
Theoretical Computer Science 337 (2005) 183–216
www.elsevier.com/locate/tcs

On state-alternating context-free grammars�

Etsuro Moriyaa,∗, Dieter Hofbauerb, Maria Huberb, Friedrich Ottob
aDepartment of Mathematics, School of Education, Waseda University, 1-6-1, Nishi-Waseda, Shinjuku-ku,

Tokyo 169-8050, Japan
bFachbereich Mathematik/Informatik, Universität Kassel, 34109 Kassel, Germany

Received 22 February 2004; received in revised form 15 September 2004; accepted 30 December 2004
Communicated by M. Ito

Abstract

State-alternating context-free grammarsare introduced, and the language classes obtained from
them are compared to the classes of the Chomsky hierarchy as well as to some well-known complexity
classes. In particular, state-alternating context-free grammars are compared to alternating context-free
grammars (Theoret. Comput. Sci. 67 (1989) 75–85) and to alternating pushdown automata. Further,
various derivation strategies are considered, and their influence on the expressive power of (state-)
alternating context-free grammars is investigated.
© 2005 Elsevier B.V. All rights reserved.

MSC:68Q45; 68Q10

Keywords:Alternating context-free grammar; Context-free grammar with states; State-alternating context-free
grammar; Alternating pushdown automaton

1. Introduction

Alternation is a powerful generalization of non-determinism that has led to many inter-
esting results in automata and complexity theory. It was first introduced by Chandra and

� The main part of this work was done while Etsuro Moriya was visiting the Fachbereich Mathematik/Informatik,
Universität Kassel.
∗ Corresponding author.
E-mail addresses:moriya@waseda.jp(E. Moriya), dieter@theory.informatik.uni-kassel.de(D. Hofbauer),

maria@theory.informatik.uni-kassel.de(M. Huber),otto@theory.informatik.uni-kassel.de(F. Otto).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.12.029

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82432478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
mailto:moriya@waseda.jp
mailto:dieter@theory.informatik.uni-kassel.de
mailto:maria@theory.informatik.uni-kassel.de
mailto:otto@theory.informatik.uni-kassel.de

184 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

Stockmeyer[2,3] for general Turing machines and by Ladner et al. [10,11] for pushdown
automata. By alternation the well-known deterministic hierarchy

LOGSPACE ⊆ P ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆ · · ·
shifts by exactly one level, as according to[2,3],

ALOGSPACE = P,
APTIME = PSPACE,
APSPACE = EXPTIME,
AEXPTIME = EXPSPACE.

Further, the classALINSPACE := L(ALBA) of languages that are accepted by alternat-
ing Turing machines within linear space, that is, by the so-calledalternating linear bounded
automataALBA, coincides with the classL(APDA) of languages that are accepted byal-
ternating pushdown automata(APDA, for short). This class in turn coincides with the
deterministic time complexity classETIME :=⋃

c>0DTIME(c
n) [2,11]. This result holds

in fact for alternating pushdown automata with one-way input as well as with two-way
input.

(Non-alternating) pushdown automata accept exactly the context-free languages, while
non-deterministic Turing machines with linear space bounds accept exactly the context-
sensitive languages. Hence, one would like to also obtain a grammatical characterization
for the class of languagesL(APDA) that are accepted by alternating pushdown automata.
This question was first addressed by Moriya in [14] by considering alternating context-free
grammars.

Definition 1.1. An alternating context-free grammaris given through a 5-tupleG =
(V ,U,�, P , S), whereV is a set of variables (or non-terminals),U ⊆ V is a set ofuni-
versalvariables,� is a set of terminals,S is the start symbol, andP is a set of context-free
productions. The variables inV \ U are calledexistential variables.

Thederivation relation⇒G that is induced byG on the set ofsentential forms(V ∪
�)∗ is defined as follows. Let�,� ∈ (V ∪ �)∗, and letA ∈ V . If A is an existential
variable, and(A→ �) ∈ P , then�A�⇒G ���. If, however,A is a universal variable, and
(A→ �i) (1� i�k) are all the productions fromP with left-hand sideA, then�A�⇒G
(��1�, . . . , ��k�), that is, all productions with left-hand sideA are applied simultaneously.
In this way a derivation is not a linear chain, but it has the form of a tree. A terminal wordw

can be derived fromG, if there exists a finite derivation tree in this sense such that the root
is labelled with the start symbolS and all leaves are labelled with the stringw. As usual
L(G) denotes the set of terminal words derived fromG.

In the following we will denote the class of alternating context-free grammars byACFG,
andL(ACFG) will denote the class of languages that are generated by these grammars.
Further,L(ε-free-ACFG)will denote the class of languages that are generated by alternating
context-free grammars withoutε-rules. We useLlm(ACFG) and Llm(ε-free-ACFG) to
denote the classes of languages that are generated by these grammars using theleftmost
derivation strategy, which requires that in each step of a derivation the leftmost variable of
the current sentential form must be rewritten. Finally, bylin-ACFG we denote the class of

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 185

linear alternating context-free grammars, that is, those alternating context-free grammars
for which each rule contains at most one variable occurrence in its right-hand side.

In [14], it is claimed that a language is accepted by an alternating pushdown automaton
if and only if it can be generated by an alternating context-free grammar, but unfortunately
the arguments given in that paper contain some serious flaws that have not been overcome
to this day. One of the problems stems from the fact that in an alternating context-free
grammar the derivation strategy chosen makes a difference in contrast to the situation for
context-free grammars. In particular, for an alternating context-free grammar, the set of
words generated byleftmostderivations is in general a proper subset of the set of all words
that can be generated by that grammar.

Nevertheless, some interesting partial results have been obtained. First, Chen and Toda [4]
presented complexity theoretical characterizations of the language classesLlm(lin-ACFG)
andLlm(ε-free-ACFG) by showing that

P = LOG(Llm(lin-ACFG)) andPSPACE = LOG(Llm(ε-free-ACFG)),

whereLOG(L) denotes the closure of the language classL under log-space reductions. For
a linear grammar each derivation is necessarily leftmost, and so the first result above can
be restated asP = LOG(L(lin-ACFG)). Then Ibarra, Jiang, and Wang gave a grammatical
characterization forL(APDA) in [8] by showing thatL(APDA) = L(linear-erasing-
ACFG), where an alternating context-free grammarG is said to belinear erasingif there
is a constantc such that every string of lengthn in the language generated byG has a
derivation tree containing only sentential forms of length at mostc · n. However, Ibarra,
Jiang, and Wang require in addition that the grammar introducesendmarkersfor the terminal
strings generated, that is, the language they consider consists of all terminal stringsw such
that the string w is generated by the grammar. While the inclusion ofL(linear-erasing-
ACFG) in L(APDA) remains valid even without these endmarkers, it is not clear whether
the converse inclusion does, as the simulation of an alternating linear-bounded automaton
by a linear-erasing alternating context-free grammar given in [8] crucially depends on the
use of these endmarkers.

Here we will consider a new variant of alternating grammars, a variant that is obtained
by combining the notion ofgrammars with stateswith the notion of alternation. Context-
free grammars with states, abbreviated asECFG, were introduced by Kasai in [9]. We will
shortly discuss these grammars and the language classes they generate in Section 2. Then we
will define the so-calledstate-alternating context-free grammars, abbreviated assACFG,
which are obtained from the grammars with states by distinguishing between universal and
existential states. We will see that these grammars can be interpreted as a generalization of
both theECFGs and theACFGs.

In Section 3, we will derive a lower bound for the expressive power ofACFGs by pre-
senting an example of a language that is generated by anACFG in leftmost mode as well
as in unrestricted mode, but that cannot be written as the intersection of finitely many
context-free languages. As a consequence, we obtain thatLlm(ACFG) ∩ L(ACFG) prop-
erly includes the class of languages that are intersections of finitely many context-free
languages. In Section 4, we will comparesACFGs toACFGs. In particular, we will obtain
the basic fact thatsACFGs are at least as powerful asACFGs in their generative capacity. In
Section 5, we will consider various restricted versions ofsACFGs and analyze the

186 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

complexity of the language classes generated by leftmost derivations. For example we will
show that in leftmost mode,ε-freesACFGs only generate deterministic context-sensitive
languages. Then, in Section6, we will derive a grammatical characterization for the lan-
guage classL(APDA) in terms ofsACFGs by showing thatL(APDA) coincides with
Llm(sACFG). In Section 7, we will compare the classes of languages to each other that
are generated bysACFGs using different derivation modes. Finally, in Section 8, we will
address the problem of deciding for a given (s)ACFG G and a fixed derivation mode m,
whether the languageLm(G) coincides with the languageL(G). The paper closes with a
discussion of the results obtained and some open problems. In appendix, we include a dia-
gram depicting the known inclusion relations among the major language classes discussed
in the paper and some well-known language and complexity classes.

2. State-alternating context-free grammars

Throughout this paper we will make use of the following notational convention. For a
grammarG of any type, we denote byL(G) the language generated by that grammar, and
for a class of grammarsC we denote byL(C) the family of all languages that are generated
by grammars from that class. For any derivation modem, Lm(G) andLm(C) denote the
language and the family of languages, respectively, that are generated by only using the
derivation modem. Here we will encounter theleftmostmode, denoted bylm, the leftish
mode, denoted bylt, and therightmostmode, denoted byrm. Further, by using the prefix
ε-free- we indicate that only grammars withoutε-rules are considered. Analogously, for
any automatonA, L(A) is the language accepted byA, and for a class of automataC,
L(C) is the class of languages that are accepted by automata from that class. Further, for
reasons of simplicity we will mainly consider only languages that do not contain the empty
word ε.

As mentioned before, context-free grammars with states, abbreviated asECFG, were
introduced by Kasai [9].

Definition 2.1. An ECFG is given through a 6-tupleG = (Q, V,�, P , S, q0), whereQ
is a finite set ofstates, V is a finite set of variables,� is a finite set of terminals,S ∈ V is
the start symbol,q0 ∈ Q is the initial state, andP is a finite set of productions of the form
(p,A)→ (q, �), wherep, q ∈ Q, A ∈ V , and� ∈ (V ∪ �)∗.

Thederivation relationinduced byG is defined through(p,�A�) ⇒ (q,���) for all
�, � ∈ (V ∪ �)∗ and((p,A)→ (q, �)) ∈ P . The language generated byG is the set

L(G) := {w ∈ �∗ | (q0, S)⇒∗ (p,w) for somep ∈ Q }.
A production of the form(p,A)→ (q, ε) is called anε-rule, and anECFG is calledε-free,
if it does not contain anyε-rules.

The context-free grammars with states are obviously a generalization of the context-
free grammars. However, if we require that each step is performed in aleftmostfashion,
that is,� ∈ �∗ in the above definition of⇒, then the derivations of anECFG can be
simulated by a pushdown automaton. On the other hand, it is easily seen that forECFGs

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 187

different derivation strategies will in general give different languages. In addition to the
leftmost and the unrestricted derivation modes, we will be interested in theleftishderivation
mode. Here a derivation step(p,�A�) ⇒ (q,���) of anECFG is called leftish, if no
rule can be applied to the prefix�. Thus,� may contain occurrences of variables, but
under the current statep none of them can be rewritten with a production fromP . In fact,
under the various derivation modes theECFGs are equivalent in expressive power to the
matrix grammars ([13,17], see also, e.g., [6, Sections 1.4 and 2.2]). Hence, concerning
the language classes generated by the various types ofECFGs, we have the following
results.

Proposition 2.2.
(a) ε-free-CFL=Llm(ε-free-ECFG)�L(ε-free-ECFG)�Llt(ε-free-ECFG)=CSL.
(b) CFL=Llm(ECFG)�L(ECFG)�Llt(ECFG)=RE.
(c) The language classesLlt(ε-free-ECFG) and L(ECFG) are incomparable under in-

clusion.

HereCFL (CSL,RE) denotes the class of context-free (context-sensitive, recursively
enumerable) languages.

Now we come to the announced definition of a new type of alternating grammar, com-
bining the notion of alternation with that of a context-free grammar with states.

Definition 2.3. An extended alternating context-free grammar, EACFG for short, is a
context-free grammarG = (Q, V,U,�, P , S, q0, F) with states, in which a subsetU of
the set of variablesV is designated asuniversal variables, and a subsetF of the set of states
Q is designated as final states.

Thederivation relation⇒∗G defined byG is the reflexive and transitive closure of the
relation⇒G that is defined as follows. Let(p,�A�) be a sentential form ofG, where
p ∈ Q, �, � ∈ (V ∪ �)∗, andA ∈ V . If A is an existential variable, that is,A ∈ V \ U ,
and(p,A) → (q, �) is a production fromP , then(p,�A�) ⇒G (q,���). If, however,
A is a universal variable, and if(p,A) → (qi, �i) (1� i�k) are all the productions with
left-hand side(p,A), then

(p,�A�)⇒G ((q1,��1�), . . . , (qk,��k�)).

Hence, in the latter case all the rules with left-hand side(p,A) are applied in parallel, and
following this step all the resulting sentential forms are rewritten further, independently of
each other. In this way aderivation treeis obtained fromG in analogy to the computation
tree that is associated with an alternating automaton and its input.

The languageL(G) that is generated byG consists of all those wordsw ∈ �∗ for which
there exists a derivation tree such that the root is labelled with the pair(q0, S) and each
leaf is labelled with a pair of the form(p,w) with p ∈ F . Here we remark that the labels
of different leaves may differ in the first component, that is, in the final state, but that they
must agree in the second component, that is, in the terminal string generated.

There is a slight difference in the way the states are used inECFGs and inEACFGs, as the
latter distinguish between final and non-final states. However, it can be shown that it would

188 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

EACFG �� altern. states vs.
altern. variables

�� sACFG

ACFG

states

���������������������

ECFG

alternation

��

alternation

��������������������������

CFG

alternation

��

states

����������������������

Fig. 1. The taxonomy of alternating context-free grammars.

not make a difference in the expressive power ofECFGs, if they also made this distinction
(see Lemmas4.7 and 4.8).EACFGs are obtained fromACFGs by introducing states, that
is, in essentially the same way asECFGs are obtained from context-free grammars. Also
EACFGs can be seen as being obtained fromECFGs by distinguishing between universal
and existential variables, that is, in essentially the same way asACFGs are obtained from
context-free grammars. Hence, theEACFGs unify these two generalizations of context-free
grammars.

As it will turn out, however, the concept of theEACFG is equivalent to the following
concept, where alternation is governed by states and not by variables.

Definition 2.4. A state-alternating context-freegrammar,sACFG for short, is anECFG in
which we distinguish between existential and universal states, and in which we mark certain
states asfinal. LetG = (Q,U, V,�, P , S, q0, F) be such a grammar, whereU ⊆ Q is the
set ofuniversalstates andF ⊆ Q is the set offinal states.

Thederivation relation⇒∗G is defined on the setQ × (V ∪ �)∗ of extended sentential
forms. Let p ∈ Q and� ∈ (V ∪ �)∗. If p is an existential state, that is,p ∈ Q \ U , then
(p, �)⇒G (q, �1��2), if � = �1A�2, and there exists a production of the form(p,A)→
(q,�). If p is a universal state,� has the factorization� = �1A�2, and(p,A)→ (qi,�i)
(1� i�k) are all the productions with left-hand side(p,A), then

(p, �)⇒G ((q1, �1�1�2), . . . , (qk, �1�k�2)),

that is, all these productions are applied in parallel to the chosen occurrence of the variable
A, and following this step all these sentential forms are rewritten further, independently of
each other. In this way a derivation tree is obtained.

The languageL(G) that is generated byG consists of all wordsw ∈ �∗ for which there
exists a derivation tree such that the root is labelled with(q0, S) and all leaves are labelled
with pairs of the form(p,w)withp ∈ F . Note that, as for anEACFG, the labels of different
leaves may differ in their first components.

Fig. 1 puts the various generalizations of context-free grammars introduced so far into
perspective.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 189

Below we will see thatsACFGs are actually equivalent in expressive power toEACFGs.

Lemma 2.5. For eachEACFG G, ansACFG G′ can be constructed such thatLm(G) =
Lm(G

′) holds for each derivation modem. Moreover, if G is ε-free and/or (right-) linear,
then so isG′.

Proof. LetG = (Q, V,U,�, P , S, q0, F)be anEACFG. FromGwe construct ansACFG
G′ that accepts the same language asG. For each state ofG,G′ will have an existential as
well as a universal state. Derivation steps ofG involving existential variables will be simu-
lated inG′ by using existential states. Derivation steps ofG, however, that involve universal
variables, will be simulated byG′ by first changing from the current existential state to the
corresponding universal state, and by then simulating the universal derivation step ofG. Ac-
cordingly, we takeG′ := (Q∃∪Q∀,Q∀, V ,�, P ′, S, q∃0, F ∃), whereQ∃ := { q∃ | q ∈ Q },
F ∃ := { q∃ | q ∈ F }, andQ∀ := { q∀ | q ∈ Q }, and we define the setP ′ of productions of
G′ as follows:
(1) ForX ∈ V \ U , if (p,X)→ (q, �) is in P , wherep, q ∈ Q and� ∈ (V ∪ �)∗, then
(p∃, X)→ (q∃, �) is included inP ′.

(2) For eachX ∈ U , if (p,X)→ (q, �) is in P , wherep, q ∈ Q and� ∈ (V ∪ �)∗, then
(p∃, X)→ (p∀, X) and(p∀, X)→ (q∃, �) are included inP ′.

Clearly, ifG isε-free and/or (right-) linear, then so isG′. We will see that, for any derivation
treeT ofG that generates a terminal wordw, there is a derivation treeT ′ ofG′ that generates
the same word, and vice versa.

The treeT ′ is obtained fromT inductively as follows. The root ofT is labelled with the pair
(q0, S), while the root ofT ′ is labelled with the pair(q∃0, S). Now let� be a node ofT with la-
bel(p, �X�), wherep ∈ Q,X ∈ V , and�, � ∈ (V∪�)∗, such that under the derivation mode
m the distinguished variable occurrence ofX is to be rewritten next, and assume thatT ′ con-
tains a corresponding node�′ with label(p∃, �X�). If the variableX is existential, then the
node� has a single son�1 with label(q, ���), where(p,X)→ (q,�) is a production ofP .
Accordingly, the node�′will get a son�′1 with label(q∃, ���), which corresponds to an appli-
cation of the corresponding production from group (1). If the variableX is universal, then the
node� will have sons�1, . . . , �k with labels(qi, ��i�), where(p,X)→ (qi,�i), 1� i�k,
are the productions ofP with left-hand side(p,X). Now the node�′ of T ′ will get the single
son�′′ with label(p∀, �X�), which corresponds to an application of a rule from group (2),
and the node�′′ will get sons�′1, . . . , �′k with labels(q∃i , ��i�), 1� i�k, corresponding to
the applications of the rules of group (2) with left-hand side(p∀, X). Hence, we see that
Lm(G) ⊆ Lm(G

′) holds.
Conversely, ifw ∈ Lm(G

′), then there is a derivation treeT ′ for G′ such that the root is
labelled with(q∃0, S)and each leaf is labelled with(q∃, w) for someq ∈ F . Each application
of a production from group (1) corresponds directly to an application of a production fromP .
Further, each production of the form(p∃, X)→ (p∀, X)must be followed by an application
of a production from group (2) that corresponds to a production fromP . Hence, it is easily
seen that fromT ′we obtain a derivation treeT forG such that the root is labelled with(q0, S)

and each leaf is labelled with(q,w) for someq ∈ F . Thus, we see that the languagesLm(G)

andLm(G
′) coincide. �

190 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

Lemma 2.6. For eachsACFG G, anEACFG G′ can be constructed such thatLm(G) =
Lm(G

′) holds for each derivation modem. Moreover, if G is ε-free and/or (right-) linear,
then so isG′.

Proof. LetG = (Q,U, V,�, P , S, q0, F)be ansACFG. FromGwe construct anEACFG
G′ that generates the same language asG. For each variable ofG,G′ will have an existential
and a universal variable. The start symbol ofG′ will be an existential variable, and as long as
G uses existential states in a derivation,G′ will use only existential variables. If, however,
G changes into a universal state in the course of a derivation, thenG′ can replace the
(existential) variable that is to be rewritten next according to the derivation modem by
its universal variant, and using that universal variable it can simulate the current universal
derivation step ofG. Accordingly, we takeG′ := (Q∪Q′, V ∃ ∪V ∀, V ∀,�, P ′, S∃, q0, F),
whereQ′ := { q ′ | q ∈ U }, V ∃ := {X∃ | X ∈ V } andV ∀ := {X∀ | X ∈ V }. Further,
let �∃ : (V ∪ �)∗ → (V ∃ ∪ �)∗ be the morphism that replaces each occurrence of each
variableX by the variableX∃. ThenP ′ is defined as follows:
(1) Forp ∈ Q \ U , if (p,X)→ (q, �) is in P , whereX ∈ V , q ∈ Q and� ∈ (V ∪ �)∗,

then(p,X∃)→ (q,�∃(�)) is included inP ′.
(2) For eachp ∈ U , if (p,X)→ (q, �) is in P , whereX ∈ V , q ∈ Q and� ∈ (V ∪ �)∗,

then(p,X∃)→ (p′, X∀) and(p′, X∀)→ (q,�∃(�)) are included inP ′.
Clearly, ifG is ε-free and/or (right-) linear, then so isG′. As in the proof of the previous
lemma it can now be shown that, for each derivation treeT of G that generates a terminal
wordw, there is a derivation treeT ′ of G′ that generates the same word, and vice versa.
Thus, the languagesLm(G) andLm(G

′) coincide. �

From these two lemmata we obtain the following result.

Corollary 2.7. EACFG andsACFG have exactly the same expressive power.

Thus, in the main part of the paper we will not discussEACFGs anymore, but consider
sACFGs instead.

3. A lower bound for Llm(ACFG)

Here, we will establish a lower bound for the generative capacity ofACFGs.
For each integerk�1, let CFLk denote the class of languages that can be written as

the intersection ofk context-free languages, and letCFL� := ⋃
k�0CFLk. According

to Liu and Weiner[12] the classesCFLk form an infinite hierarchy within the class of
context-sensitive languages.

Example 3.1. For i = 1,2, letGi = (Vi, Ui,�, Pi, Si) be anACFG, where we assume
thatV1 ∩ V2 = ∅. Let S be a new variable, and letG := (V ,U,�, P , S) be defined by
takingV := V1∪ V2 ∪ {S},U := U1∪U2 ∪ {S}, andP := P1∪ P2 ∪ {S → S1, S → S2}.
Then it is easily seen thatLm(G) = Lm(G1) ∩ Lm(G2) for each derivation modem.
On the other hand, if we takeU := U1 ∪ U2, that is, the start symbolS of G is taken to be
an existential variable, thenLm(G) = Lm(G1) ∪ Lm(G2) for each derivation modem.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 191

This shows that, for each derivation modem, the language classLm(ACFG) is closed
under intersection and union. As each context-free grammar can be regarded as anACFG
with no universal variables, we obtain the following inclusion.

Observation 3.2. CFL� ⊆ Llm(ACFG) ∩ L(ACFG).

In the following we will prove that this is actually a proper inclusion by considering a
sequence of example languagesLk (k�2) andL�. For k�2, let�k := {a1, a2, . . . , ak},
and letLk be the language

Lk := { (ai11 · ai22 · . . . · aikk)2 | ij�1} ⊆ �∗k.

Further let

L� := { (ai1 · b1 · ai2 · b2 · . . . · aik · bk)2 | k�0, ij�1} ⊆ {a, b}∗.
Liu and Weiner[12] proved that, for eachk�2,

{(ai11 · ai22 · . . . · aikk)2 | ij�0} ∈ CFLk \ CFLk−1.

From their proof the following lemma follows easily.

Lemma 3.3. For eachk�2,Lk ∈ CFLk \ CFLk−1.

For eachk�2, we define a partial mapping�k : {a, b}∗ → �∗k with domaindom(�k) :=
(a+ · b1 · a+ · b2 · . . . · a+ · bk)2 by

�k : ai1 · b1 · . . . · aik · bk · aj1 · b1 · . . . · ajk · bk �→ ai11 · . . . · aikk · aj11 · . . . · ajkk .
Note that it follows from the definition that�k(w) is undefined for each wordw that does
notbelong to the set(a+ · b1 · a+ · b2 · . . . · a+ · bk)2. Obviously,�k is an injective mapping
satisfying�k(L�) = Lk. Further, there exists ageneralized sequential machine(GSM)
(see, e.g.,[7]) that, given a stringw ∈ dom(�k) as input, computes the string�k(w). On
the other hand there is the following negative result.

Lemma 3.4. L� �∈ CFL�.

Proof. Assume thatL� = ⋂m
i=1Ni for some context-free languagesNi , 1� i�m. We

may assume without loss of generality thatNi ⊆ {a, b}∗. Then we obtain the following
equalities from the injectivity of�m+1:

Lm+1 = �m+1(L�) = �m+1

(
m⋂
i=1
Ni

)
=

m⋂
i=1

�m+1(Ni).

SinceCFL is closed underGSM mappings, this contradicts the fact thatLm+1 �∈ CFLm
(Lemma3.3). �

192 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

In contrast to the result above, we will now see that the languageL� is generated by an
ACFG. Actually we have the following result.

Lemma 3.5. L� ∈ Llm(ACFG) ∩ L(ACFG).

Proof. First, in order to simplify the discussion, we allow an arbitrary stringw consisting of
terminals and variables to be used as the start string for anACFG. We denote byLlm(G,w)

the language generated byG from the initial stringw using the leftmost derivation mode,
and byL(G,w) we denote the language generated byG from the initial stringw by the
unrestricted derivation mode. It is not difficult to give context-free grammarsG1 toG4 with
pairwise disjoint sets of variables that generate the following languages over� := {a, b}:

Llm(G1, B) = a+ · b+,
Llm(G2, C) = a+ · b+ · a+ · ba · �∗,
Llm(G3,M) = ⋃

m�1
(am · b+ · a · �∗ · b · am),

Llm(G4, T) = {ε} ∪ a · �∗,
whereB, C,M, andT are variables.

Secondly, let

J := ⋃
n�1
(a+ · bn · a+ · bn+1),

I1 := (J 2)∗ ∪ ⋃
k�0
(J k · a+ · b+ · a+ · b · J k),

I2:=a+ · b · (J 2)∗ · a+ · b+∪ ⋃
k�0
(a+ · b · J k · a+ · b+ · a+ · b · J k · a+ · b+)∪{ε},

and

I := ⋃
k�1
(a+ · b1 · a+ · b2 · . . . · a+ · bk)2 ∪ {ε}.

Then we have the following equality.

Claim. I = I1 ∩ I2.

Proof. Letw := ar1 · b · ar2 · b2 · . . . · ark · bk · as1 · b · as2 · b2 · . . . · ask · bk be an element of
the languageI . For eachi = 1, . . . , k−1,ari ·bi ·ari+1 ·bi+1 ∈ J andasi ·bi ·asi+1 ·bi+1 ∈
J . Thus, if k = 2l for somel > 0, thenw ∈ (J 2)k, and therewithw ∈ I1. Further,
ar2 · b2 · ar3 · b3 · . . . · ark−1 · bk−1 ∈ J l−1 andas2 · b2 · as3 · b3 · . . . · ask−1 · bk−1 ∈ J l−1,
implying thatw ∈ a+ · b · J l−1 · a+ · b+ · a+ · b · J l−1 · a+ · b+, which means thatw ∈ I2.

If k = 2l+1, thenar1 ·b·ar2 ·b2·. . .·ark−1 ·bk−1 ∈ J l andas2 ·b2·as3 ·b3·. . .·ask ·bk ∈ J l ,
which shows thatw ∈ J l · a+ · b+ · a+ · b · J l . Hence, also in this casew ∈ I1. Further,

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 193

Fig. 2. A schematic representation of a typical derivation tree forG.

ar2 · b2 · ar3 · b3 · . . . · ark · bk · as1 · b · as2 · b2 · . . . · ask−1 · bk−1 ∈ (J 2)l , and sow ∈ I2.
Hence, we see thatI ⊆ I1 ∩ I2.

Conversely, assume thatw ∈ I1∩ I2. Letn be the number of factors of the forma+ · b+
inw. From the definition ofI1, we see immediately thatn is an even number. So letn = 2k.
If k = 0, thenw = ε, and sow ∈ I . So assume thatk�1. Hence,w has the form

w = ar1 · bt1 · . . . · ark · btk · ark+1 · btk+1 · . . . · ar2k · bt2k ,
where all exponents are positive integers. Asw ∈ I1, we see that there are two cases.
Eitherk is even, and thenari · bti · ari+1 · bti+1 ∈ J for eachi ∈ {1,3,5, . . . ,2k − 1}, or
k = 2l + 1, and thenari · bti · ari+1 · bti+1 ∈ J for eachi ∈ {1,3,5, . . . ,2l − 1} and each
i ∈ {k + 2, k + 4, . . . ,2k − 1}, andtk+1 = 1. Asw ∈ I2, too, it follows in each case that
ti = tk+i = i for i = 1,2, . . . , k. Hence, we can conclude thatw ∈ I . �

Obviously J , I1, and I2 are context-free. Thus, there exists anACFG G5 such that
Llm(G5) = L(G5) = I (see Example3.1).

Finally, we consider theACFG G which has all the productions ofG1 to G4 together
with the following productions:

R→ M, R→ S, S → C, S → BRb.
HereR is a new universal variable andS is a new existential variable. We consider the
languagesLlm(G,RbT) andL(G,RbT) that are generated byG from the initial stringRbT
in leftmost and in unrestricted derivation mode, respectively. In Fig2 an informal pictorial
description of a typical derivation tree forGwith respect to the unrestricted derivation mode
is given, and in Fig. 3 a leftmost derivation tree for the stringa3ba2b2a3ba2b2 is depicted.
We see that within these derivation trees certain dependencies are established between pairs
of powers ofa occurring in the string generated. For example, the first blockai1b+ is related
to a blockai1b, and the second blockai2b+ is related to a blockai2b2. Thus, if we restrict

194 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

RbT

���������
���������

MbT SbT

a3ba2b2a3bT BRb2T

a3ba2b2a3ba2b2 a3bRb2T

�������
�������

a3bMb2T a3bSb2T

a3ba2b2a3ba2b2T a3bCb2T

a3ba2b2a3ba2b2 a3ba2b2a3ba2b2T

a3ba2b2a3ba2b2

Fig. 3. A leftmost derivation tree fora3ba2b2a3ba2b2 in G.

our attention to strings that in addition belong to the languageI , then we see by inspection
that

L� = I ∩
({ε} ∪ {aibaib | i > 0} ∪ Llm(G,RbT)

)
= I ∩ ({ε} ∪ {aibaib | i > 0} ∪ L(G,RbT)).

Obviously {ε} and { aibaib | i�1} can be generated by context-free grammars. As
Llm(ACFG) andL(ACFG) are both closed under union and intersection (see Example
3.1), it follows thatL� belongs toLlm(ACFG) as well as toL(ACFG). �

From Observation 3.2 and Lemmas 3.4 and 3.5, we obtain the main result of this section.

Theorem 3.6. CFL��Llm(ACFG) ∩ L(ACFG).

However, the following problem remains unanswered.

Open Problem 1. DoesL� separateLlm(ACFG) or L(ACFG) from the Boolean closure
of CFL?

4. Basic properties ofACFGs andsACFGs

Next, we will establish some basic properties of the language classes that are generated
by various kinds ofACFGs andsACFGs. We will mainly concentrate on the leftmost
derivation strategy, but some other strategies will also be considered at various places. In
particular, we will establish a normal form result for both these types of grammars.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 195

As eachACFG can be interpreted as anEACFG with only a single state, we obtain the
following result from Lemma2.5.

Lemma 4.1. For eachACFG G, we can construct ansACFG G′ such thatLm(G) =
Lm(G

′) holds for each derivation modem. Moreover, if G is ε-free and/or (right-) linear,
then so isG′.

Open Problem 2. Does the converse of Lemma4.1 hold, that is, can eachsACFG be
simulated by anACFG? Observe that this is equivalent to asking whether eachEACFG is
equivalent to anEACFG with only a single state. For the leftish mode this is not possible
(see Section 7), but is it at least possible for the leftmost derivation mode?

At least for linear grammars we do have the converse of Lemma 4.1. Observe that for
linear grammars all derivation modes are equivalent.

Lemma 4.2. For each linearsACFG G, we can construct a linearACFG G′ such that
G andG′ generate the same language. Moreover, if G is right-linear and/or ε-free, then
so isG′.

Proof. LetG = (Q,U, V,�, P , S, q0, F) be a linearsACFG. We obtain a linearACFG
G′ that simulatesG by introducing variables that combine the variables ofGwith the states
of G. The linearACFG G′ := (V ′, U ′,�, P ′, S′) is defined as follows:
• V ′ := { [q,A] | q ∈ Q,A ∈ V } ∪ {E}, whereE is a new symbol,
• U ′ := { [q,A] | q ∈ U,A ∈ V },
• S′ := [q0, S], and
• P ′ is obtained as follows:
(1) If (p,A)→ (q, xBy) is inP , whereA,B ∈ V andx, y ∈ �∗, then[p,A] → x[q, B]y

is included inP ′.
(2) If (p,A) → (q, x) is in P , whereA ∈ V , x ∈ �∗, andq ∈ F , then[p,A] → x is

included inP ′.
(3) If (p,A)→ (q, x) is in P , whereA ∈ V , x ∈ �∗, andq ∈ Q \ F , then[p,A] → E

is included inP ′.
Obviously the productions of group (3) cannot be used in any successfulG′-derivation. They
correspond to applications ofG-productions of the form(p,A)→ (q, x) with x ∈ �∗ and
q ∈ Q \ F , which cannot occur in any successfulG-derivation, either. However, these
productions have to be included inP ′, as otherwise certain universal derivation steps ofG′
would be successful although the corresponding derivation steps ofG are not.

Clearly,G′ is right-linear and/orε-free, ifG is. Now letw be a terminal string such that
w ∈ L(G). Then there is a derivation treeT of G with root labelled by(q0, S) and each
leaf labelled by(q,w) for some final stateq. FromT we obtain a derivation treeT ′ of G′
by replacing each node� with label(p, xAy) (p ∈ Q, x, y ∈ �∗, A ∈ V) by a node�′ with
labelx[p,A]y, and by replacing each node� with label(p, x) (p ∈ F , x ∈ �∗) by a node
�′ with labelx. ThenT ′ witnesses the fact thatw ∈ L(G′), that is,L(G) ⊆ L(G′) holds.

As the productions of group (2) are added toP ′ only for those productions ofP for
which the state entered during the production considered is final, we see that all terminal

196 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

strings that can be generated byG′ can also be generated byG, that is, we haveL(G) =
L(G′). �

The above lemmas yield the following consequences.

Theorem 4.3.
(a) L(ε-free-right-lin-ACFG) = L(ε-free-right-lin-sACFG) and

L(right-lin-ACFG) = L(right-lin-sACFG).
(b) L(ε-free-lin-ACFG) = L(ε-free-lin-sACFG) and

L(lin-ACFG) = L(lin-sACFG).
(c) Lm(ε-free-ACFG) ⊆ Lm(ε-free-sACFG) andLm(ACFG) ⊆ Lm(sACFG), wherem

is any of the leftmost, the leftish, the rightmost or the unrestricted derivation modes.

Here, therightmost derivation moderm is defined in analogy to the leftmost derivation
mode.

Based on Example3.1 it is easily seen that the language classL(lin-ACFG) is closed
under intersection. As the non-context-free language{ anbncn | n�1} is easily described
as the intersection of two linear languages, it follows that the classLIN of linear languages
is properly contained inL(lin-ACFG).

We close this section by establishing normal forms forACFGs andsACFGs. First we
will see that for these grammars a normal form exists that is similar to the Chomsky normal
form for context-free grammars, and then we will show that we can assume without loss of
generality that all states of anysACFG are final.

Definition 4.4. A production(A→ �) of anACFG G = (V ,U,�, P , S) or a production
(p,A) → (q, �) of an sACFG G = (Q,U, V,�, P , S, q0, F), respectively, is aunit-
productionif � is a variable.

TheACFG or thesACFG G, respectively, is said to be inweak Chomsky normal form
if it satisfies the following conditions:
(1) each production(A→ �) or (p,A)→ (q, �), respectively, satisfies the condition that

� ∈ (V ∪ V 2 ∪ � ∪ {ε});
(2) for each variableA ∈ V or for each pair(p,A) ∈ Q × V , respectively, if there are

two or more productions with left-hand sideA or (p,A), respectively, then all these
productions are unit-productions.

Thus, if a (state-) alternating context-free grammar is in weak Chomsky normal form, then
it is only for unit-productions that it plays a role whether the actual variable (or state) is
universal or existential.

Lemma 4.5. For eachACFGG,we can construct anACFGG′ in weak Chomsky normal
form such thatG andG′ are equivalent with respect to the leftmost, the leftish and the
unrestricted derivation modes. In addition, if G is ε-free, then so isG′.

Proof. Let G = (V ,U,�, P , S) be anACFG. Following the standard construction of a
context-free grammar in Chomsky normal form from a given context-free grammar, we will

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 197

replace each production ofP that is not in weak Chomsky normal form by a sequence of
new productions. However, we have to take the existence of universal variables into account,
which means that this technique has to be adopted accordingly.

First of all we introduce new existential variablesV� := { â | a ∈ � } and takeV ′ :=
V ∪V�. Then in each production ofP we replace each occurrence of each terminal symbol
a ∈ �by an occurrence of the corresponding new variableâ. The resulting set of productions
is calledP1. Next we define the set of new productions

P2 := { â→ a | a ∈ � }.
The grammarG1 := (V ′, U,�, P1 ∪ P2, S) is then anACFG such that each production is
either of the form described in (1) above or it is of the formA → B1B2 · · ·Bk for some
A,B1, . . . , Bk ∈ V ′ and some integerk > 2. Further, it is easily seen thatLlm(G) =
Llm(G1), as for each new variablêa ∈ V�, there is exactly one production inP1 ∪ P2 with
left-hand sideâ. Thus, under the leftmost derivation mode a sentential formxâ�, where
x ∈ �∗ and� ∈ V ′∗, has a single successor only, which is the sentential formxa�.

Next we replace the productions of the formr := (A → B1B2 · · ·Bk), whereA and
B1, . . . , Bk are variables andk > 2. For each production of this form, we introduce new
(existential) variablesCr,2, . . . , Cr,k−1 and replace the original production by the following
productions:

A → Cr,k−1Bk,

Cr,k−1 → Cr,k−2Bk−1,

. . .

Cr,3 → Cr,2B3,

Cr,2 → B1B2.

As the new variables are existential, and as for each production ofP1 to be replaced, a set
of new variables is chosen, it is easily seen that the resulting grammarG2 is anACFG that
satisfies condition (1) of the weak Chomsky normal form, and thatG2 is equivalent toG
with respect to leftmost derivations.

Finally, for each variableA, if there arek > 1 productions

A→ �1, A→ �2, . . . , A→ �k

inG2, then we introducek new existential variablesD1, . . . , Dk and replace these produc-
tions by the following new productions:

A→ Di,Di → �i , 1� i�k.

The resultingACFG is calledG′. Obviously, it is in weak Chomsky normal form, and as
each variableDi occurs on the left-hand side of a single production ofG′ only, we see that
theG′-derivationA⇒ Di ⇒ �i is just the replacement of theG2-stepA⇒ �i . Hence, in
leftmost modeG′ generates the same language as the original grammarG.

From the above construction we see that the grammarG′ is ε-free, ifG is.
Observe that for anyACFG G, Llt(G) = Llm(G) holds. Further, it is easily seen that

the above construction also works for the unrestricted derivation mode, as all the newly
introduced variables are existential.�

198 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

A symmetric construction yields the corresponding result for the rightmost derivation
mode. Also forsACFGs a corresponding result holds.

Lemma 4.6. For eachsACFG G, we can construct ansACFG G′ in weak Chomsky
normal form such thatG andG′ are equivalent with respect to the leftmost, the leftish and
the unrestricted derivation modes. In addition, if G is ε-free, then so isG′.

The construction ofG′ from G is almost the same as the construction in the proof of
Lemma4.5. The only difference consists in the fact that a single new existential state is
needed that is used to ensure that a sequence of steps ofG′ that simulate a single step
of G is executed completely before the simulation of the next step ofG begins.

Again a symmetric construction yields the corresponding result for the rightmost deriva-
tion mode. Next we will prove that forsACFGs, the notion of final states is not of particular
importance. They have been introduced here, as in certain cases they are quite handy to sim-
plify the construction of ansACFG for a particular language, but we can do without them.
As ECFGs are a special case ofsACFGs, this shows in particular that it does not matter
whetherECFGs are defined with or without final states. In the proof we will already use
Lemma 4.6.

Lemma 4.7. For eachsACFG G, we can construct ansACFG G′ in weak Chomsky
normal form such thatG andG′ are equivalent with respect to the leftmost derivation mode
and all states ofG′ are final. In addition, if G is ε-free, then so isG′.

Proof. LetG = (Q,U, V,�, P , S, q0, F) be ansACFG. By the previous lemma we can
assume without loss of generality thatG is in weak Chomsky normal form. We define an
sACFGG′ := (Q,U, V ′,�, P ′, S̄, q0,Q) by takingV ′ := V ∪{ Ā | A ∈ V }∪{T }, where
Ā (A ∈ V) andT are new variables, andP ′ := P ∪ P1, whereP1 contains the following
productions:
(1) (p, Ā)→ (q, BC̄), if (p,A)→ (q, BC) is in P ,
(2) (p, Ā)→ (q, B̄), if (p,A)→ (q, B) is in P ,
(3) (p, Ā)→ (q, a), if (p,A)→ (q, a) is in P andq ∈ F ,
(4) (p, Ā)→ (q, T), if (p,A)→ (q, a) is in P andq �∈ F .
The idea underlying this construction is as follows. In each sentential form within a deriva-
tion tree the rightmost variable is marked. For this the variablesĀ (A ∈ V) are used. Now
this variable can eventually be rewritten into a terminal symbol only by applying a produc-
tion from group (3). This, however, means that this step, which under the leftmost derivation
mode ends the actual branch of the derivation tree, corresponds to a derivation step in the
grammarG that enters a final state.

Now let us consider a derivation tree for a wordw ∈ Llm(G
′). Then each inner node

of this tree is labelled by a pair(p, xXĀ), wherep ∈ Q, x ∈ �∗, X ∈ V ∗, andA ∈ V ,
while each leaf is labelled with a pair(p,w) for somep ∈ Q. As we can get rid of the
variables of the formĀ only by applying productions from group (3), we actually see
that, for the label(p,w) of each leaf,p ∈ F holds. Thus, by replacing each occurrence
of Ā (A ∈ V) by A, we obtain a derivation tree that witnesses thatw ∈ Llm(G) holds.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 199

Hence, we see thatLlm(G
′) ⊆ Llm(G). Also the converse inclusion is easily verified. Thus,

we see thatLlm(G
′) = Llm(G) holds.

Observe that the productions of group (4) are necessary to cover the case that the statep

is universal. If inG all productions with left-hand side(p,A) are applied simultaneously,
whereA is the last (and therewith rightmost) occurrence of a variable in the actual sentential
form, then aG-production of the form(p,A)→ (q, a)with q �∈ F will result in a deadend
in the derivation tree generated, that is, this tree will not generate a valid terminal string.
However, if the corresponding production(p, Ā)→ (q, T) was missing fromG′, then the
resultingG′-derivation tree would have no branch that corresponds to the deadend in the
G-tree mentioned, and hence, it might lead to generating a valid terminal string.

Obviously, ifG is ε-free, then so isG′. �

The above construction makes essential use of the fact that leftmost derivations are
considered. However, the corresponding result also holds for the leftish and the unrestricted
derivation modes.

Lemma 4.8. For eachsACFGG,we can construct ansACFGG′ such thatG andG′ are
equivalent with respect to leftish and unrestricted derivations and all states ofG′ are final.
In addition, if G is ε-free, then so isG′.

Proof. Actually the construction is much simpler than the one for the leftmost derivation
mode. LetG = (Q,U, V,�, P , S, q0, F) be ansACFG. We define ansACFG G′ :=
(Q,U, V ′,�, P ′, S, q0,Q) by takingV ′ := V ∪ { â | a ∈ � ∪ {ε} } and

P ′ := { (q,A)→ (p,�(�)) | ((q,A)→ (p, �)) ∈ P }
∪ { (q, â)→ (q, a) | q ∈ F, a ∈ � ∪ {ε} },

where� : (V ∪�)∗ → (V ′)∗ is the mapping that replaces each occurrence of each terminal
symbola within a non-empty string by an occurrence of the variableâ, and that maps the
empty string to the variablêε.

Each derivation tree inG obviously corresponds to a derivation tree ofG′. Observe that
here it is important that we do not consider leftmost derivations, as a variable of the formâ

(a ∈ �∪{ε}) can be rewritten into the terminal stringa only under a final state. On the other
hand, to each derivation tree ofG′, we can associate a derivation tree ofG that yields the
same terminal string by simply replacing each occurring symbolâ by a and by forgetting
about the applications of those rules ofG′ that rewrite these particular variables. It follows
thatL(G) = L(G′) andLlt(G) = Llt(G

′) hold.
If G does not contain anyε-rules, then we do not need the symbolε̂ inG′, and accordingly

G′ will then also beε-free. �

5. Upper bounds for some subclasses ofLlm(sACFG)

In this section, we consider upper bounds for some subclasses ofLlm(sACFG).

200 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

Theorem 5.1. The language classL(right-lin-ACFG) coincides with the classREG of
regular languages.

Proof. As each regular language is generated by a right-linear grammar, the inclusion from
right to left is obvious. Conversely, letL ⊆ �∗ be the language that is generated by the
right-linearACFG G = (V ,U,�, P , S). We will show that there exists an alternating
finite-state acceptor for the languageL. As alternating finite-state acceptors only accept
regular languages[2], this shows thatL is regular.

First we transform theACFG G as follows. For each universal variableA ∈ U and
for each productionA→ a1 . . . akB from P , wherea1, . . . , ak ∈ �, k�1, andB ∈ V or
B = ε, we introducek new existential variablesA1, . . . , Ak. Then we replace the production
A→ a1 . . . akB by the following group of new productions:

A→ A1, A1→ a1A2, . . . , Ak−1→ ak−1Ak, Ak → akB.
Further, for each existential variableC and each productionC → c1 . . . ckD from P ,
wherec1, . . . , ck ∈ �, k > 1, andD ∈ V orD = ε, we introduce new existential variables
C1, . . . , Ck−1, and we replace the productionC → c1 . . . ckD by the following group of
productions:

C → c1C1, C1→ c2C2, . . . , Ck−2→ ck−1Ck−1, Ck−1→ ckD.
Then all rules of the resulting right-linearACFG G′ := (V ′, U,�, P ′, S) are of the form
A → B, A → aB, A → a or A → ε, whereA,B ∈ V ′ anda ∈ �. In addition, ifA
is universal, then all productions with left-hand sideA are of the first or the fourth form.
Thus, no universal derivation step directly generates a terminal symbol.

Now from the grammarG′we construct an alternating finite-state acceptorM by applying
the standard construction. The states ofM correspond to the variables ofG′. In particular,
the universal states ofM correspond to the universal variables, and the existential states
of M correspond to the existential variables. Further, the transitions ofM correspond to
the productions ofG′. In addition, we introduce a new stateF that serves as a final state,
and that is entered by each transition corresponding to a production of the formA → a

with A ∈ V anda ∈ � ∪ {ε}. The finite-state acceptorM will have ε-transitions, ifG′ has
productions of the formA→ B with A,B ∈ V ′ orA→ ε.

From the properties ofG′ we see that the universal states ofM only admitε-transitions.
Now letw ∈ �∗. It is easily seen that there exists a successful derivation tree forw in G′
if and only if there is an accepting computation tree ofM on inputw. Thus,M accepts the
languageL, that is,L is indeed regular. �

By Theorem4.3(a) this has the following consequence.

Corollary 5.2. L(right-lin-ACFG) = L(right-lin-sACFG) = REG.

From Theorem4.3(b) we know thatL(lin-ACFG) andL(lin-sACFG) coincide. On the
other hand Chen and Toda have shown that the closure ofL(lin-ACFG) under log-space
reductions coincides with the complexity classP [4]. Thus, their result can be restated as
follows.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 201

Corollary 5.3. LOG(L(lin-ACFG)) = LOG(L(lin-sACFG)) = P.

AsP = ALOGSPACE [2], Corollary 5.3 can be viewed as the counterpart (with respect
to alternation) of the well-known result by Sudborough [18] that

NLOGSPACE = LOG(L(lin-CFG)),

whereNLOGSPACE denotes the class of languages that are accepted by non-deterministic
Turing machines within logarithmic space. Below we will repeatedly refer to the complexity
classDLINSPACE, which is the class of languages that are accepted by deterministic Turing
machines within linear space.

We now turn our attention toε-free sACFGs. In fact, we first considersACFGs
that are in additionunit-production-free, that is, they do not contain any unit-
productions.

Lemma 5.4. Llm(ε-free-unit-production-free-sACFG) ⊆ DLINSPACE.

Proof. Let G = (Q,U, V,�, P , S, q0, F) be ansACFG that isε- and unit-production-
free. Thus, each production(p,A)→ (q, �) ofG satisfies|�|�2 or� ∈ �. Hence, for each
wordw ∈ L(G), if |w| = n, then each path from the root to a leaf in eachG-derivation
tree ofw has length at most 2n− 1, and so eachG-derivation tree ofw has height at most
2n− 1.

Each node of aG-derivation tree is labelled with a pair of the form(p, �), wherep ∈ Q
and� ∈ (V ∪ �)+. If � does not contain any variables, then this node is a terminal leaf.
Otherwise, it is either an existential or a universal node, depending on the type of the
statep.

We say that a node issuccessfulif it can be part of a leftmostG-derivation tree forw. Our
goal is to verify whether the root is successful. When creating a leftmostG-derivation tree,
we can distinguish between the following situations, depending on the type of the actual
node:
(1) If it is a terminal node with label(p, u), then it is successful if and only ifu = w and
p ∈ F .

(2) If it is an existential node with label(p, uA�), whereu ∈ �∗,A ∈ V , and� ∈ (V ∪�)∗,
then it is successful if and only if there exists a production with left-hand side(p,A)

such that the node is successful that is obtained from the actual node by applying this
production.

(3) If it is a universal node with label(p, uA�), whereu ∈ �∗, A ∈ V , and� ∈ (V ∪ �)∗,
then it is successful if and only if all those nodes are successful that are obtained from
the actual node by applying all the rules with left-hand side(p,A).

Further, in the latter two cases we can abort the search, if|uA�| > |w|.
We now construct a linearly space-bounded deterministic Turing machineT that, given

a wordw ∈ �+ as input, tries to construct a leftmostG-derivation tree forw in depth-first
order by using all possible applications of rules in a systematic way. The above bound is
used to limit the depth to which the search continues.

202 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

In order to realize this depth-first search, the Turing machineT has four tapes. The first
of these tapes will contain the given input. It will not be changed in the course of the
computation, as it will be used to check the labels of terminal nodes encountered during the
search. Because of the intended linear space bound,T cannot possibly store the complete
G-derivation tree forw. Instead it only stores the current sentential form together with
information on the ‘address’ of the actual node. For this, the second tape will contain a
description of the path in the currently created partial leftmostG-derivation tree that leads
to the actual node. Observe that this node is uniquely described by the sequence of rules that
have been applied on the path from the root of the tree to this particular node. Thus, from
this information all ancestors of the current node can be recomputed on demand. The third
tape will contain the sentential form ofG that is the label of the actual node, and finally the
fourth tape will be used as scratch paper for performing auxiliary calculations.

Let w ∈ �+ be the given input, and letn := 2 · |w| − 1. For each integerk, 1�k�n,
the initial part of lengthk of a path in theG-derivation tree ofw (and therewith a node in
this tree) can be described uniquely by a sequence of the form

(Q1 : i1), (Q2 : i2), . . . , (Qk : ik),
whereij is the serial number (with respect to an arbitrarily chosen linear ordering of the
productions ofG) of the production(pij , Aij)→ (qij , �ij) that is used in stepj , andQj
is the quantifier∀, if the statepij is universal, and it is the quantifier∃, if the statepij is
existential, 1�j�k. Further, two productionsi andj are said to becompatibleif they
apply to the same configurations in leftmost derivation mode, that is,pi = pj andAi = Aj
hold simultaneously.

The Turing machineT will use its second tape as a pushdown store that stores the
sequence of pairs(Q1 : i1), (Q2 : i2), . . . , (Qk : ik) that describe the path in the leftmost
G-derivation tree that leads to the actual node. Herei1 is the index of the rule that was
applied to the start symbol on the actual path, andik is the index of the rule through which
the actual sentential form(qik , �) has been obtained. Accordingly, the pair(Qk : ik)will be
on the top of the stack. Observe that the quantifierQk corresponds to the type (existential
or universal) of the parent node of the actual node, and as such it gives information on how
to proceed once it has been determined whether or not the actual node is successful.

The computation of the Turing machineT is now described by the following procedure.
Within this procedureacceptis equated with the Boolean valuetrue, andreject stands for
the valuefalse. Further, the stack operationspush, top, andpopused refer always to tape 2,
and the items that are pushed, retrieved or popped from the stack, respectively, are always
pairs of the form(Q : i), whereQ ∈ {∃,∀} andi ∈ {1, . . . , |P |}. Further, a boolean variable
result is used to compute (and store) the result of the computation. For each node it will be
set to the valueaccept if this node is successful. The computation halts once it becomes
clear whether the root of the tree, which is labelled with the pair(q0, S), is successful. In
the affirmative this happens only when the stack (that is, tape 2) has become empty, and the
root has been recognized as a successful node, while in the negative this might be realized
much sooner. To manage the depth-first search another boolean variable namedfirst is being
used. For each node encountered during the search process this variable has valuetrue if
the actual node is just being encountered for the first time, and it gets the valuefalseonce
the actual node is being revisited.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 203

boolean functionsimulate(w); (∗ w ∈ �+ is the given input.∗)
begin booleanresult, first;

stack tape2← empty; (∗ tape2is used as a stack∗)
(∗ INITIALISATION ∗)
choosei to be the index of the first production ofG that is applicable to the
initial sentential form(q0, S);
if q0 is universalthenQ← ∀ elseQ← ∃;
push(Q : i);
first← true;
result← reject;
while not empty tape2do (∗ SIMULATION ∗)
begin if first= true then

begin
on tape3, simulate the leftmostG-derivation that is described by
the current content oftape2, starting from the initial sentential form
(q0, S), and let(q, �) be the resulting sentential form;
first← false;
if � ∈ �∗ then (∗ � is a terminal string∗)

if � = w and q ∈ F then result← accept
elseresult← reject

else(∗ � is NOT a terminal string∗)
if ∃i : productioni is applicable to(q, �)
and |�|� |w| then

begin
choosei to be the smallest index of a production ofG
that is applicable to the sentential form(q, �), and let
Q be the quantifier corresponding to the stateq;
push(Q : i);
first← true;

end
elseresult← reject;

end
else(∗ first= false∗)
begin (Q : i)← top; (∗ Read the topmost element from the stack∗)

pop; (∗ (Q : i) is removed from the stack∗)
if ((Q = ∃ and result= reject) or (Q = ∀ and result= accept))

and ∃j > i : productionsi andj are compatiblethen
beginchoose the smallestj > i with this property;

push (Q : j);
first← true;

end
end

end;
return result;

end.

204 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

Given a stringw ∈ �+ as input, the Turing machineT performs a traversal of the leftmost
derivation tree ofG for w in depth-first order. Each time a sentential form is generated,
which is indicated by pushing a new pair(Q : i) onto tape 2, the Boolean variablefirst
is set totrue. In the next traversal of the while-loopT tries to extend the derivation, if
the sentential form is not terminal already, or it compares the result of this branch of the
derivation tree to the given inputw, if the actual sentential form is terminal. Observe that a
terminal sentential form ends the actual branch of the derivation tree, and that this branch
is successful, if the string generated coincides with the input stringw and if the actual state
is final, and that this branch fails, if the string generated differs fromw or if the actual
state is not final. WhenT reaches the same pair(Q : i) again during the backtracking
process, which is indicated by the truth valuefalseof the variablefirst, then this step can
be removed if the result of the corresponding subtree is already known, which is the case if
Q is existential and the current result isaccept, or ifQ is universal and the current result is
reject. Otherwise the corresponding brother configurations have to be examined in order to
determine the result of the actual branch correctly. To do so the step encoded by(Q : i) is
replaced by its next older brother, if such a brother exists. It follows that the languageL(T)

accepted byT coincides with the languageLlm(G).
As T simulates leftmostG-derivations for the given inputw, the content of tape 2 is

bounded in length by the numberc · n for some constantc. As tape 3 always contains a
sentential form ofG, it is also bounded in length by|w|. Hence,T can indeed be realized
in a linearly space-bounded manner.�

Next we want to generalize the above result toε-freesACFGs. As an intermediate step
we introduce the following notion. AnsACFGG is said to havebounded unit-productions
if there exists a constantc�1 such that, for each stringw ∈ Llm(G), there exists a leftmost
G-derivation tree forw such that the number of applications of unit-productions on each
path of this derivation tree is bounded from above by the numberc · |w|.

If G is ε-free and has bounded unit-productions with respect to the constantc, then for
each stringw ∈ Llm(G), there exists a leftmostG-derivation tree forw such that on each
path ofG, there are at most 2· |w| − 1 many applications of non-unit-productions and
c · |w| many applications of unit-productions. Thus, this leftmostG-derivation tree forw
has height at most(2+ c) · |w| − 1. Hence, the arguments in the proof of Lemma5.4 apply
toG. This yields the following consequence.

Corollary 5.5. Llm(ε-free-bounded-unit-production-sACFG) ⊆ DLINSPACE.

Based on the notion of bounded unit-productions, we can now establish the following
interesting result.

Theorem 5.6. Llm(ε-free-sACFG) ⊆ DLINSPACE.

Proof. It suffices by the previous corollary to show that anε-freesACFG has necessarily
bounded unit-productions. So letG = (Q,U, V,�, P , S, q0, F) be anε-freesACFG. We
choose the constantc := 2 · |Q| · |V |, and claim thatG has bounded unit-productions with
respect to this constantc.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 205

Let w ∈ Llm(G), |w| = n, and letT be aG-derivation tree forw corresponding to a
leftmost derivation. Assume that this tree contains a pathp on which there are more than
c · n = 2 · |Q| · |V | · n applications of unit-productions. AsG is ε-free,p contains at most
2n − 1 applications of non-unit-productions. Hence,p can be partitioned into (at most)
2n− 1 subpathsp1, . . . , p2n−1 such that
• each subpathpi contains only applications of unit-productions, and
• subpathpi is connected to subpathpi+1 (1� i < 2n − 2) by an application of a non-

unit-production, and
• subpathp2n−1 ends with a non-unit-production that generates a terminal sentential form.
Thus, there is an indexi such that subpathpi contains more than|Q| · |V | applications of
unit-productions, that is, this subpath can be decomposed as

pi = p(1)i → (q, uA�)→ (r, uB�)→ p(2)i → (q, uA�)→ (r, uB�)→ p(3)i ,
where(q,A) → (r, B) is the first unit-production that is repeated onpi . By deleting the
subpath(r, uB�)→ p(2)i → (q, uA�) we obtain an equivalent derivation tree. This is true
even if this subpath contains universal steps, in which case we also delete all the subtrees
generated along this subpath. By using such replacements repeatedly we eventually obtain
a leftmostG-derivation tree forw that does not contain more thanc · n unit-productions on
any path. Thus, we see thatG has indeed bounded unit-productions.�

This result together with Theorem4.3(c) and the result of Chen and Toda onε-free
ACFGs [4] has the following consequence.

Corollary 5.7. LOG(Llm(ε-free-ACFG)) = LOG(Llm(ε-free-sACFG)) = PSPACE.

6. Characterizing language classes by automata

The original purpose for introducingACFGs was to give a grammatical characterization
for the language classL(APDA) [14]. Such a characterization will be derived in this section
in terms ofsACFGs with leftmost derivations.

Definition 6.1. An alternating pushdown automaton, APDA for short,M is given by an
8-tuple (Q,U,�,	,
, q0, Z0, F), whereQ is a finite set of states,U ⊆ Q is a set of
universal states,� is an input alphabet,	 is a pushdown alphabet,q0 ∈ Q is the initial
state,Z0 ∈ 	 is the bottom marker for the pushdown store,F ⊆ Q is a set of accepting (or
final) states, and
 : Q× (� ∪ {ε})× 	→ Pfin(Q× 	∗) is a transition function.

A configurationofM is described by a triple(q, u, �), whereq ∈ Q is the current state,
u ∈ �∗ is the remaining part of the input with the input head scanning the first symbol ofu,
and� is the current content of the pushdown store with the first letter of� being the symbol
on the top of the pushdown store and the last letter of� being the symbol on the bottom
of the pushdown store. As usual theinitial configurationfor an inputw ∈ �∗ is the triple
(q0, w,Z0), and afinal configurationhas the form(q, ε, �) with q ∈ F and� ∈ 	∗.

206 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

An inputw ∈ �∗ is acceptedbyM, if there is a successful computation tree ofM on
that input, that is, there is a finite tree the nodes of which are labelled by configurations of
M such that the following conditions are satisfied:
(1) the root is labelled with the initial configuration(q0, w,Z0);
(2) each leaf is labelled with a final configuration;
(3) if a non-leaf is labelled by(q, au, Z�), whereq ∈ Q \ U , a ∈ � ∪ {ε}, Z ∈ 	, then it

has a single successor that is labelled by(p, u,��) for some(p,�) ∈
(q, a, Z);
(4) if a non-leaf is labelled by(q, au, Z�), whereq ∈ U , a ∈ � ∪ {ε}, Z ∈ 	, and

if
(q, a, Z) = {(p1,�1), . . . , (pm,�m)}, then it hasm successor nodes labelled by
(p1, u,�1�), . . . , (pm, u,�m�), respectively.

Instead of accepting by final state as defined above, anAPDA can alsoaccept by empty
pushdown, which means that each leaf of a successful computation tree is labelled with a
configuration of the form(q, ε, ε), whereq is any state fromQ.

As mentioned in the introduction, it has been shown in[11] thatL(APDA) = ETIME.
To derive the intended grammatical characterization the following two technical lemmas
are needed.

Lemma 6.2. For eachAPDAM, there exists anAPDAM ′ such thatL(M) = L(M ′), and
all final states ofM ′ are existential.

Proof. LetM = (Q,U,�,	,
, q0, Z0, F) be anAPDA. If U ∩ F = ∅, then already all
final states ofM are existential, and there is nothing to do.

Assume thatU ∩F �= ∅. Then we construct anAPDAM ′ := (Q′, U ′,�,	′,
′, q ′0, Z′0,
F ′) fromM by creating two new statesqf andqu for each stateq ∈ U ∩F . The stateqf will
be a final state that is existential, and the statequ will be a non-final state that is universal.
Further, the original stateq will be turned into a non-final existential state. In addition, a
new initial stateq ′0 and a new bottom markerZ′0 for the pushdown store are introduced.
The main idea of the construction ofM ′ is the following. WheneverM ′ is in stateq, it
must choose non-deterministically whether the role ofq as a universal state or its role as a
final state is needed. This is done by executing anε-step that takesM ′ into statequ or qf ,
respectively. Accordingly,M ′ is defined as follows:

• Q′ := Q ∪ { qf , qu | q ∈ U ∩ F } ∪ {q ′0},• U ′ := (U \ F) ∪ { qu | q ∈ U ∩ F },
• F ′ := (F \ U) ∪ { qf | q ∈ U ∩ F },
• 	′ := 	 ∪ {Z′0},•
′(q ′0, ε, Z′0) := (q0, Z0Z

′
0),•
′(q, a, Z) :=
(q, a, Z) if q ∈ Q \ (U ∩ F), a ∈ � ∪ {ε}, Z ∈ 	,

•
′(q, ε, Z) := {(qf , Z), (qu, Z)} if q ∈ U ∩ F,Z ∈ 	′,
•
′(qu, a, Z) :=
(q, a, Z) if q ∈ U ∩ F, a ∈ � ∪ {ε}, Z ∈ 	.

Each time a stateq ∈ U ∩ F is encountered in the course of a computation ofM ′, either
the universal statequ is entered, thus continuing the simulation ofM, or the final stateqf
is entered, which ends the simulation. The new bottom markerZ′0 for the pushdown store
ofM ′ is introduced in order to enableM ′ to enter a final state, even if in the corresponding

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 207

computation ofM a universal final statep is entered in a move that empties the pushdown
store. It is now straightforward to verify thatM ′ accepts the same language asM. �

The next lemma establishes a kind of normal form forAPDAs.

Lemma 6.3. If a languageL is accepted by anAPDA by final state, thenL is also accepted
by anAPDA N by empty pushdown, where, in addition, each universal transition ofN is
an ε-transition, that is,N satisfies the following condition:
(∗) if p is a universal state ofN , and
(p, a, Z) �= ∅, thena = ε.

Proof. LetM be anAPDAaccepting the languageL. By the previous lemma we can assume
without loss of generality that no final state ofM is universal. Now by applying the standard
technique for pushdown automata (see, e.g.,[7, Theorem 5.1]), we can convertM into
an equivalentAPDA M1 := (Q,U,�,	,
, q0, Z0) which accepts by empty pushdown.
Observe that here it is essential that no final state ofM is universal, as by this construction
ε-transitions that empty the pushdown store are introduced for all final states.

Next, we introduce a new existential statep̂ for each universal statep ofM1 and replace
each occurrence ofp in the right-hand side of any transition bŷp. Further, we introduce
new universal states[p, a] (a ∈ �∪{ε}), and introduce the following additional transitions
for all a ∈ � ∪ {ε} andZ ∈ 	:

N(p̂, a, Z) := {([p, a], Z)},

N([p, a], ε, Z) :=
(p, a, Z).

Let N denote the resultingAPDA. ClearlyN satisfies the condition (∗). To see thatN is
equivalent toM1 we note that a universal transition
(p, a, Z) of M1 is simulated byN
by first entering the existential statêp, then choosing non-deterministically the transition
(p̂, a, Z) �→ ([p, a], Z), and then executing the universalε-transition
N([p, a], ε, Z).
SinceM1 accepts by empty pushdown, and sinceN does not empty its pushdown unless
M1 does so,N andM1 accept the same language by empty pushdown.�

Based on this technical result we can now establish the following characterization.

Theorem 6.4. Llm(sACFG) = L(APDA).

Proof. For the inclusionLlm(sACFG) ⊆ L(APDA), letG = (Q,U, V,�, P , S, q0, F)
be ansACFG. By Lemma4.7 we may assume thatG is in weak Chomsky normal form
and thatF = Q holds. AsAPDAs are allowed to makeε-transitions, that is, the head on
the input tape may remain stationary during certain transitions, the standard technique (see,
e.g., [7]) can be used to construct anAPDA M fromG such thatM accepts the language
Llm(G). Observe the fact that, whenever several different productions ofG are applicable
to the same sentential form, all the possible productions are unit-productions, which means
that all existential or universal transitions ofM that entail a non-deterministic choice are in
fact ε-transitions.

The proof for the converse inclusionL(APDA) ⊆ Llm(sACFG) is actually simpler than
the one for the non-alternating case, assACFGs can use their own states to simulate the state

208 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

transitions ofAPDAs. LetM = (Q,U,�,	,
, q0, Z0,Q) be anAPDA. By Lemma6.3 we
can assume thatM accepts by empty pushdown, and that all universal transitions ofM are
ε-transitions. Assume thatM is in a configuration(p, ay, Z�), wherep is the current state,
ay (a ∈ �∪{ε}, y ∈ �∗) is the remaining suffix (the unconsumed part) of the input, andZ�
(Z ∈ 	, � ∈ 	∗) is the current content of the pushdown store. Further, letx be the prefix of
the input that has already been consumed byM before reaching the current configuration.
Then we construct ansACFG G which has the same universal and existential states as
M and that behaves as follows. Corresponding to the current configuration(p, ay, Z�) of
M, G will derive the sentential form(p, xZ�). If
(p, a, Z) contains(q,�), thenG has
the production(p, Z) → (q, a�). Thus,(q, xa��) is directly derived from(p, xZ�) by
rewriting the leftmost variableZ into xZ�. Observe that by Lemma 6.3, ifp is universal,
then for anyZ ∈ 	, the universal productions ofG with left-hand side(p, Z) correspond
one to one to the universal transitions
(p, ε, Z) ofM. It follows easily that the languages
Llm(G) andL(M) coincide. �

By Lemma 4.1 and the result onL(APDA) from [11] the above characterization yields
the following consequence.

Corollary 6.5. Llm(ACFG) ⊆ Llm(sACFG) = L(APDA) = ETIME .

7. Comparisons of derivation strategies

So far we have mostly considered leftmost derivations forACFGs andsACFGs, but of
course there are many strategies to select an occurrence of a variable in a sentential form to
apply a production. Here, we compare the expressive power of theACFGs and thesACFGs
with respect to the leftmost, the leftish and the unrestricted derivation modes. First we turn
to the leftishderivation strategy, which differs significantly in expressive power from the
leftmost strategy, as we will see below.

Theorem 7.1. (a)Llt(�-free-sACFG) ⊆ L(APDA).
(b) Llt(sACFG) = RE.

Proof. (a) It is known (see[2]) that L(APDA) = L(ALBA), whereALBA stands for
alternating linear bounded automata. Hence, in order to prove thatLlt(ε-free-sACFG) ⊆
L(APDA), it suffices to present anALBA M which accepts the language generated by a
givenε-freesACFG G in leftish mode. By Lemma 4.8 we can assume that all states ofG

are final.
The input tape ofM is divided into two tracks. Throughout the computationM retains the

input string on the first track, and it utilizes the second track to simulate leftish derivations
of G. Naturally,M holds the actual state ofG in its finite control.
M simulates eachG-derivation step by a sequence of moves, called acycle. At the

beginning of a cycle, the read/write head ofM is at the left end of the input tape.M begins
the cycle by searching the sentential form on the second track from left to right for the
leftmost variableA to which a production ofG can be applied. OnceM finds this variable,

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 209

it applies an appropriate production(p,A)→ (q, �) of G, thereby replacing the variable
A by the string�. This step is existential or universal, depending on whether the statep of
G is existential or universal, respectively. As� may be of length larger than one,M may
have to shift the suffix of the inscription of the second track to the right in order to have
enough space for storing�. Further,M stores the stateq in its finite control.M ends the
current cycle by moving its read/write head back to the left end of the input tape.

If M reaches the right end of the input tape without finding any variable on the second
track to which a production ofG applies, thenM either accepts (if there is no variable at all
in the sentential form and if the contents of the two tracks coincide) or rejects (otherwise).
It easily follows thatL(M) = Llt(G).

As thesACFG G does not contain anyε-productions, each configuration ofM uses
only the space provided by the given input. Thus,M is linearly space-bounded, that is, it is
indeed anALBA. Hence,Llt(�-free-sACFG) ⊆ L(ALBA) = L(APDA) follows.

(b) As eachECFG (see Section2) can be regarded as ansACFG with only existential
states, it follows from Proposition 2.2(b) thatLlt(sACFG) ⊇ Llt(ECFG) = RE. The
converse inclusion is obvious.�

Together with Theorem 6.4 this yields the following inclusion.

Corollary 7.2. Llt(�-free-sACFG) ⊆ Llm(sACFG).

Open Problem 3. Does the converse of the inclusion above hold, too?

Concerning the expressive power of the various derivation modes for thesACFGs, we
have the following inclusions.

Theorem 7.3.
(a) Llm(�-free-sACFG) ⊆ Llt(�-free-sACFG) and

L(ε-free-sACFG) ⊆ Llt(�-free-sACFG).
(b) Llm(sACFG ⊆ Llt(sACFG) andL(sACFG) ⊆ Llt(sACFG).

Proof. The inclusions in (b) are immediate consequences of Theorem7.1(b). It remains to
verify the inclusions in (a). The first of them is a consequence of Proposition 2.2 (a) and
Theorem 5.6, as eachECFG is also ansACFG.

It remains to prove the inclusionL(ε-free-sACFG) ⊆ Llt(ε-free-sACFG). For an arbi-
traryε-freesACFGG = (Q,U, V,�, P , S, q0, F), we will construct anε-freesACFGG′
that in leftish mode simulates the unrestricted derivations ofG. The idea of the simulation
is as follows.

For each variableX, a new variableX̄ is introduced, and for each variable or terminal
A, a new variableA′ is introduced. Further, for each stateq, two new existential statesEq
andĒq are introduced. When(p,�X�) is the current sentential form ofG, wherep ∈ Q,
�, � ∈ (V ∪�)∗, andX ∈ V , and the displayed occurrence of the variableX is the one that
is to be rewritten next, then this derivation step is simulated by a sequence of derivation
steps ofG′. This sequence starts with the sentential form(Ep,�X�). AsG′ has to work
in leftish mode, we need some preparatory steps that change the current sentential form in

210 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

such a way that the displayed occurrence of the variableX becomes the leftmost to which
a production ofG′ is applicable. For this each variableY that occurs within the prefix�
is replaced by an occurrence of the new variableȲ . After that has been done, the stateEp
changes into the statep, and then the actual derivation step ofG is simulated by a leftish
derivation step ofG′. However, to complete the simulation of theG-derivation step, the
variables of the formȲ contained in� must again be replaced by the original variables.
This is done using the states of the form̄Eq and the new variables of the formA′.

We now describeG′ in detail. We takeG′ := (Q′, U, V ′,�, P ′, S, q0, F
′), where

Q′ := Q ∪ {Ep, Ēp | p ∈ Q },
V ′ := V ∪ { X̄ | X ∈ V } ∪ {A′ | A ∈ V ∪ � },
F ′ := {Ep | p ∈ F },

and letP ′ consist of the following rules:

(1) (Ep,X) → (Ep, X̄) for eachp ∈ Q andX ∈ V,
(2) (Ep,X) → (p,X) for eachp ∈ Q andX ∈ V,
(3) (p,X) → (Ēq, A

′�) if ((p,X)→ (q,A�)) ∈ P,
(4) (Ēp, X̄) → (Ēp,X) for eachp ∈ Q andX ∈ V,
(5) (Ēp, A′) → (Ep,A) for eachp ∈ Q andA ∈ V ∪ �.

Now if (p,�X�) ⇒G (q,�A��) is an arbitrary derivation step inG, wherep, q ∈ Q,
X ∈ V , A ∈ V ∪ �, and�,�, � ∈ (V ∪ �)∗, then

(Ep,�X�)⇒∗(1) (Ep, �̄X�) (Replace each variableY in � by Ȳ)

⇒(2) (p, �̄X�) (Change the stateEp into p)
⇒(3) (Ēq, �̄A′��) (Simulate theG-derivation step)
⇒∗(4) (Ēq,�A′��) (Replace each variablēY in �̄ by Y)
⇒(5) (Eq,�A��) (Replace the variableA′ byA).

is the corresponding simulation inG′, where �̄ denotes the string obtained from� by
replacing each variableY by its barred variant̄Y . Note that in the productions of group
(3) it is essential thatP does not contain anyε-productions. It is now easily verified that
Llt(G

′) = L(G). �

Corollary 7.4.
(a) Llm(ε-free-ACFG) = Llt(ε-free-ACFG) ⊆ Llt(ε-free-sACFG).
(b) Llm(ACFG) = Llt(ACFG) � Llt(sACFG).

Proof. The inclusions follow from Lemma4.1. Further, we know from Corollary 6.5 and
Theorem 7.1(b) that

Llm(sACFG) = L(APDA) = ETIME � RE = Llt(sACFG). �

Unfortunately, many questions concerning the inclusions between the language classes
considered so far remain open. In particular we have the following open question.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 211

Open Problem 4. DoesLlm(X) ⊆ L(X) or its converse hold, whereX is any of the classes
(ε-free-) (s)ACFG?

Observe that

L(ε-free-sACFG) ⊆ Llt(ε-free-sACFG) ⊆ Llm(sACFG)

by Corollary7.2 and Theorem 7.3(a), while

Llm(ECFG)�L(ε-free-ECFG)�Llt(ε-free-ECFG)

by Proposition2.2, which shows that various inclusion results do not carry over fromECFGs
to sACFGs.

In the remainder of this section, we will illustrate the differences between the various
derivation modes by considering some examples of (s)ACFGs. Analogously to Section 3 we
denote byLrm(G,w) andLlt(G,w) the languages that are generated by the grammarG from
the initial stringw with respect to rightmost and leftish derivations, respectively. If arbitrary
derivations are used, then the generated language is denoted byL(G,w). Obviously, for
eachsACFG G and each stringw, we have

Llm(G,w) ⊆ L(G,w), Lrm(G,w) ⊆ L(G,w), and Llt(G,w) ⊆ L(G,w).
The following example simultaneously separatesLlm(G), Lrm(G), Llt(G), andL(G).

Example 7.5. Let G1 := ({∃,∀}, {∀}, {S,A,B,C}, {a}, P , S, ∃, {∃,∀}) be thesACFG
with the following productions:

(∃, S)→ (∃, ABC), (∃, A)→ (∃, ε), (∃, C)→ (∃, ε),
(∃, S)→ (∀, ABC), (∃, B)→ (∀, ε), (∀, B)→ (∃, a),
(∃, A)→ (∀, a), (∃, C)→ (∃, a), (∀, B)→ (∃, ε).

The possible leftmost, rightmost, and leftish derivation trees are shown in Fig.4, where
dotted lines represent possible choices (that is, only one of them is to be chosen), and solid
lines represent universal branches (that is, all the branches must be chosen at each such
node). As, in addition, there is an unrestricted derivation

(∃, S)⇒ (∃, ABC)⇒ (∃, BC)⇒ (∃, B)⇒ (∀, ε),
we see that the languages generated byG1 in the leftmost, rightmost, leftish, and unrestricted
derivation modes areLlm(G1) = {aa}, Lrm(G1) = ∅, Llt(G1) = {a, aa}, andL(G1) =
{ε, a, aa}, respectively. �

Further, for eachACFG G and each stringw, we have

Llm(G,w) ⊆ L(G,w) and Lrm(G,w) ⊆ L(G,w).
The following example simultaneously separatesLlm(G), Lrm(G), andL(G).

212 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

Fig. 4. Leftmost (top left), leftish (top right), and rightmost (bottom) derivation trees.

Example 7.6. Consider theACFG

G2 := ({S,A1, A2, A3, E1, E2, E3}, {A1, A2, A3}, {a, a′, b, b′}, P , S),
whereP contains the following productions:

S → A1E2E3, E1 → ε, E1 → a, A1 → a′, A1 → a′a,
S → E1A2E3, E2 → a, E2 → b, A2 → a, A2 → b,

S → E1E2A3, E3 → ε, E3 → b, A3 → b′, A3 → bb′.

Then, for each derivation modem,

Lm(G2) = Lm(G2, A1E2E3) ∪ Lm(G2, E1A2E3) ∪ Lm(G2, E1E2A3).

(1) L(G2, A1E2E3) = {a′ab}, and this string is derivable only by first expandingA1, since

L(G2, a
′E2E3) ∩ L(G2, a

′aE2E3) = {a′ab},
L(G2, A1aE3) ∪ L(G2, A1bE3) = ∅,
L(G2, A1E2b) ∪ L(G2, A1E2) = ∅.

(2) L(G2, E1A2E3) = {ab}, and this string is derivable only by first expandingA2, since

L(G2, E1aE3) ∩ L(G2, E1bE3) = {ab},
L(G2, A2E3) ∪ L(G2, aA2E3) = ∅,
L(G2, E1A2b) ∪ L(G2, E1A2) = ∅.

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 213

(3) L(G2, E1E2A3) = {abb′}, and this string is derivable only by first expandingA3, since

L(G2, E1E2bb
′) ∩ L(G2, E1E2b

′) = {abb′},
L(G2, E2A3) ∪ L(G2, aE2A3) = ∅,
L(G2, E1aA3) ∪ L(G2, E1bA3) = ∅.

Thus, we see thatL(G2) = {a′ab, ab, abb′}, Llm(G2) = {a′ab}, andLrm(G2) = {abb′}.

8. An undecidability result

Let G be an (s)ACFG, and letm be any of the leftmost, rightmost or leftish deriva-
tion modes. ThenLm(G) ⊆ L(G), but in general the converse inclusion does not hold.
Accordingly, we are interested in the following decision problem:

INSTANCE : An (s)ACFG G.

QUESTION : IsL(G) = Lm(G)?

For this problem we have the following undecidability result.

Theorem 8.1. Letm denote one of the derivation modes leftmost, rightmost, or leftish.
Then it is undecidable in general whether the equalityL(G) = Lm(G) holds for a given
(s)ACFG G.

Proof. By Lemma4.1, it suffices to consider the case thatG is anACFG.
Given two context-free grammarsG1 andG2, one can easily construct anACFG G0

such thatL(G0) = L(G1)∩L(G2). As it is undecidable in general whether the intersection
of two context-free languages is empty [7], it is also undecidable in general whether the
intersection of two context-free languages contains a non-empty word. It follows that it is
undecidable in general whether the languageL(G) generated by anACFG G contains a
non-empty word.

We will now reduce this problem to the problem of deciding whether the languagesL(G′)
andLm(G

′) coincide for anACFG G′. So letG be anACFG over the terminal alphabet
{a, b}, and letS be its start symbol. We define anACFGG′ with start symbolS′ by adding to
G the new existential variablesE,E′, the universal variablesS′, Aa,Ab, and the following
productions:

S′ → S, S′ → EE′, E′ → Aa, E′ → Ab,

E → ε, E → aE, E → bE,

Aa → ε, Aa → a, Ab → ε, Ab → b.

It is easily verified that

L(G′, E) = {a, b}∗,
L(G′, EE′) = Lrm(G

′, EE′) = {a, b}+, and

Llm(G
′, EE′) = ∅.

214 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

AsL(G′, S) = L(G, S), we see thatL(G′, S′) = L(G, S)∩L(G′, EE′). Further, we have
thatLlm(G

′, S′) = Llm(G
′, S) ∩ Llm(G

′, EE′) = ∅. Hence,

L(G′, S′) = Llm(G
′, S′) iff L(G′, S′) = ∅ iff L(G, S) ∩ {a, b}+ = ∅,

and by our remark above the last equality is undecidable.
The same proof applies to the leftish derivation mode, and a symmetric construction

yields the result for the rightmost derivation mode.�

9. Concluding remarks

The main result of this paper is the characterization of the language classL(APDA)
by sACFGs with leftmost derivation mode (Theorem6.4). Unfortunately, this result does
not answer the original question as to whether or not alternating context-free grammars
correspond in expressive power to alternating pushdown automata.

We have further seen that for (s)ACFGs the expressive power depends on the chosen
derivation mode (see Section 7). However, many questions about the exact relationships
between the many language classes that are obtained by choosing various derivation modes
remain open. Also only few closure properties for the various language classes defined by
(s)ACFGs are currently known.

Recently a variant of the context-free grammars has been considered under the name of
conjunctive grammars[15]. While in the derivation process of an alternating context-free
grammar the application of a universal step splits the derivation into several independent
sentential forms, each of which is then processed independently of all the others, the deriva-
tion process in a conjunctive grammar keeps all the different right-hand sides obtained by
applying a universal step in a common context. Thus, the effect of a universal step in a
conjunctive grammar is onlylocal in contrast to the situation in an alternating context-
free grammar. It is shown in [15] that many of the standard constructions of context-free
grammars carry over to conjunctive grammars, and consequently the languages generated
by them are recognizable in polynomial time. On the other hand, the class of languages
generated by conjunctive grammars is quite expressive, as it properly contains all those lan-
guages that are obtained as intersections of finitely many context-free languages. However,
the exact relationship between the class of conjunctive languages and the languages gen-
erated byACFGs remains to be determined. IntuitivelyACFGs should be more powerful
than conjunctive grammars, but it is not even clear whether each conjunctive language is
generated by anACFG. However, in the linear case these concepts yield the same language
class.

For future work it also remains to study the language classes that are obtained by (state-)
alternating variants of non-context-free phrase structure grammars. Here growing context-
sensitive grammars [5], context-sensitive grammars, monotone grammars and arbitrary
phrase structure grammars come to mind. For example, in [16] two of the authors have
studied the computational power of the alternating variant of the shrinking two-pushdown
automaton of Buntrock and Otto [1].

E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216 215

Appendix

The diagram below depicts the known inclusion relations between some of the language
classes discussed in the paper and some well-known language and complexity classes. By

�� we denote an inclusion, �� denotes a proper inclusion, and denotes
equality.

RE

Llt(sACFG)

Llt(ECFG)����

L(sACFG)�� �� ETIME

ALINSPACE

Llm(sACFG) P

����������������������

Llt(ε-free-sACFG)

��

		 L(APDA)��

 LOG(L(lin-sACFG))
LOG(L(lin-ACFG))

Llt(ε-free-ECFG)

L(ACFG)�� L(ε-free-sACFG)��

��

CSL�� Llm(ACFG)

L(ECFG)

��

DLINSPACE��

Llm(ε-free-sACFG)��

L(ε-free-ACFG)��

���������������������� L(ε-free-ECFG)

��

��

������������������������
��

��
��

��
��

��
��

��

Llm(ε-free-ACFG)��

L(lin-sACFG)

��

��

Llm(ε-free-ECFG) L(lin-ACFG)
Llm(ECFG)

CFL��

LIN��

�����������������������

REG

L(right-lin-sACFG)

L(right-lin-ACFG)

216 E. Moriya et al. / Theoretical Computer Science 337 (2005) 183–216

Acknowledgements

The first author was supported in part by Waseda University Grant for Special Research
Projects #2002C-006, which he gratefully acknowledges. The authors also want to thank
Hartmut Messerschmidt for many fruitful discussions on the results presented here, and
they thank the anonymous referees for very helpful comments.

References

[1] G. Buntrock, F. Otto, Growing context-sensitive languages and Church–Rosser languages, Inform. Comput.
141 (1998) 1–36.

[2] A.K. Chandra, D.C. Kozen, L.J. Stockmeyer, Alternation, J. Assoc. Comput. Mach. 28 (1981) 114–133.
[3] A.K. Chandra, L.J. Stockmeyer, Alternation, in: Proc. 17th FOCS, IEEE Computer Society Press, Silver

Spring, MD, 1976, pp. 98–108.
[4] Z.Z. Chen, S. Toda, Grammatical characterizations of P and PSPACE, IEICE Trans. Inform. Systems E 73

(1990) 1540–1548.
[5] E. Dahlhaus, M. Warmuth, Membership for growing context-sensitive grammars is polynomial, J. Comput.

System Sci. 33 (1986) 456–472.
[6] J. Dassow, G. P̆aun, Regulated Rewriting in Formal Language Theory, Monographs in Theoretical Computer

Science, Vol. 18, Springer, Berlin, 1989.
[7] J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-Wesley,

Reading, MA, 1979.
[8] O.H. Ibarra, T. Jiang, H. Wang, A characterization of exponential-time languages by alternating context-free

grammars, Theoret. Comput. Sci. 99 (1992) 301–313.
[9] T. Kasai, An infinite hierarchy between context-free and context-sensitive languages, J. Comput. System Sci.

4 (1970) 492–508.
[10] R.E. Ladner, R.J. Lipton, L.J. Stockmeyer, Alternating pushdown automata, in: Proc. 19th FOCS, IEEE

Computer Society Press, Silver Spring, MD, 1978, pp. 92–106.
[11] R.E. Ladner, R.J. Lipton, L.J. Stockmeyer, Alternating pushdown and stack automata, SIAM J. Comput. 13

(1984) 135–155.
[12] L. Liu, P. Weiner, An infinite hierarchy of intersections of context-free languages, Math. Systems Theory

7 (2) (1973) 185–192.
[13] E. Moriya, Some remarks on state grammars and matrix grammars, Inform. Control 23 (1973) 48–57.
[14] E. Moriya, A grammatical characterization of alternating pushdown automata, Theoret. Comput. Sci. 67

(1989) 75–85.
[15] A. Okhotin, Conjunctive grammars, J. Automata, Languages Combin. 6 (2001) 519–535.
[16] F. Otto, E. Moriya, Shrinking alternating two-pushdown automata, IEICE Trans. Inform. Systems E87-D(4)

(2004) 959–966.
[17] A. Salomaa, Matrix grammars with a leftmost restriction, Inform. Control 20 (1972) 143–149.
[18] H. Sudborough, A note on tape-bounded complexity classes and linear context-free languages, J. Assoc.

Comput. Mach. 22 (1975) 499–500.

	On state-alternating context-free grammars62626262
	Introduction
	State-alternating context-free grammars
	A lower bound for Llm(ACFG)
	Basic properties of ACFGs and sACFGs
	Upper bounds for some subclasses of Llm(sACFG)
	Characterizing language classes by automata
	Comparisons of derivation strategies
	An undecidability result
	Concluding remarks
	Acknowledgements
	References

