm,)=0 

and some D E (Y such that 

(DflB,)n-(DfIB,)=0. 

Without loss of generality, C = D since we can replace C and D by their intersection. 
It follows that 

(C II -C) tl ((AE i-i -A,) U (B, iI -BE)) = 0. 

It is not hard to check that (AC n -A,) 3 (AEa n -Ae,2)E,2 and (B, n -B,) I> (BE,* n 

-Bm&m It follows that 

(As r-r -A,) U (B, n -BE) = ((AED n -A.,) U (BE,2 n -B&)E/z. 

By our earlier remarks, this shows that (AC fl -A,) U (B, fl -BE) E a. But 
C tl -C E (Y by hypothesis, so we have contradicted the fact that LY was a filter. The 
result for general n follows easily. cl 

Given a filter on Z,, there is an obvious notion of cofiniteness corresponding to the 
case of filters on S(co). We shall say that a filter (Y is cofinite if, for every n E N, the 
subspace (ke,, ke,+i, . . .) is in LY. 

COROLLARY 11. For every k E N there exists a cofinite filter & on Zk such that, 
whenever &I Ai = Z,, there exists 16 i 6 n such that Ai E & and whenever A E ~5, 
-AC&. 
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PROOF. Let f#.~ : S(co) -9 Z, be defined by 

(@f)(n) = sign(f(n))(max{j E Z: (1 + 6)-‘k-i) c If(n)l} v 0). 

In other words, if one takes the obvious analogue of A in the whole of the unit sphere 
of co, the map @ ‘rounds down’ to the nearest point in the net A and takes the 
corresponding point of Zk. 

The filter & is defined by taking A c Zk to be in & iff @‘(A) E a, where cx is the filter 
constructed in Corollary 9. Now, if A c Zk and E is sufficiently small, then 
@((@ -‘(A))E) =A. Also, if lJr=, Ai = Z,, then lJyzl @-‘(Ai) = S(c,): so, for every 
E > 0, there exists 1 s i s n such that (@-‘(Ai))E is in (Y. It follows that, for some 
1 d i Q n, Ai is in &. Finally, if A c Zk, then @(--@-‘(A)) = -A, so clearly -A E & 

whenever A E ~5. Cl 

Note some important facts about-the filter constructed in Corollary 11. First, the set 
of filters on Z, which satisfy the conditions in the corollary is easily seen to be a closed 
subset of 2*‘*, so it is compact. Let us denote it by V(Z,). Given j, k E N, a E V(Zj) 

and B E V(Z,), let us set 

o + p = {A c Zjvk: (&X)(A~SY) supp(x) n ~~PP(Y) = 0, x + Y E A). 

Note that, since cy and p are cofinite, (&x)(&y) supp(x) rl supp(y) = 0. In order to 
avoid having to write supp(x) n supp(y) = 0, throughout, we shall now adopt the 
convention that the operation + is only defined on elements of Zj and Z, when they 
are disjointly supported. We shall show that (Y + /I E V(Zjvk). 

To show this, let us assume that j s k. (The case j 2 k is similar.) We must show that 
lJy=, Ai = Zk implies that Ai E cx + /3 for some 1 s i s n, and that A E Q + /3 implies that 
-A E a-t p. It will be convenient to write A/(x, y) for the statement Ily - ~11, < 1. 
(This can be loosely read ‘x is near to y’.) 

NOW let lJy=l Ai = Zk and, for every x E Zj, 1 cisn, letAlcZ,be{yEZk:X+yE 
Ai}. Then, for every x E Zj, we have lJyzl Af = Zk, so at least one & is in /I. We can 
rewrite this statement as 

(VX E ZjWi E [~I)(&Y)(~Y’)N(Y, Y’), x +y’ CA;. 

Since a E V(Zj), it follows that, for some 1 c i s n, 

(AaXMX’MX, X’)(A~Y)PY’P’(Y, ~‘1, X’+y’EAi. 

But x’ + y’ E Ai implies that x + y E Ai, SO for some i we have (A,x)(A, y)x + y E Ai. 
It is easy to see that if 

then 
(44(4 Y )x + Y E A 

(&X)&Y)--x -Y EA, 

which implies that (A,x)(As y)x + y E -A whenever A E CY + /I. This completes the 
verification that (Y + /3 E V(Z,). It is not hard to check also that the map from V(Zj) 
to V(Zjvk) defined by (YH (Y + b is continuous for every fl E Z,. 

We define a shift operator T: V(Z,)+ V(Z,_,) just as before; that is, by setting 

T(a) = {A E Zk_,: (A,x)Tx E A}. 

It is easy to check that T(V(Z,)) = V(Z,_,) and that T is continuous. 
We state the next lemma without proof, since the simple facts we have just checked 

are all that one needs to prove it exactly as we proved Lemma 3. 
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LEMMA 12. For every k E N there exists a filter IX E V(Z,) such that T/a + a = 
~~+T~a=aforeachO=~j~k-1. 

We are now ready to prove Theorem 7. The proof is very similar to that of Theorem 
1, but we shall nevertheless give it in some detail. 

PROOF OF THEOREM 7. The filter (Y given by Lemma 12 has the property that, for 
every A E (Y and every 0 s j =z k, 

(A,x)(A,y)x + T’y E A and T’x+yeA. 

Since a E V(Z,J, this also implies that 

(&x)(&y) f x f T’y E A and *T’(x) fy EA. 

In other words, A E (Y implies that (A,x)(A,y)(x, y ) c A. 
Given a finite colouring of Z,, let A c Zk be the colour such that A E & and let 

AI =A. Then we have (A,x)(Aay)(x, y) cAl. Let x1 be such that (Aay)(xI, y) CAM, 
and let A2 be the set of y eAI for which (x1, y) CA,. In general, having picked sets 
AI 2. . . II A, in (Y and vectors x1, . . . , x,, we have (A,x)(A,y)(x, y) CA,, so pick X, 
such that (A,y)(x,, y) CA,, and let A,+, be the set of y for which (x,, y) CA,. 
Then, certainly, A,+* CA, and A,+1 E a. We claim that (x1, . . . , x,) CA, for every 
n E N. This implies that (x,, . . . , x,) c A, for every n, which implies that 

( Xl, x2, . * * ) cAI =A as desired. 
To prove this claim, observe that x, was chosen so that (Aay)(x,, y) CA,, so 

certainly x, E A,. But A, is the set of y such that (x,-i, y) cA,_~, so (xn-,, x,) c 
A,_1. Now A,_1 is the set of y such that (x,_~, y ) cA_~, so, for every x E (x,-, , x,), 
we have (x,,-~, X) cA~__~. However, 

Xt(Xp, x ) k-2,x> = (L2,4-1> Xn), 
* n 

so we have shown that (x,_~, x,_~, x,) cA~_~. Continuing in this way, we obtain 

(x1, . . . > x,) c AI, which proves the theorem. 0 

We have essentially proved our main theorem. 

THEOREM 13. Let E > 0 and let F be any real-valued Lipschitz function on the unit 
sphere of q,. Then there is an infinite-dimensional subspace X c co on the unit sphere of 
which F varies by at most E. 

PROOF. Let 6 = c/4 and let AI be the set of functions f: N+ {f 1, f(1 + 
a)-‘, . . . , f(1 + 6)+-i) } which are finitely supported and take one of the values fl 
at least once, where k is chosen such that (1 + 6)-(k-1)s 6. This is a 26-net of S(c,). 
Let S(co) be coloured as in the proof of Theorem 6, and let q~ be the map defined 
there. Let vi be the natural bijection between AI and Z,, defined by 

(31f )(n) = %n(f (n))(v If l)(n). 

The colouring on AI induces a colouring on Zk. It is now easy to see that Theorem 13 
follows directly from Theorem 7. cl 

We shall now discuss very briefly the distortion problem itself. It is easy to show that 
a positive answer to it would follow from the existence of certain ultrafilters. For 
example, suppose that, for every E > 0, there is a cofinite filter LY on the unit sphere of 
1, with the following two properties. First, whenever lJy=r Ai = .!$(I,), at least one of 
the (A;), is in (Y; and, second, A E a implies that (A,x)(A,y)(x, y ) c A. Then one can 
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prove that whenever UZIAi = .!$(I,) at least one of the (Ai)E contains an infinite- 
dimensional block subspace. The proof is almost identical to that of Theorem 7. 

It is not hard to see that if there is an ultrafilter (Y on S(1,) with the property that 
A E (Y implies, for every E > 0, that (A,x)(A,y)(x, y ) CA,, then it also gives a 
positive answer to the distortion problem. 

It is worth noting that, given any cofinite ultrafilter (Y on S(f,) and any E > 0, there 
exist N and A,, . . . , AN such that the ultrafilter b = A,cu + . * . + &QI satisfies 

whenever B E /3. This is essentially a special case of a well known theorem of Krivine 
[ll] (both the statement and the proof). 

The difficulty with trying to extend the methods of this paper to the distortion 
problem proper is that the unit sphere of f, does not admit a useful semigroup structure 
in the way that the unit sphere of co does. (To be a little more accurate: the cofinite 
ultrafilters on the unit sphere of co can be made into a semigroup in a natural way 
which reflects the addition of disjointly supported vectors). This appears to be a serious 
difficulty, at least in the absence of more flexible methods of producing ‘idempotent’ 
ultrafilters than are known at present. However, the cofinite ultrafilters on S(1,) do 
have a structure which reflects many of the properties of l,, and there is a good 
chance that an ultrafilter with the weaker property above could be shown to exist, 
giving a positive answer to the distortion problem. 
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