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Abstract

State-alternating context-free grammae introduced, and the language classes obtained from
them are compared to the classes of the Chomsky hierarchy as well as to some well-known complexity
classes. In particular, state-alternating context-free grammars are compared to alternating context-free
grammars (Theoret. Comput. Sci. 67 (1989) 75-85) and to alternating pushdown automata. Further,
various derivation strategies are considered, and their influence on the expressive power of (state-)
alternating context-free grammars is investigated.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Alternation is a powerful generalization of non-determinism that has led to many inter-
esting results in automata and complexity theory. It was first introduced by Chandra and
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Stockmeyef2,3] for general Turing machines and by Ladner et al. [10,11] for pushdown
automata. By alternation the well-known deterministic hierarchy

LOGSPACE C P C PSPACE C EXPTIME € EXPSPACE C - --
shifts by exactly one level, as according293],

ALOGSPACE =P,
APTIME = PSPACE,
APSPACE = EXPTIME,
AEXPTIME = EXPSPACE.

Further, the clas8LINSPACE := L(ALBA) of languages that are accepted by alternat-
ing Turing machines within linear space, thatis, by the so-calliednating linear bounded
automataALBA, coincides with the clas§(APDA) of languages that are acceptedaby
ternating pushdown automai@PDA, for short). This class in turn coincides with the
deterministic time complexity clagsTIME := | J,. o DTIME(c") [2,11]. This result holds
in fact for alternating pushdown automata with one-way input as well as with two-way
input.

(Non-alternating) pushdown automata accept exactly the context-free languages, while
non-deterministic Turing machines with linear space bounds accept exactly the context-
sensitive languages. Hence, one would like to also obtain a grammatical characterization
for the class of languages(APDA) that are accepted by alternating pushdown automata.
This question was first addressed by Moriya in [14] by considering alternating context-free
grammars.

Definition 1.1. An alternating context-free grammas given through a 5-tuples =
(V,U, 2, P,S), whereV is a set of variables (or non-terminalg), C V is a set ofuni-
versalvariables . is a set of terminalsy is the start symbol, an# is a set of context-free
productions. The variables ¥ \ U are callecexistential variables

The derivation relation=¢ that is induced byG on the set okentential formgV U
2)* is defined as follows. Let, f € (V U 2)*, and letA € V. If A is an existential
variable, andA — ) € P, thenaAf =¢ ayp. If, however,A is a universal variable, and
(A — v;) (1<i<k) are all the productions fron? with left-hand sideA, thenoAf =¢
(oy1p, - .., oy f), that is, all productions with left-hand sideare applied simultaneously.
In this way a derivation is not a linear chain, but it has the form of a tree. A terminalaword
can be derived frond, if there exists a finite derivation tree in this sense such that the root
is labelled with the start symbdl and all leaves are labelled with the string As usual
L(G) denotes the set of terminal words derived fréGm

In the following we will denote the class of alternating context-free grammafsIiG,
and L(ACFG) will denote the class of languages that are generated by these grammars.
Further,L(e-free-ACFG) will denote the class of languages that are generated by alternating
context-free grammars withoutrules. We usel,,,(ACFG) and L, (e-free-ACFG) to
denote the classes of languages that are generated by these grammars uUsitigalse
derivation strategywhich requires that in each step of a derivation the leftmost variable of
the current sentential form must be rewritten. FinallyJioyACFG we denote the class of
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linear alternating context-free grammars, that is, those alternating context-free grammars
for which each rule contains at most one variable occurrence in its right-hand side.

In [14], it is claimed that a language is accepted by an alternating pushdown automaton
if and only if it can be generated by an alternating context-free grammar, but unfortunately
the arguments given in that paper contain some serious flaws that have not been overcome
to this day. One of the problems stems from the fact that in an alternating context-free
grammar the derivation strategy chosen makes a difference in contrast to the situation for
context-free grammars. In particular, for an alternating context-free grammar, the set of
words generated bgftmostderivations is in general a proper subset of the set of all words
that can be generated by that grammar.

Nevertheless, some interesting partial results have been obtained. First, Chen and Toda [4]
presented complexity theoretical characterizations of the language clasdes ACFG)
and L, (e-free-ACFG) by showing that

P = LOG(Lin(lin-ACFG)) andPSPACE = LOG(L, (¢-free-ACFG)),

whereLOG(L) denotes the closure of the language classder log-space reductions. For
a linear grammar each derivation is necessarily leftmost, and so the first result above can
be restated @B = LOG(L(lin-ACFG)). Then Ibarra, Jiang, and Wang gave a grammatical
characterization forZ(APDA) in [8] by showing thatZL(APDA) = L(linear-erasing-
ACFG), where an alternating context-free gramngais said to bdinear erasingif there
is a constant such that every string of length in the language generated oy has a
derivation tree containing only sentential forms of length at neosi. However, Ibarra,
Jiang, and Wang require in addition that the grammar introdercgsnarkersor the terminal
strings generated, that is, the language they consider consists of all terminal stengs
that the string $$ is generated by the grammar. While the inclusiod ginear-erasing-
ACFG) in L(APDA) remains valid even without these endmarkers, it is not clear whether
the converse inclusion does, as the simulation of an alternating linear-bounded automaton
by a linear-erasing alternating context-free grammar given in [8] crucially depends on the
use of these endmarkers.

Here we will consider a new variant of alternating grammars, a variant that is obtained
by combining the notion offrammars with statewith the notion of alternation. Context-
free grammars with states, abbreviate@®&$G, were introduced by Kasai in [9]. We will
shortly discuss these grammars and the language classes they generate in Section 2. Then we
will define the so-calledtate-alternating context-free grammaebbreviated asACFG,
which are obtained from the grammars with states by distinguishing between universal and
existential states. We will see that these grammars can be interpreted as a generalization of
both theECFGs and theACFGs.

In Section 3, we will derive a lower bound for the expressive powek@FGs by pre-
senting an example of a language that is generated BYCHG in leftmost mode as well
as in unrestricted mode, but that cannot be written as the intersection of finitely many
context-free languages. As a consequence, we obtaithédCFG) N L(ACFG) prop-
erly includes the class of languages that are intersections of finitely many context-free
languages. In Section 4, we will compa®CFGs toACFGs. In particular, we will obtain
the basic fact thetACFGs are at least as powerful AEFGs in their generative capacity. In
Section 5, we will consider various restricted versionss&fCFGs and analyze the
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complexity of the language classes generated by leftmost derivations. For example we will
show that in leftmost mode;free SACFGs only generate deterministic context-sensitive
languages. Then, in Secti@) we will derive a grammatical characterization for the lan-
guage clasL(APDA) in terms of SACFGs by showing thatZ(APDA) coincides with
Lim(SACFG). In Section 7, we will compare the classes of languages to each other that
are generated byACFGs using different derivation modes. Finally, in Section 8, we will
address the problem of deciding for a give)CFG G and a fixed derivation mode m,
whether the languagg,,(G) coincides with the language(G). The paper closes with a
discussion of the results obtained and some open problems. In appendix, we include a dia-
gram depicting the known inclusion relations among the major language classes discussed
in the paper and some well-known language and complexity classes.

2. State-alternating context-free grammars

Throughout this paper we will make use of the following notational convention. For a
grammarG of any type, we denote b¥(G) the language generated by that grammar, and
for a class of grammars we denote by (C) the family of all languages that are generated
by grammars from that class. For any derivation modd.,(G) and £,,(C) denote the
language and the family of languages, respectively, that are generated by only using the
derivation modam. Here we will encounter thieftmostmode, denoted bim, theleftish
mode, denoted blf, and therightmostmode, denoted bym. Further, by using the prefix
¢-free- we indicate that only grammars withotHrules are considered. Analogously, for
any automatori, L(A) is the language accepted By and for a class of automafa,

L(C) is the class of languages that are accepted by automata from that class. Further, for
reasons of simplicity we will mainly consider only languages that do not contain the empty
word e.

As mentioned before, context-free grammars with states, abbreviate@FRES, were

introduced by Kasai [9].

Definition 2.1. An ECFG is given through a 6-tupl& = (Q, V, 2, P, S, qo), whereQ

is a finite set ofstates V is a finite set of variables is a finite set of terminals§ € V is
the start symbolyg € Q is the initial state, ane is a finite set of productions of the form
(p, A) — (q, ), wherep,q € O, A € V,ando € (V U X)*.

The derivation relationinduced byG is defined throughip, fAy) = (g, fay) for all
p,y e (VUXy*and((p, A) — (¢,2)) € P. The language generated Byis the set

L(G) :={w e 2*| (g0, S) =" (p, w) for somep € Q}.

A production of the form(p, A) — (g, ¢) is called are-rule, and afECFG is calleds-free,
if it does not contain any-rules.

The context-free grammars with states are obviously a generalization of the context-
free grammars. However, if we require that each step is performedeiftnaostfashion,
that is, f € 2* in the above definition of, then the derivations of aECFG can be
simulated by a pushdown automaton. On the other hand, it is easily seen tB&F@s
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different derivation strategies will in general give different languages. In addition to the
leftmost and the unrestricted derivation modes, we will be interested ieftrederivation
mode. Here a derivation step, fAy) = (¢, o) of an ECFG is calledleftish if no

rule can be applied to the prefjx Thus, f may contain occurrences of variables, but
under the current stage none of them can be rewritten with a production frémin fact,
under the various derivation modes tBEFGs are equivalent in expressive power to the
matrix grammars[{3,17], see also, e.g., [6, Sections 1.4 and 2.2]). Hence, concerning
the language classes generated by the various typE€Bfss, we have the following
results.

Proposition 2.2.

(a) e-free-CFL = L, (e-free-ECFG)C L (e-free-ECFG)C L (e-free-ECFG) = CSL.

(b) CFL=L,,(ECFG)CL(ECFG)C L (ECFG) =RE.

(c) The language classes; (s-free-ECFG) and L(ECFG) are incomparable under in-
clusion

Here CFL (CSL,RE) denotes the class of context-free (context-sensitive, recursively
enumerable) languages.

Now we come to the announced definition of a new type of alternating grammar, com-
bining the notion of alternation with that of a context-free grammar with states.

Definition 2.3. An extended alternating context-free grammBACFG for short, is a
context-free grammat = (Q, V, U, X, P, S, qo, F) with states, in which a subsét of
the set of variable¥ is designated asniversal variablesand a subsef of the set of states
Q is designated as final states.

The derivation relation=¢; defined byG is the reflexive and transitive closure of the
relation = that is defined as follows. Lelp, fAy) be a sentential form of;, where
peO0,p,ye(VUX):;andA € V. If A is an existential variable, that ig, € V \ U,
and(p, A) — (g, ) is a production fromP, then(p, BAy) = (q, foy). If, however,

A is a universal variable, and i, A) — (¢i, %) (1<i<k) are all the productions with
left-hand sidgp, A), then

(p. BAY) =¢ ((q1. Poay). ..., (qr., Boxy)).

Hence, in the latter case all the rules with left-hand gjeled) are applied in parallel, and
following this step all the resulting sentential forms are rewritten further, independently of
each other. In this way derivation treeis obtained fromG in analogy to the computation
tree that is associated with an alternating automaton and its input.

The languagé (G) that is generated bg consists of all those words € X* for which
there exists a derivation tree such that the root is labelled with the(q@gif) and each
leaf is labelled with a pair of the forrtp, w) with p € F. Here we remark that the labels
of different leaves may differ in the first component, that is, in the final state, but that they
must agree in the second component, that is, in the terminal string generated.

Thereis a slight difference in the way the states are usE@FGs and inrEACFGs, as the
latter distinguish between final and non-final states. However, it can be shown that it would
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EACEG altern. staFes VS. SACEG
altern. variables

states

ACFG alternatio )
alternation
alternatio ECFG
states
CFG

Fig. 1. The taxonomy of alternating context-free grammars.

not make a difference in the expressive poweEGFGs, if they also made this distinction
(see Lemmad.7 and 4.8)EACFGs are obtained frorACFGs by introducing states, that
is, in essentially the same way BEFGs are obtained from context-free grammars. Also
EACFGs can be seen as being obtained fle@FGs by distinguishing between universal
and existential variables, that is, in essentially the same w&C&<5s are obtained from
context-free grammars. Hence, BRCFGs unify these two generalizations of context-free
grammars.

As it will turn out, however, the concept of tHeACFG is equivalent to the following
concept, where alternation is governed by states and not by variables.

Definition 2.4. A state-alternating context-free grammaACFG for short, isafECFG in

which we distinguish between existential and universal states, and in which we mark certain
states afinal. LetG = (Q, U, V, X, P, S, qo, F) be such a grammar, wheteC Q is the

set ofuniversalstates and” C Q is the set ofinal states.

Thederivation relation=; is defined on the se@ x (V U 2)* of extended sentential
forms Letp € Q anda € (V U 2)*. If p is an existential state, that is,e Q \ U, then
(p,a) =¢ (g, 01 po2), if = a1Aap, and there exists a production of the fofp A) —
(g, p). If pis a universal state; has the factorization = a1 Aap, and(p, A) — (gi, B;)
(1<i<k) are all the productions with left-hand side, A), then

(p, o) =¢ ((q1, 01f102), - . ., (qk, 21, %2)),

that is, all these productions are applied in parallel to the chosen occurrence of the variable
A, and following this step all these sentential forms are rewritten further, independently of
each other. In this way a derivation tree is obtained.

The languagd.(G) that is generated b consists of all wordsy € 2* for which there
exists a derivation tree such that the root is labelled \jth S) and all leaves are labelled
with pairs of the form(p, w) with p € F. Note that, as for aBACFG, the labels of different
leaves may differ in their first components.

Fig. 1 puts the various generalizations of context-free grammars introduced so far into
perspective.
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Below we will see thasACFGs are actually equivalent in expressive powdE ACFGs.

Lemma 2.5. For eachEACFG G, ansACFG G’ can be constructed such tha,(G) =
L,»(G") holds for each derivation moda. Moreover if G is e-free andor (right-) linear,
then so isG'.

Proof. LetG = (Q,V,U, 2, P, S, qo, F) be arEACFG. FromG we constructasACFG
G’ that accepts the same language&aor each state aff, G’ will have an existential as
well as a universal state. Derivation stepgioinvolving existential variables will be simu-
lated inG’ by using existential states. Derivation stepgighowever, that involve universal
variables, will be simulated bg’ by first changing from the current existential state to the
corresponding universal state, and by then simulating the universal derivation &tefpof
cordingly, we takes’ := (Q?UQ", 0¥, V, 2, P', S, q5, F?),whereQ? := {¢7 | g € 0},
F3:={q? | q € F},andQ" :={q" | ¢ € 0}, and we define the sé’ of productions of
G’ as follows:
(1) ForXx e V\U,if (p, X) — (g,2) isin P, wherep,q € Q anda € (V U 2)*, then
(p?, X) — (¢7, o) is included inP’.
(2) Foreachx € U, if (p, X) — (¢, ) isin P, wherep, g € Q anda € (V U X)*, then
(p?, X) — (p¥, X) and(p¥, X) — (¢7, o) are included inP’.
Clearly, if G is e-free and/or (right-) linear, then sodg . We will see that, for any derivation
treeT of G that generates a terminal ward there is a derivation tre€’ of G’ that generates
the same word, and vice versa.

Thetreel” is obtained fronT inductively as follows. The root df is labelled with the pair
(go. S), while the root off’ is labelled with the paifg3, S). Now lety be a node of with la-
bel(p, aXy),wherep € 0, X € V,andx, y € (VUX)*, suchthatunderthe derivation mode
m the distinguished variable occurrenceXois to be rewritten next, and assume tiaton-
tains a corresponding nodéewith label(p3, aXy). If the variableX is existential, then the
nodev has a single som with label(q, «f7y), where(p, X) — (¢, f) is a production ofP.
Accordingly, the node’ will geta sonv; with label(g, o.fy), which corresponds to an appli-
cation of the corresponding production from group (1). If the varidhileuniversal, then the
nodev will have sonsiq, ..., v with labels(g;, «f;y), where(p, X) — (gi, f;), 1<i <k,
are the productions af with left-hand sidd p, X). Now the node’ of T’ will get the single
sonv” with label (p", «X7), which corresponds to an application of a rule from group (2),
and the node” will get sonsv}, ..., v, with labels(¢?, af;7), 1<i <k, corresponding to
the applications of the rules of group (2) with left-hand sig&, X). Hence, we see that
Ln(G) € L,(G") holds.

Conversely, ifw € L,(G’), then there is a derivation trg€ for G’ such that the root is
labelled With(qg, S) and each leafis labelled with, w) for somey € F.Each application
of aproduction from group (1) corresponds directly to an application of a productionfrom
Further, each production of the forgp?, X) — (p¥, X) must be followed by an application
of a production from group (2) that corresponds to a production fPoiidence, it is easily
seen that fronT’ we obtain a derivation treefor G such that the root s labelled witho, S)
and each leafis labelled with, w) for someg € F. Thus, we see that the languades G)
andL,,(G’) coincide. [
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Lemma 2.6. For eachsACFG G, anEACFG G’ can be constructed such tha,(G) =
L. (G") holds for each derivation moda. Moreovet if G is e-free andor (right-) linear,
then so isG’.

Proof. LetG =(Q,U,V,2, P, S, qo, F) bearsACFG. FromG we constructaBACFG

G’ that generates the same languag@ aSor each variable aff, G’ will have an existential

and a universal variable. The start symbotfvill be an existential variable, and as long as

G uses existential states in a derivatioH,will use only existential variables. If, however,

G changes into a universal state in the course of a derivation, @teran replace the

(existential) variable that is to be rewritten next according to the derivation mobsg

its universal variant, and using that universal variable it can simulate the current universal

derivation step ot;. Accordingly, we takes’ := (QU Q’, VAU VY, VY, X P/, S3, qo, F),

whereQ' :={q' | g e U}, VI :={X?| X e V}andV"Y = {X" | X € V}. Further,

let o7 : (VU X)* — (V7 U X)* be the morphism that replaces each occurrence of each

variableX by the variableX®. ThenP’ is defined as follows:

() Forpe O\ U,if (p,X) = (q,x)isin P,whereX € V,q € Q anda € (V U 2)*,
then(p, X¥) — (¢, ¢*(0)) is included inP’.

(2) Foreachp e U, if (p, X) — (¢, ) isin P,whereX € V,q € Q andx € (V U 2)*,
then(p, X¥) — (p/, X¥) and(p’, X¥) — (g, ¢?(2)) are included inP’.

Clearly, if G is s-free and/or (right-) linear, then so &'. As in the proof of the previous

lemma it can now be shown that, for each derivation ffes G that generates a terminal

word w, there is a derivation treg’ of G’ that generates the same word, and vice versa.

Thus, the languagés,, (G) andL,(G’) coincide. [

From these two lemmata we obtain the following result.
Corollary 2.7. EACFG andsACFG have exactly the same expressive power

Thus, in the main part of the paper we will not disc&E®SCFGs anymore, but consider
SACFGs instead.

3. A lower bound for £,,(ACFG)

Here, we will establish a lower bound for the generative capaciGFGs.

For each integek > 1, let CFL; denote the class of languages that can be written as
the intersection ok context-free languages, and IBFL,, := (J, > o CFL«. According
to Liu and Weiner12] the classe€FL; form an infinite hierarchy within the class of
context-sensitive languages.

Example 3.1.Fori = 1,2, letG; = (V;, U;, 2, P;, S;) be anACFG, where we assume
thatVy N Vo = @. Let S be a new variable, and l€t := (V, U, 2, P, S) be defined by
takingV := VAU Vo U{S}, U := U1 UUU{S},andP := PLU P U{S — S1, S — So}.
Then it is easily seen thidt,(G) = L.,(G1) N L,(G2) for each derivation moden.

On the other hand, if we takié := Uy U Uy, that is, the start symbdl of G is taken to be
an existential variable, theh,,(G) = L,(G1) U L,(G>) for each derivation moden.
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This shows that, for each derivation moahe the language class,,(ACFG) is closed
under intersection and union. As each context-free grammar can be regardefiGs@n
with no universal variables, we obtain the following inclusion.

Observation 3.2. CFL,, C £,,(ACFG) N L(ACFG).
In the following we will prove that this is actually a proper inclusion by considering a

sequence of example languadgs(k >2) andL,. Fork>2, let Xy := {a1, ap, ..., ai},
and letL; be the language

Ly := {(a;1 -aéz . ...-a,i")2 lij>1} C X}
Further let
Ly :={(@ bt a2 . .a* b2 | k>0,i;>1) C {a, b)*.

Liu and Weinel{12] proved that, for each>2,
(@-aZ-...-a)?|i;>0} € CFLy \ CFLy_1.

From their proof the following lemma follows easily.

Lemma 3.3. Foreachk>2, L; € CFL; \ CFL;_1.

For eactk > 2, we define a partial mapping, : {a, b}* — 2} with domaindom(gp,) :=
(at-br-at - b%2.. .. .at - b2%by

. 401 1 7 k J1 1 Jk k i1 i Nil Jk
Qpat-b-..ooa* bt alt b ca b > ag o ap cay - ap

Note that it follows from the definition thag, (w) is undefined for each word that does
notbelong to the seta™ - bt -a* -b2-....a™ - b*)2. Obviously,p, is an injective mapping
satisfyingo, (L) = L. Further, there exists generalized sequential machig@SM)
(see, e.g.[7]) that, given a stringv € dom(¢,) as input, computes the strirg, (w). On
the other hand there is the following negative result.

Lemma 3.4. L, ¢ CFL,.

Proof. Assume that.,, = ()/L; N; for some context-free languages, 1<i<m. We
may assume without loss of generality thgt C {a, b}*. Then we obtain the following
equalities from the injectivity of,, , 1:

m m
Lm+1 = (pm+l(Lw) = Qpt1 (ﬂl Ni) = ﬂl (pm+1(Ni)~
1= 1=

SinceCFL is closed undetGSM mappings, this contradicts the fact tha}.1 ¢ CFL,,
(Lemma3.3). O
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In contrast to the result above, we will now see that the langiliagis generated by an
ACFG. Actually we have the following result.

Lemma 3.5. Ly, € Lin(ACFG) N L(ACFG).

Proof. First, in order to simplify the discussion, we allow an arbitrary steingpnsisting of
terminals and variables to be used as the start string fACHG. We denote by, (G, w)
the language generated Byfrom the initial stringw using the leftmost derivation mode,
and byL(G, w) we denote the language generatedhjrom the initial stringw by the
unrestricted derivation mode. Itis not difficult to give context-free grammgarn® G4 with
pairwise disjoint sets of variables that generate the following languagegavefa, b}:

Ln(G1, B) =a™ - b™,
Lin(G2,C)=a" - bt -a* -ba 2,

Lin(G3,M)= |J (@ -bt-a-Z*-b-da"),

m=>=1
Lin(G4,T) ={e} Ua- 2%,

whereB, C, M, andT are variables.
Secondly, let

J = U (Cl+ N L bn+1),
n>1

Ii=U?"U U JKat bt at b TN,
k>0

I=a®b-(JD*at - bu J @b at bt at b TR aT b ULe),
k>0

and

Ii= (@ -br-at-b?....at b2 U e}
k=1

Then we have the following equality.
Claim. I =I1NI.

Proof. Letw :=a"-b-a"2-b%-...-a"™ -bk-a’1.b-a’2-b%. ... -a* - b be an element of
the languagé. Foreach = 1,...,k—1,a" -b' -a"i+1-b'Tt € Janda® - b’ -a%i+1. b+l €
J. Thus, ifk = 2/ for somel > 0, thenw e (J?)*, and therewithw € I;. Further,
a?.b%.g%.p3. .. a1 .pkl e Ji=landat2 - b2 . g% b3 ... atr . pkl e gt
implying thatw € a*-b-J'"t.at .b* .at.b. J'=1.a* . b+, which means thab € I>.
If k = 2141, thera’-b-a’2-b?-. . .-a"™1.bF"1 e Jlanda®2-b?.a%3-b3-. . ..a* -bF € J!,
which shows thatv € J! -at - bt -at - b - JL. Hence, also in this case € I1. Further,
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RbT
MbT SuT
ai1b+a2*bai|1b({5} UaX*) BRV’T
atbt Mb*T atbtSH*T

| I
atbtabta¥ ba2b?({e} UaX*)  atbt BROT

R ai (a+};+)k'725bk—1T

(atbT)F"2BRYFT

e e
(atbH)=1MuFT (a+b+)k"—15b‘*T
/

(atbH)FlairbtaX*ba™*bF ({e} U aZ¥) (atbt)FLovkT

\
(atbt)ratbaS bF({e} U aX*)

Fig. 2. A schematic representation of a typical derivation treesfor

a?-b2.a’s . p3. .. a% bk gt obog2 b?. . g% pk e (U2 and sow € Io.
Hence, we see thdtC 11 N I>.

Conversely, assume thate 1 N I,. Letn be the number of factors of the forat - o™
in w. From the definition of 1, we see immediately thatis an even number. So let= 2k.
If Kk =0, thenw = ¢, and sow € I. So assume th&t> 1. Hencew has the form

w=al-b.. . . g% bk gtk pleL L gl pl2k

where all exponents are positive integers. iAse I1, we see that there are two cases.
Eitherk is even, and then”i - b - g"i+1 . pi+1 ¢ J for eachi € {1,3,5,...,2k — 1}, or
k=2 +1,andthem” - b'i . g"i+1 . pli+1 ¢ J for eachi € {1,3,5, ..., 2[ — 1} and each
ielk+2,k+4,...,2k—1},andy1 = 1. Asw € I, too, it follows in each case that
ti=tn4; =ifori =1,2,..., k. Hence, we can conclude thate 1. [

Obviously J, I1, and I are context-free. Thus, there exists A6FG Gs such that
Lin(Gs) = L(Gs) = I (see Exampl&.1).

Finally, we consider thé&\CFG G which has all the productions @f; to G4 together
with the following productions:

R— M, R— S, S—C, S— BRb.

Here R is a new universal variable arflis a new existential variable. We consider the
languaged.,(G, RbT) andL(G, RbT) that are generated iy from the initial stringRbT

in leftmost and in unrestricted derivation mode, respectively. Ir2FRag informal pictorial
description of a typical derivation tree fGrwith respect to the unrestricted derivation mode

is given, and in Fig. 3 a leftmost derivation tree for the stiaiga?b%aba®b? is depicted.

We see that within these derivation trees certain dependencies are established between pairs
of powers ofz occurring in the string generated. For example, the first bididk" is related

to a blocka'th, and the second bloak2h™ is related to a block2h2. Thus, if we restrict
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RbT
M‘bT Sb‘T
a3ba272a3bT BRTZT
a3ba?b2a3ba?b? a3bRH2T
a3bll/‘[b2T ang‘sz
a3ba2b2a‘3ba2b2T a3b6“b2T
a3ba?b2a3ba?p? a3ba?b2a3ba?p?T

a3ba?b%a3ba?ph?

Fig. 3. A leftmost derivation tree far3ba2b2a3ba?b? in G.

our attention to strings that in addition belong to the languadleen we see by inspection
that

Lo = 1N ({e}U{a'ba'b | i > 0} U Lin(G, RbT))
= IN({e}U{a'ba'b|i > 0} UL(G, RbT)).
Obviously {¢} and {a'ba’b | i>1} can be generated by context-free grammars. As
Lin(ACFG) and L(ACFG) are both closed under union and intersection (see Example
3.1), it follows thatL, belongs tal,,(ACFG) as well as toZ(ACFG). O

From Observation 3.2 and Lemmas 3.4 and 3.5, we obtain the main result of this section.

Theorem 3.6. CFL,, C L, (ACFG) N L(ACFQG).
However, the following problem remains unanswered.

Open Problem 1. DoesL, separatel,,,(ACFG) or L(ACFG) from the Boolean closure
of CFL?

4. Basic properties ofACFGs and sACFGs

Next, we will establish some basic properties of the language classes that are generated
by various kinds ofACFGs andsACFGs. We will mainly concentrate on the leftmost
derivation strategy, but some other strategies will also be considered at various places. In
particular, we will establish a normal form result for both these types of grammars.
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As eachACFG can be interpreted as &ACFG with only a single state, we obtain the
following result from Lemma2.5.

Lemma 4.1. For eachACFG G, we can construct asACFG G’ such thatL,(G) =
L»(G") holds for each derivation moda. Moreover if G is e-free andor (right-) linear,
then so isG’.

Open Problem 2. Does the converse of Lemn#al hold, that is, can eackdACFG be
simulated by a\CFG? Observe that this is equivalent to asking whether E&80FG is
equivalent to afcACFG with only a single state. For the leftish mode this is not possible
(see Section 7), but is it at least possible for the leftmost derivation mode?

At least for linear grammars we do have the converse of Lemma 4.1. Observe that for
linear grammars all derivation modes are equivalent.

Lemma 4.2. For each linearsACFG G, we can construct a lineaACFG G’ such that
G and G’ generate the same languadédoreover if G is right-linear andor ¢-freg, then
s0isG’.

Proof. LetG = (Q,U, V, X, P, S, qo, F) be alineasACFG. We obtain a lineaACFG
G’ that simulate€; by introducing variables that combine the variable&afith the states
of G. The linearACFG G’ := (V',U’, X, P', §") is defined as follows:
o V' :={[g,Al|q € Q,A € V}U{E}, whereE is a new symbol,
o U :={[q,Al|qeU,AecV},
e 5 :=[qo, S],and
e P’ is obtained as follows:
(1) f(p,A) — (¢, xBy)isin P,whereA, B € V andx, y € 2*, then[p, A] — x[q, Bly

is included inP’.
(2) If (p, A) — (q,x)isin P, whereA € V,x € X2* andqg € F, then[p, A] — x is

included inP’.
(3) If (p,A) — (¢, x)isin P,whereA € V,x € X*,andq € O\ F, then[p, A] > E

is included inP’.
Obviously the productions of group (3) cannot be used in any succeégstldrivation. They
correspond to applications 6f-productions of the fornip, A) — (¢, x) with x € 2* and
g € Q\ F, which cannot occur in any successfuitderivation, either. However, these
productions have to be included i, as otherwise certain universal derivation step&of
would be successful although the corresponding derivation ste@saoé not.

Clearly, G’ is right-linear and/oe-free, if G is. Now letw be a terminal string such that
w € L(G). Then there is a derivation tree of G with root labelled by(go, S) and each
leaf labelled by(¢, w) for some final statg. FromT we obtain a derivation tre&’ of G’
by replacing each nodewith label(p, xAy) (p € Q,x,y € 2*, A € V) by anode’ with
labelx[p, Aly, and by replacing each nodevith label(p, x) (p € F, x € 2*) by a node
v with labelx. ThenT’ witnesses the fact that ¢ L(G’), thatis,L(G) € L(G’) holds.
As the productions of group (2) are addedR6only for those productions of for

which the state entered during the production considered is final, we see that all terminal
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strings that can be generated Gy can also be generated oy, that is, we havd.(G) =
L(G). O

The above lemmas yield the following consequences.

Theorem 4.3.

(@) L(e-free-right-lin-ACFG) = L(e-free-right-lin-sACFG) and
L(right-lin-ACFG) = L(right-lin-sACFG).

(b) L(e-free-lin-ACFG) = L(e-free-lin-sACFG) and
L(lin-ACFG) = L(lin-sACFG).

(c) L, (e-free-ACFG) C L, (e-free-sACFG) and L,(ACFG) C L,,(SACFG), wherem
is any of the leftmosthe leftish the rightmost or the unrestricted derivation modes

Here, therightmost derivation moden is defined in analogy to the leftmost derivation
mode.

Based on Exampl8.1 it is easily seen that the language cldsn-ACFG) is closed
under intersection. As the non-context-free languag®”c¢" | n >1} is easily described
as the intersection of two linear languages, it follows that the ¢tlR$®f linear languages
is properly contained it (lin-ACFG).

We close this section by establishing normal formsA@FGs andsACFGs. First we
will see that for these grammars a normal form exists that is similar to the Chomsky normal
form for context-free grammars, and then we will show that we can assume without loss of
generality that all states of amACFG are final.

Definition 4.4. A production(A — «) of anACFG G = (V, U, 2, P, S) or a production
(p,A) — (¢q,n) of ansACFG G = (Q,U,V, 2, P, S, qo, F), respectively, is aunit-
productionif « is a variable.

The ACFG or thesACFG G, respectively, is said to be imeak Chomsky normal form

if it satisfies the following conditions:

(1) each productionA — o) or (p, A) — (g, o), respectively, satisfies the condition that
ae (VUVZUZU({e)):;

(2) for each variabled € V or for each painp, A) € Q x V, respectively, if there are
two or more productions with left-hand sideor (p, A), respectively, then all these
productions are unit-productions.

Thus, if a (state-) alternating context-free grammar is in weak Chomsky normal form, then

it is only for unit-productions that it plays a role whether the actual variable (or state) is

universal or existential.

Lemma 4.5. For eachACFG G, we can construct aACFG G’ in weak Chomsky normal
form such thatG and G’ are equivalent with respect to the leftmatte leftish and the
unrestricted derivation modek addition, if G is e-free then so isG’.

Proof. LetG = (V, U, X, P, S) be anACFG. Following the standard construction of a
context-free grammar in Chomsky normal form from a given context-free grammar, we will
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replace each production @f that is not in weak Chomsky normal form by a sequence of
new productions. However, we have to take the existence of universal variables into account,
which means that this technique has to be adopted accordingly.

First of all we introduce new existential variabl€s := {a | a € 2} and takeV’ :=
V U Vs. Thenin each production @f we replace each occurrence of each terminal symbol
a € X'byanoccurrence of the corresponding new variabléhe resulting set of productions
is called P;. Next we define the set of new productions

Py={a—alacl}

The grammaiGy := (V', U, X, P1 U Py, S) is then anACFG such that each production is
either of the form described in (1) above or it is of the foAm— B1 B> - - - B; for some
A,Bi,...,B;r € V' and some integek > 2. Further, it is easily seen thaj,(G) =
L (G1), as for each new variablee Vy, there is exactly one production ity U P, with
left-hand sidez. Thus, under the leftmost derivation mode a sentential fofiff, where
x € X*andf € V'*, has a single successor only, which is the sentential fiarfh

Next we replace the productions of the form= (A — B1B>--- By), whereA and
B, ..., By are variables andl > 2. For each production of this form, we introduce new
(existential) variable€, 2, . .., C, x—1 and replace the original production by the following
productions:

A — Cpr-1Bg,
Cri—1 — Cri—2Br_1,

C.3 — Cy2B3,
Cr2 — B1Bo.

As the new variables are existential, and as for each productién @f be replaced, a set
of new variables is chosen, it is easily seen that the resulting grafipiaranACFG that
satisfies condition (1) of the weak Chomsky normal form, and ¢hats equivalent toG
with respect to leftmost derivations.

Finally, for each variable, if there arek > 1 productions

A— o1, A— o2, ..., A — o

in G, then we introducé new existential variableB1, . .., Dy and replace these produc-
tions by the following new productions:

A—)Dl‘,Di—>OCi, l<1<k

The resultingACFG is calledG’. Obviously, it is in weak Chomsky normal form, and as
each variableéD; occurs on the left-hand side of a single productioiz6bnly, we see that
the G’-derivationA = D; = o; is just the replacement of th&,-stepA = «;. Hence, in
leftmost modeG’ generates the same language as the original grar@mar

From the above construction we see that the gran@ias -free, if G is.

Observe that for anACFG G, L(G) = L,(G) holds. Further, it is easily seen that
the above construction also works for the unrestricted derivation mode, as all the newly
introduced variables are existential
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A symmetric construction yields the corresponding result for the rightmost derivation
mode. Also forsACFGs a corresponding result holds.

Lemma 4.6. For eachsACFG G, we can construct asACFG G’ in weak Chomsky
normal form such that; and G’ are equivalent with respect to the leftmdbe leftish and
the unrestricted derivation modds addition, if G is ¢-free then so isG’.

The construction of;’ from G is almost the same as the construction in the proof of
Lemma4.5. The only difference consists in the fact that a single new existential state is
needed that is used to ensure that a sequence of sta@stbat simulate a single step
of G is executed completely before the simulation of the next step bégins.

Again a symmetric construction yields the corresponding result for the rightmost deriva-
tion mode. Next we will prove that f@ACFGs, the notion of final states is not of particular
importance. They have been introduced here, as in certain cases they are quite handy to sim-
plify the construction of asACFG for a particular language, but we can do without them.
As ECFGs are a special case sACFGs, this shows in particular that it does not matter
whetherECFGs are defined with or without final states. In the proof we will already use
Lemma 4.6.

Lemma 4.7. For eachsACFG G, we can construct asACFG G’ in weak Chomsky
normal form such tha© andG’ are equivalent with respect to the leftmost derivation mode
and all states of5’ are final In addition if G is ¢-freg, then so isG’.

Proof. LetG = (Q,U,V,2, P, S, qo, F) be ansACFG. By the previous lemma we can
assume without loss of generality thatis in weak Chomsky normal form. We define an
SACFGG' := (Q,U, V', X, P, S, qo, Q) bytakingV’ := VU{A | A € V }U{T}, where
A (A € V) andT are new variables, anfl’ := P U Py, whereP; contains the following
productions:
(1) (p, A) — (g, BC),if (p, A) — (¢, BC)isin P,
(2) (p.A) — (q, B), if (p. A) — (¢, B)isin P,
() (p, A) — (g, a),if (p, A) = (¢, a)isin P andg € F,
@) (p,A) — (q,T),if (p,A) = (g,a)isinPandg & F .
The idea underlying this construction is as follows. In each sentential form within a deriva-
tion tree the rightmost variable is marked. For this the varial¢a € V) are used. Now
this variable can eventually be rewritten into a terminal symbol only by applying a produc-
tion from group (3). This, however, means that this step, which under the leftmost derivation
mode ends the actual branch of the derivation tree, corresponds to a derivation step in the
grammarG that enters a final state.

Now let us consider a derivation tree for a warde L,,(G’). Then each inner node
of this tree is labelled by a paip, xXA), wherep € Q,x € X*, X € V*, andA € V,
while each leaf is labelled with a paip, w) for somep € Q. As we can get rid of the
variables of the formA only by applying productions from group (3), we actually see
that, for the label p, w) of each leafp € F holds. Thus, by replacing each occurrence
of A (A € V) by A, we obtain a derivation tree that witnesses that L,(G) holds.
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Hence, we see thdt,,(G’) € L, (G). Also the converse inclusion is easily verified. Thus,
we see thal,,,(G') = L,,(G) holds.

Observe that the productions of group (4) are necessary to cover the case that the state
is universal. If inG all productions with left-hand sidg, A) are applied simultaneously,
whereA is the last (and therewith rightmost) occurrence of a variable in the actual sentential
form, then aG-production of the fornip, A) — (¢, a) withg ¢ F will result in a deadend
in the derivation tree generated, that is, this tree will not generate a valid terminal string.
However, if the corresponding productiop, A) — (¢, T) was missing fronG’, then the
resultingG’-derivation tree would have no branch that corresponds to the deadend in the
G-tree mentioned, and hence, it might lead to generating a valid terminal string.

Obviously, if G is e-free, then so i€57'. [

The above construction makes essential use of the fact that leftmost derivations are
considered. However, the corresponding result also holds for the leftish and the unrestricted
derivation modes.

Lemma 4.8. For eachsACFG G, we can construct asBACFG G’ such thatG andG’ are
equivalent with respect to leftish and unrestricted derivations and all state$ arfe final
In addition if G is e-freg then so isG’.

Proof. Actually the construction is much simpler than the one for the leftmost derivation
mode. LetG = (Q,U,V, 2, P, S, qo, F) be ansACFG. We define arsACFG G’ :=
(Q,U,V',2,P,S,qo, Q) bytakingV':=V U{a|a € 2U{e}}and

P = {(q,A) — (p,¢() | (g, A) = (p,x)) € P}
U {(g,a) = (q,a) | g€ F,aeXU/{e}},

where¢ : (VUZX)* — (V')*is the mapping that replaces each occurrence of each terminal
symbola within a non-empty string by an occurrence of the variahland that maps the
empty string to the variable

Each derivation tree ity obviously corresponds to a derivation treedf Observe that
here it is important that we do not consider leftmost derivations, as a variable of thé form
(a € 2U{e}) can be rewritten into the terminal stringnly under a final state. On the other
hand, to each derivation tree 6f, we can associate a derivation treetbthat yields the
same terminal string by simply replacing each occurring symldmt a and by forgetting
about the applications of those rules@fthat rewrite these particular variables. It follows
that L(G) = L(G’) andL(G) = Ly(G") hold.

If G does not contain anyrules, then we do not need the symbai G’, and accordingly
G’ will then also bes-free. O

5. Upper bounds for some subclasses @, (SACFG)

In this section, we consider upper bounds for some subclasgks(6ACFG).
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Theorem 5.1. The language clasg (right-lin-ACFG) coincides with the clasREG of
regular languages

Proof. Aseach regular language is generated by a right-linear grammar, the inclusion from
right to left is obvious. Conversely, lét C X* be the language that is generated by the
right-linearACFG G = (V, U, 2, P, S). We will show that there exists an alternating
finite-state acceptor for the languafie As alternating finite-state acceptors only accept
regular languagé€g], this shows thaL is regular.

First we transform théA\CFG G as follows. For each universal variable € U and

for each productio®d — aj...axB from P, whereas, ..., ar € 2, k>1,andB € V or
B = ¢, weintroducé new existential variables, . . ., Ax. Thenwe replace the production
A — a1...aB by the following group of new productions:

A— Ay, A1 — a1lo, ..., Ax_1 — ap_1Ar, Ar — aiB.
Further, for each existential variab and each productiod® — c¢1...c¢D from P,
wherecy, ..., cr € 2,k > 1,andD € V or D = ¢, we introduce new existential variables
C1, ..., Ck—1, and we replace the producti@h — c; ... c D by the following group of
productions:

C — c1Cq1, C1— c2Co, ..., Cir_2 = c;-1Cr_1, Cr_1 — ciD.

Then all rules of the resulting right-line&CFG G’ := (V/, U, 2, P’, S) are of the form
A— B,A— aB,A — aorA — ¢, whereA, B € V' anda € 2. In addition, if A
is universal, then all productions with left-hand sideare of the first or the fourth form.
Thus, no universal derivation step directly generates a terminal symbol.

Now from the grammag’ we construct an alternating finite-state acceptdsy applying
the standard construction. The stategbtorrespond to the variables 6f. In particular,
the universal states dff correspond to the universal variables, and the existential states
of M correspond to the existential variables. Further, the transitiordg obrrespond to
the productions of5’. In addition, we introduce a new stakethat serves as a final state,
and that is entered by each transition corresponding to a production of theAferma
with A € V anda € 2 U {¢}. The finite-state acceptdf will have ¢-transitions, ifG’ has
productions of the formt — Bwith A, B € V' or A — «.

From the properties o’ we see that the universal statesWfonly admite-transitions.
Now letw € X*. Itis easily seen that there exists a successful derivation trae oG’
if and only if there is an accepting computation treébbn inputw. Thus,M accepts the
languagel, that is,L is indeed regular. [J

By Theoremd.3(a) this has the following consequence.
Corollary 5.2. L(right-lin-ACFG) = L(right-lin-sACFG) = REG.

From Theorend.3(b) we know that(lin-ACFG) and £(lin-sACFG) coincide. On the
other hand Chen and Toda have shown that the closutloi-ACFG) under log-space

reductions coincides with the complexity cld8$4]. Thus, their result can be restated as
follows.
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Corollary 5.3. LOG(L(lin-ACFG)) = LOG(L(lin-sACFG)) = P.

AsP = ALOGSPACE [2], Corollary 5.3 can be viewed as the counterpart (with respect
to alternation) of the well-known result by Sudborough [18] that

NLOGSPACE = LOG(L(lin-CFG)),

whereNLOGSPACE denotes the class of languages that are accepted by non-deterministic
Turing machines within logarithmic space. Below we will repeatedly refer to the complexity
clasDLINSPACE, whichis the class of languages that are accepted by deterministic Turing
machines within linear space.

We now turn our attention te-free SACFGs. In fact, we first considesACFGs
that are in additionunit-production-free that is, they do not contain any unit-
productions.

Lemma 5.4. L, (e-free-unit-production-free-sACFG) C DLINSPACE.

Proof. LetG = (Q,U,V, 2, P, S, qo, F) be ansACFG that is¢- and unit-production-
free. Thus, each productia@p, A) — (g, o) of G satisfiegu| >2 ora € 2. Hence, for each
wordw € L(G), if |[w| = n, then each path from the root to a leaf in eagtderivation
tree ofw has length at most2— 1, and so eacly-derivation tree oiv has height at most
2n — 1.
Each node of &-derivation tree is labelled with a pair of the forp, «), wherep € Q
ando e (V U X)™. If « does not contain any variables, then this node is a terminal leaf.
Otherwise, it is either an existential or a universal node, depending on the type of the
statep.
We say that a node &iccessfuf it can be part of a leftmost-derivation tree fow. Our
goal is to verify whether the root is successful. When creating a leftGiatrivation tree,
we can distinguish between the following situations, depending on the type of the actual
node:
(1) Ifitis a terminal node with labelp, u), then it is successful if and only if = w and
peF.
(2) Ifitis an existential node with labép, uAy), whereu € X*, A € V,andy € (VU2X)*,
then it is successful if and only if there exists a production with left-hand gidd)
such that the node is successful that is obtained from the actual node by applying this
production.
(3) Ifitis a universal node with labélp, uAy), whereu € 2*, A € V, andy € (V U 2)*,
then it is successful if and only if all those nodes are successful that are obtained from
the actual node by applying all the rules with left-hand gigeA).
Further, in the latter two cases we can abort the sear@hAif| > |w|.
We now construct a linearly space-bounded deterministic Turing maé&hthat, given
awordw € X as input, tries to construct a leftmaStderivation tree fomw in depth-first
order by using all possible applications of rules in a systematic way. The above bound is
used to limit the depth to which the search continues.
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In order to realize this depth-first search, the Turing macliitas four tapes. The first
of these tapes will contain the given input. It will not be changed in the course of the
computation, as it will be used to check the labels of terminal nodes encountered during the
search. Because of the intended linear space bdumdnnot possibly store the complete
G-derivation tree forw. Instead it only stores the current sentential form together with
information on the ‘address’ of the actual node. For this, the second tape will contain a
description of the path in the currently created partial leftndosterivation tree that leads
to the actual node. Observe that this node is uniquely described by the sequence of rules that
have been applied on the path from the root of the tree to this particular node. Thus, from
this information all ancestors of the current node can be recomputed on demand. The third
tape will contain the sentential form 6f that is the label of the actual node, and finally the
fourth tape will be used as scratch paper for performing auxiliary calculations.

Letw e X be the given input, and let := 2 - |{w| — 1. For each integet, 1<k <n,
the initial part of lengthk of a path in theG-derivation tree ofw (and therewith a node in
this tree) can be described uniquely by a sequence of the form

(Q1:01),(Q2:102), ..., (Qk : ix),

wherei; is the serial number (with respect to an arbitrarily chosen linear ordering of the
productions ofG) of the productior(p,»/., Ai}) = (qij> %)) that is used in step, andQ;

is the quantifiewv, if the statep;; is universal, and it is the quantifiér if the statep;; is
existential, X j <k. Further, two productions and j are said to beompatibleif they
apply to the same configurations in leftmost derivation mode, that is, p; andA; = A;

hold simultaneously.

The Turing machinel’" will use its second tape as a pushdown store that stores the
sequence of paireD : i1), (Q2 : i2), ..., (Q : ir) that describe the path in the leftmost
G-derivation tree that leads to the actual node. Heris the index of the rule that was
applied to the start symbol on the actual path, arid the index of the rule through which
the actual sentential forig;, , «) has been obtained. Accordingly, the p@iy; : i) will be
on the top of the stack. Observe that the quantifigrcorresponds to the type (existential
or universal) of the parent node of the actual node, and as such it gives information on how
to proceed once it has been determined whether or not the actual node is successful.

The computation of the Turing machifieis now described by the following procedure.
Within this procedur@cceptis equated with the Boolean valtrele, andreject stands for
the valudalse Further, the stack operatiopash, top, andpop used refer always to tape 2,
and the items that are pushed, retrieved or popped from the stack, respectively, are always
pairs of the form(Q : i), whereQ € {3,V}andi € {1, ..., | P|}. Further, aboolean variable
resultis used to compute (and store) the result of the computation. For each node it will be
set to the valuacceptif this node is successful. The computation halts once it becomes
clear whether the root of the tree, which is labelled with the pair S), is successful. In
the affirmative this happens only when the stack (that is, tape 2) has become empty, and the
root has been recognized as a successful node, while in the negative this might be realized
much sooner. To manage the depth-first search another boolean variablefinstisguking
used. For each node encountered during the search process this variable hasi@due
the actual node is just being encountered for the first time, and it gets thefatdeence
the actual node is being revisited.
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boolean functionsimulatéw); (x w € X7 is the given inputx)
begin booleanresult, first;
stacktape2<« empty (x tape2is used as a stack
(* INITIALISATION )
choose to be the index of the first production 6fthat is applicable to the
initial sentential form(go, S);
if go is universathen Q < VelseQ <« 3;
push(Q : i);
first < true;
result < reject;
while not empty tape2do (x SIMULATION :x)
begin if first = true then
begin
on tape3 simulate the leftmostG-derivation that is described by
the current content adipe2 starting from the initial sentential form
(g0, S), and let(g, o) be the resulting sentential form;
first < false
if & € 2* then (x « is a terminal string:)
if « = w and g € F thenresult < accept
elseresult < reject
else(x o is NOT a terminal string)
if 3i : production: is applicable taq, «)
and |« <|w| then
begin
choose to be the smallest index of a production@f
that is applicable to the sentential forig, o), and let
0 be the quantifier corresponding to the state
push(Q : i);
first < true;
end
elseresult < reject;
end
else(x first = falsex)
begin (Q : i) « top; (x Read the topmost element from the stagk
pop; (x (Q : i) is removed from the stack
if ((Q = 3 and result= reject) or (Q =V and result= accepb)
and 3j > i : productions and; are compatibléhen
begin choose the smallegt> i with this property;
push(Q : j);
first < true;
end
end
end;
return result
end.
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Givenastringy € X asinput, the Turing machir®performs a traversal of the leftmost
derivation tree ofG for w in depth-first order. Each time a sentential form is generated,
which is indicated by pushing a new p&i@ : i) onto tape 2, the Boolean varialiest
is set totrue. In the next traversal of the while-lodp tries to extend the derivation, if
the sentential form is not terminal already, or it compares the result of this branch of the
derivation tree to the given input, if the actual sentential form is terminal. Observe that a
terminal sentential form ends the actual branch of the derivation tree, and that this branch
is successful, if the string generated coincides with the input stringd if the actual state
is final, and that this branch fails, if the string generated differs feoror if the actual
state is not final. Whefl reaches the same pdi@ : i) again during the backtracking
process, which is indicated by the truth vafaéseof the variablefirst, then this step can
be removed if the result of the corresponding subtree is already known, which is the case if
Q is existential and the current resultdiscept or if Q is universal and the current result is
reject. Otherwise the corresponding brother configurations have to be examined in order to
determine the result of the actual branch correctly. To do so the step encod@d iy is
replaced by its next older brother, if such a brother exists. It follows that the landud@ge
accepted by coincides with the languagl,, (G).

As T simulates leftmostG-derivations for the given inpub, the content of tape 2 is
bounded in length by the number n for some constant. As tape 3 always contains a
sentential form ofG, it is also bounded in length Qw|. Hence,I' can indeed be realized
in a linearly space-bounded mannet]

Next we want to generalize the above resulttivtee SACFGs. As an intermediate step
we introduce the following notion. ABACFG G is said to havéounded unit-productions
if there exists a constant> 1 such that, for each string € L,,,(G), there exists a leftmost
G-derivation tree forw such that the number of applications of unit-productions on each
path of this derivation tree is bounded from above by the numbép|.

If G is e-free and has bounded unit-productions with respect to the constt@n for
each stringw € L;,(G), there exists a leftmogt-derivation tree forw such that on each
path of G, there are at most 2|w| — 1 many applications of non-unit-productions and
¢ - lw| many applications of unit-productions. Thus, this leftm@stlerivation tree forw
has height at mosR + ¢) - |lw| — 1. Hence, the arguments in the proof of Lembnd apply
to G. This yields the following consequence.

Corollary 5.5. L, (e-free-bounded-unit-production-sACFG) € DLINSPACE.

Based on the notion of bounded unit-productions, we can now establish the following
interesting result.

Theorem 5.6. L, (s-free-sSACFG) C DLINSPACE.

Proof. It suffices by the previous corollary to show thatafree SACFG has necessarily
bounded unit-productions. So let= (Q, U, V, %, P, S, qo, F) be ans-freesACFG. We
choose the constant= 2-|Q| - | V|, and claim thatG has bounded unit-productions with
respect to this constant
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Letw € Lin(G), lw| = n, and letT be aG-derivation tree forw corresponding to a
leftmost derivation. Assume that this tree contains a patim which there are more than
c-n=2-|0|-|V|-n applications of unit-productions. Ag is e-free, p contains at most
2n — 1 applications of non-unit-productions. Hengecan be partitioned into (at most)
2n — 1 subpathos, ..., p2,—1 such that
e each subpatlp; contains only applications of unit-productions, and
e subpathp; is connected to subpatti;1 (1<i < 2n — 2) by an application of a non-

unit-production, and
e subpathpy,_1 ends with a non-unit-production that generates a terminal sentential form.
Thus, there is an indexsuch that subpatp; contains more thap| - |V | applications of
unit-productions, that is, this subpath can be decomposed as

(€N)

pi = p;7 —> (q,uAa) — (r,uBa) — p(

i

2, (q,uAo) — (r,uBo) — pi(?’),

where(qg, A) — (r, B) is the first unit-production that is repeated pn By deleting the
subpath(r, u Bar) — pfz) — (¢, uAc) we obtain an equivalent derivation tree. This is true
even if this subpath contains universal steps, in which case we also delete all the subtrees
generated along this subpath. By using such replacements repeatedly we eventually obtain
a leftmostG-derivation tree foiw that does not contain more thann unit-productions on

any path. Thus, we see th@thas indeed bounded unit-productions’]

This result together with Theoredh3(c) and the result of Chen and Toda ofree
ACFGs [4] has the following consequence.

Corollary 5.7. LOG(L,(e-free-ACFG)) = LOG(L, (¢-free-sACFG)) = PSPACE.

6. Characterizing language classes by automata

The original purpose for introducingCFGs was to give a grammatical characterization
for the language clags(APDA) [14]. Such a characterization will be derived in this section
in terms ofsACFGs with leftmost derivations.

Definition 6.1. An alternating pushdown automatpAPDA for short, M is given by an
8-tuple (Q, U, 2, T, 9, qo, Zo, F), whereQ is a finite set of stated/ C Q is a set of
universal states) is an input alphabet]’ is a pushdown alphabejy € Q is the initial
state,Zp € I' is the bottom marker for the pushdown stafeC Q is a set of accepting (or
final) states, and : Q x (XU {g}) x I' — Ps,(Q x I'*) is a transition function.

A configurationof M is described by a tripléy, u, o), whereq € Q is the current state,
u € 2* is the remaining part of the input with the input head scanning the first symhol of
andux is the current content of the pushdown store with the first letterafing the symbol
on the top of the pushdown store and the last lettex béing the symbol on the bottom
of the pushdown store. As usual timitial configurationfor an inputw € X* is the triple
(g0, w, Zo), and afinal configurationhas the formyg, ¢, o) with ¢ € F ando. € I'™.
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An inputw € X* is acceptedby M, if there is a successful computation treeMfon
that input, that is, there is a finite tree the nodes of which are labelled by configurations of
M such that the following conditions are satisfied:
(1) the root is labelled with the initial configurati@go, w, Zo);
(2) each leaf is labelled with a final configuration;
(3) if anon-leafis labelled byg, au, Za), whereq € Q\ U,a € XU {e}, Z € T', then it
has a single successor that is labelled pyu, o) for some(p, ) € d(q, a, Z);
(4) if a non-leaf is labelled byg, au, Zx), whereq € U,a € X U {e}, Z € I', and
if 0(q,a,Z) = {(p1,P1),---, (pm, b,,)}, then it hasn successor nodes labelled by
(p1,u, P10, ..., (pm, u, f,,0), respectively.
Instead of accepting by final state as defined aboveARIDA can alsoaccept by empty
pushdownwhich means that each leaf of a successful computation tree is labelled with a
configuration of the fornig, ¢, ), whereg is any state fronQ.
As mentioned in the introduction, it has been showfiit] that L(APDA) = ETIME.
To derive the intended grammatical characterization the following two technical lemmas
are needed.

Lemma 6.2. For eachAPDA M, there exists ad\PDA M’ such thatL (M) = L(M"), and
all final states of\/’ are existential

Proof. LetM = (Q, U, 2, T, , qo, Zo, F) be anAPDA. If U N F = @, then already all
final states of\f are existential, and there is nothing to do.

Assume tha/ N F # §. Then we constructaAPDA M’ := (Q", U', 2, I", &', ¢}, Z},
F’) from M by creating two new states andg, for each statg € U N F. The stateys will
be a final state that is existential, and the stateill be a non-final state that is universal.
Further, the original state will be turned into a non-final existential state. In addition, a
new initial stateg, and a new bottom markef;, for the pushdown store are introduced.
The main idea of the construction &1’ is the following. WheneveM' is in stateg, it
must choose non-deterministically whether the rolg @6 a universal state or its role as a
final state is needed. This is done by executing-atep that taked/’ into stateg, or g,
respectively. AccordinglyM’ is defined as follows:

Q = QU{qt,qulqeUNF}U{qg,
U':=U\F)U{qulgeUNF},
F' = (F\U)U{gt |lqe UNF},
I' == T'u{Z)},

8'(qb. &, Z) = (q0, ZoZ{),

8(q,a,Z) :=0(q,a,2)ifqge Q\WUNF),acXUle},ZeT,

5/(6],8, Z) = {(gt, Z),(qu. 2)}ifge UNF,ZeT,

& (qu,a,2) = 6(q,a,2)ifgeUNF,acXU{e},ZeT.

Each time a statg € U N F is encountered in the course of a computatiod®f either
the universal statg, is entered, thus continuing the simulationMf or the final statey

is entered, which ends the simulation. The new bottom matkdor the pushdown store
of M’ is introduced in order to enabléd’ to enter a final state, even if in the corresponding
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computation of¥ a universal final statg is entered in a move that empties the pushdown
store. It is now straightforward to verify tha1’ accepts the same languageMis [

The next lemma establishes a kind of normal formASDASs.

Lemma 6.3. IfalanguageL is accepted by aAPDA by final statethenL is also accepted
by anAPDA N by empty pushdowmvhere in addition, each universal transition aV is
an e-transition, that is N satisfies the following condition

(x) if p is a universal state oV, andd(p, a, Z) # ¥, thena = ¢.

Proof. Let M be anAPDA accepting the languade By the previous lemmawe can assume
without loss of generality that no final stateMfis universal. Now by applying the standard
technique for pushdown automata (see, §4.,Theorem 5.1]), we can conved into

an equivalenAPDA M1 := (Q, U, X, I, 0, qo, Zo) which accepts by empty pushdown.

Observe that here it is essential that no final stat® @$ universal, as by this construction

e-transitions that empty the pushdown store are introduced for all final states.

Next, we introduce a new existential stg@téor each universal state of M1 and replace
each occurrence gf in the right-hand side of any transition By Further, we introduce
new universal statdp, a] (@ € 2 U{e}), and introduce the following additional transitions
foralla e XU {e}andZ e I

on(p,a, Z) = {([p,al, 2)},
on(p,al,e, Z) == d(p,a, Z).

Let N denote the resultingPDA. Clearly N satisfies the condition<}. To see thatV is
equivalent toM; we note that a universal transitionip, a, Z) of M1 is simulated byN

by first entering the existential stafe then choosing non-deterministically the transition
(p,a,Z) — ([p,al, Z), and then executing the universatransitionoy ([p, al, €, Z).
Since M1 accepts by empty pushdown, and sif¢eloes not empty its pushdown unless
M1 does soN andM; accept the same language by empty pushdovin.

Based on this technical result we can now establish the following characterization.
Theorem 6.4. £,,(SACFG) = L(APDA).

Proof. For the inclusionZ,,(sSACFG) C L(APDA), letG = (Q,U,V,2, P, S, qo, F)
be ansACFG. By Lemma4.7 we may assume thét is in weak Chomsky normal form
and thatF = Q holds. AsAPDAs are allowed to make-transitions, that is, the head on
the input tape may remain stationary during certain transitions, the standard technique (see,
e.g., [7]) can be used to construct ARDA M from G such thatM accepts the language
L (G). Observe the fact that, whenever several different productiosarke applicable
to the same sentential form, all the possible productions are unit-productions, which means
that all existential or universal transitions Mf that entail a non-deterministic choice are in
facte-transitions.
The proof for the converse inclusiditAPDA) C L, (SACFG) is actually simpler than
the one for the non-alternating casesA€FGs can use their own states to simulate the state
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transitions oAPDAs. LetM = (Q, U, X, I', 9, qo, Zo, Q) be anAPDA. By Lemma6.3 we
can assume thatf accepts by empty pushdown, and that all universal transitions afe
e-transitions. Assume tha{ is in a configuratiorip, ay, Z«), wherep is the current state,
ay (a € XU{e}, y € X*)is the remaining suffix (the unconsumed part) of the input,Zsd
(Z e I, o € I'*) is the current content of the pushdown store. Further, ket the prefix of
the input that has already been consumedbiefore reaching the current configuration.
Then we construct aBACFG G which has the same universal and existential states as
M and that behaves as follows. Corresponding to the current configutatian, Zo) of
M, G will derive the sentential fornip, xZ«). If 6(p, a, Z) contains(q, f), thenG has
the production(p, Z) — (g, af}). Thus,(q, xafe) is directly derived from(p, x Za) by
rewriting the leftmost variabl& into x Z«. Observe that by Lemma 6.3, jf is universal,
then for anyZ e I', the universal productions @f with left-hand sidgp, Z) correspond
one to one to the universal transitioh@, ¢, Z) of M. It follows easily that the languages
L (G) andL(M) coincide. [

By Lemma 4.1 and the result adf{APDA) from [11] the above characterization yields
the following consequence.

Corollary 6.5. L,,(ACFG) C L;,(SACFG) = L(APDA) = ETIME.

7. Comparisons of derivation strategies

So far we have mostly considered leftmost derivationNGFGs andsACFGs, but of
course there are many strategies to select an occurrence of a variable in a sentential form to
apply a production. Here, we compare the expressive power 8fGR&s and thesACFGs
with respect to the leftmost, the leftish and the unrestricted derivation modes. First we turn
to theleftish derivation strategy, which differs significantly in expressive power from the
leftmost strategy, as we will see below.

Theorem 7.1. () Ly (e-free-sSACFG) C L(APDA).
(b) L (SACFG) = RE.

Proof. (a) It is known (seq?2]) that L(APDA) = L(ALBA), where ALBA stands for
alternating linear bounded automatblence, in order to prove th#} (¢-free-sACFG) C
L(APDA), it suffices to present aALBA M which accepts the language generated by a
givene-freesACFG G in leftish mode. By Lemma 4.8 we can assume that all statés of
are final.

The input tape oM is divided into two tracks. Throughout the computatiMretains the
input string on the first track, and it utilizes the second track to simulate leftish derivations
of G. Naturally, M holds the actual state @f in its finite control.

M simulates eaclt-derivation step by a sequence of moves, calledyee At the
beginning of a cycle, the read/write headMfis at the left end of the input tap& begins
the cycle by searching the sentential form on the second track from left to right for the
leftmost variableA to which a production of; can be applied. Onc# finds this variable,
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it applies an appropriate productiop, A) — (¢, o) of G, thereby replacing the variable
A by the stringx. This step is existential or universal, depending on whether the staite
G is existential or universal, respectively. Asnay be of length larger than on& may
have to shift the suffix of the inscription of the second track to the right in order to have
enough space for storing Further,M stores the statg in its finite control.M ends the
current cycle by moving its read/write head back to the left end of the input tape.

If M reaches the right end of the input tape without finding any variable on the second
track to which a production af applies, therM either accepts (if there is no variable at all
in the sentential form and if the contents of the two tracks coincide) or rejects (otherwise).
It easily follows thatL.(M) = Ly(G).

As thesACFG G does not contain any-productions, each configuration 8 uses
only the space provided by the given input. Thusis linearly space-bounded, that s, itis
indeed amALBA. Hence L (¢e-free-sACFG) C L(ALBA) = L(APDA) follows.

(b) As eachECFG (see Sectior?) can be regarded as aACFG with only existential
states, it follows from Proposition 2.2(b) thét(sACFG) 2> L (ECFG) = RE. The
converse inclusion is obvious.[]

Together with Theorem 6.4 this yields the following inclusion.
Corollary 7.2. Ly(e-free-sSACFG) C L,,(SACFG).
Open Problem 3. Does the converse of the inclusion above hold, too?

Concerning the expressive power of the various derivation modes feAGEGs, we
have the following inclusions.

Theorem 7.3.

(@) Lin(e-free-sACFG) C L (e-free-sACFG) and
L(e-free-sACFG) C L (e-free-sACFG).

(b) Lin(SACFG C Ly (SACFG) and L(SACFG) C L (SACFG).

Proof. The inclusions in (b) are immediate consequences of Thedrg¢h). It remains to
verify the inclusions in (a). The first of them is a consequence of Proposition 2.2 (a) and
Theorem 5.6, as eadfCFG is also arsACFG.

It remains to prove the inclusiofi(e-free-sACFG) C L (e-free-sACFG). For an arbi-
trarye-freesACFG G = (Q, U, V, 2, P, S, qo, F), we will construct ar-freesACFG G’
that in leftish mode simulates the unrestricted derivations.ofhe idea of the simulation
is as follows.

For each variablel, a new variableX is introduced, and for each variable or terminal
A, anew variabled” is introduced. Further, for each statetwo new existential states,
anqu are introduced. Whe(p, fX7) is the current sentential form of, wherep € Q,
p,y € (VUX)* andX € V, and the displayed occurrence of the variables the one that
is to be rewritten next, then this derivation step is simulated by a sequence of derivation
steps ofG’. This sequence starts with the sentential f@#y, fX7). As G’ has to work
in leftish mode, we need some preparatory steps that change the current sentential form in
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such a way that the displayed occurrence of the varidbbecomes the leftmost to which
a production ofG’ is applicable. For this each variabiethat occurs within the prefig
is replaced by an occurrence of the new varidhlé\fter that has been done, the stdtg
changes into the stage and then the actual derivation step®fs simulated by a leftish
derivation step ofG’. However, to complete the simulation of tiiederivation step, the
variables of the forn¥ contained ing must again be replaced by the original variables.
This is done using the states of the fofip and the new variables of the fors.

We now describ&;’ in detail. We takeG’ := (Q', U, V', 2, P', S, qo, F'), where

Q = QU{E, E,|pe Q)
V i=VU{X|XeVJU{A |AecVUZ},
F' :={E,|peF},

and letP’ consist of the following rules:

(1) (E,, X) — (E,, X) foreachp e QandX eV,
(2 (Ep,X) — (p,X) foreachp e QandX eV,
3 (p.X) — (Eq Ao if (p,X) — (g, An)) € P,
4 (Ep,X) — (E,,X) foreachp e QandX eV,
(5) (Ep,A’) — (E,, A) foreachpe QandAeVUZ.

Now if (p, fX7y) =¢ (¢, PAay) is an arbitrary derivation step i&, wherep,q € Q,
XeV,AeVUX andy, 5,y € (VU X)* then
(Ep, BX7) =7, (E,,lBXy) (Replace each variablin f by Y)

=@ (p, fXy)  (Change the statg, into p)

=@3) (Eq, BA’oy) (Simulate theG-derivation step)

=ty (Eq, BA'2y) (Replace each variabléin pbyY)

=) (Eq, fAxy) (Replace the variablg’ by A).
is the corresponding simulation i@, where § denotes the string obtained frofhby
replacing each variabl& by its barred varian¥’. Note that in the productions of group
(3) it is essential thaP does not contain any-productions. It is now easily verified that
Ly(G)=L(G). O

Corollary 7.4.
(@ Lin(e-free-ACFG) = Ly(e-free-ACFG) C Ly (e-free-sACFG).
(b) Lin(ACFG) Li(ACFG) C L (SACFG).

Proof. The inclusions follow from Lemm4d.1. Further, we know from Corollary 6.5 and
Theorem 7.1(b) that

Lim(SACFG) = L(APDA) = ETIME C RE = £(SACFG). 0O

Unfortunately, many questions concerning the inclusions between the language classes
considered so far remain open. In particular we have the following open question.
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Open Problem 4. DoesL,(X) C L(X) orits converse hold, whetgis any of the classes
(e-free-) (s)ACFG?

Observe that
L(e-free-sACFG) C L (s-free-sACFG) C L, (SACFG)
by Corollary7.2 and Theorem 7.3(a), while
Lim(ECFG)C L(e-free-ECFG)C L (e-free-ECFG)

by Propositior2.2, which shows that various inclusion results do not carry over EGRGS
to SACFGs.

In the remainder of this section, we will illustrate the differences between the various
derivation modes by considering some examples)®CFGs. Analogously to Section 3we
denote by,,(G, w) andL;(G, w) the languages that are generated by the granthfiszm
the initial stringw with respect to rightmost and leftish derivations, respectively. If arbitrary
derivations are used, then the generated language is denote@hyw). Obviously, for
eachsACFG G and each string, we have

Lin(G,w) € L(G,w), Lm(G,w) < L(G,w), and Ly(G,w) < L(G,w).

The following example simultaneously separatgdG), Ln(G), Ly(G), andL(G).

Example 7.5. Let G1 := ({3,V}, {V},{S, A, B,C}, {a}, P, S, 3, {3,V}) be thesACFG
with the following productions:

39S — 3, ABC), (FHA) - FHe, GHC)— 3 e,
@3S — (v, ABC), (3,B)— (M,¢), (¥,B)— (3,a),
3, A) — (¥, a), 3¢ — F,a), (,B)— 3, ¢).

The possible leftmost, rightmost, and leftish derivation trees are shown i Fighere

dotted lines represent possible choices (that is, only one of them is to be chosen), and solid
lines represent universal branches (that is, all the branches must be chosen at each such
node). As, in addition, there is an unrestricted derivation

3,8 =3 ABC)= 3,BC) = (3,B) = (¥, ¢),

we see thatthe languages generated bin the leftmost, rightmost, leftish, and unrestricted
derivation modes aré,,(G1) = {aa}, Lin(G1) = 0, Ly(G1) = {a,aa}, andL(G1) =
{e, a, aa}, respectively. [J

Further, for eacth\CFG G and each stringy, we have
Lin(G,w) C L(G,w) and L., (G,w)C L(G,w).

The following example simultaneously separatgs G), L,m(G), andL(G).
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(3,9) 3,95)

@, ABé) (v, ABC) (3, ABC) (¥, ABC)

(¥, aBO) (3. BO) dome s, (3,400) (3, AC)
P Wby o .

(3, aaC’) (H,LL.C) (V;C) (¥, aaC) (EIfaC) (HC) (V,aC)

(El,a(;;z) (afaa) (3,§aa) (3. a) 3,a) (afaa) (3fa) (3,¢)

(3.9)

(3, ABC) (Y, ABC)

3, AB;) (3,4B)

(v, ;1@) (v:A)

Fig. 4. Leftmost (top left), leftish (top right), and rightmost (bottom) derivation trees.

Example 7.6. Consider theACFG
G2 := ({S, A1, A2, A3, E1, Ep, E3}, {A1, A2, Az}, {a,d’, b, b}, P, S),
whereP contains the following productions:

S — A1E»E3, E1 — ¢, E1—a, A1 —d, A — da,
S — E1A2E3, E» > a, E» —> b, Ay — a, Ay — b,
S — E1E»A3, E3— ¢, E3—b, Az — b, Az — bb.

Then, for each derivation moahe,
Ln(G2) = Ln(G2, A1E2E3) U Ly (G2, E1A2E3) U Lin(G2, E1E243).
(1) L(G2, A1E2E3) = {d'ab}, and this string is derivable only by first expandifig since

L(G2,d E2E3) N L(G,d'aE2E3) = {a’'ab},
L(G2, A1aE3) U L(G2, A1bE3) = 0,
L(G2, A1E2b) U L(G2, A1E2) = 0.

(2) L(G2, E1A2E3) = {ab}, and this string is derivable only by first expandiag, since

L(G2, E1aE3) N L(G2, E1bE3) = {ab},
L(G2, A2E3) U L(G2,aA2E3) =0,
L(G2, E1A2b) U L(G2, E1A2) = 0.
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(3) L(G2, E1E2A3) = {abb'}, and this string is derivable only by first expandifig, since

L(G2, E1E2bb") N L(G2, E1E2b") = {abb'},
L(G2, E2A3) U L(G2,aE2A3) =0,
L(G2, E1aA3) U L(G2, E1bA3) = (.

Thus, we see thdt(G») = {a’ab, ab, abb'}, L\,(G2) = {a’ab}, andL,,(G2) = {abb'}.

8. An undecidability result

Let G be an §)ACFG, and letm be any of the leftmost, rightmost or leftish deriva-
tion modes. Therl.,,(G) € L(G), but in general the converse inclusion does not hold.
Accordingly, we are interested in the following decision problem:

INSTANCE : An (S)ACFG G.
QUESTION : ISL(G) = Ly (G)?

For this problem we have the following undecidability result.

Theorem 8.1. Let m denote one of the derivation modes leftmasgthtmost or leftish
Then it is undecidable in general whether the equalitys) = L,,(G) holds for a given
(S)ACFG G.

Proof. By Lemmad4.1, it suffices to consider the case tidais anACFG.

Given two context-free grammars; and G2, one can easily construct &CFG Gg
suchthatl (Go) = L(G1) N L(G2). Asitis undecidable in general whether the intersection
of two context-free languages is empty [7], it is also undecidable in general whether the
intersection of two context-free languages contains a non-empty word. It follows that it is
undecidable in general whether the languag€&) generated by aACFG G contains a
non-empty word.

We will now reduce this problem to the problem of deciding whether the languag&s
and L,,(G") coincide for anACFG G’. So letG be anACFG over the terminal alphabet
{a, b}, and letS be its start symbol. We define &ACFG G’ with start symbok’ by adding to
G the new existential variablgs, E’, the universal variable$', A,, A, and the following
productions:

S -8 S — EE', E — A,, E — A,
E — ¢, E — aE, E — bE,
A, — &, A, — a, Ap — &, Ap — b.

It is easily verified that

L(G', E) = {a, b}*,
L(G',EE"Y = Lw(G',EE") = {a,b}*, and
Lin(G', EE") = 0.
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AsL(G',S) = L(G, S),we seethal(G', ') = L(G, S)NL(G’, EE’). Further, we have
thatL,(G’, ') = Lin(G', S) N Lin(G’, EE") = (. Hence,

L(G',S)=Ln(G',S) iff L(G,S)=0 iff LG, S)N{a b}" =0,

and by our remark above the last equality is undecidable.
The same proof applies to the leftish derivation mode, and a symmetric construction
yields the result for the rightmost derivation modé.]

9. Concluding remarks

The main result of this paper is the characterization of the language £(&$2DA)
by sACFGs with leftmost derivation mode (Theorefrd). Unfortunately, this result does
not answer the original question as to whether or not alternating context-free grammars
correspond in expressive power to alternating pushdown automata.

We have further seen that fos)ACFGs the expressive power depends on the chosen
derivation mode (see Section 7). However, many questions about the exact relationships
between the many language classes that are obtained by choosing various derivation modes
remain open. Also only few closure properties for the various language classes defined by
(S)ACFGs are currently known.

Recently a variant of the context-free grammars has been considered under the name of
conjunctive grammarglL5]. While in the derivation process of an alternating context-free
grammar the application of a universal step splits the derivation into several independent
sentential forms, each of which is then processed independently of all the others, the deriva-
tion process in a conjunctive grammar keeps all the different right-hand sides obtained by
applying a universal step in a common context. Thus, the effect of a universal step in a
conjunctive grammar is onliocal in contrast to the situation in an alternating context-
free grammar. It is shown in [15] that many of the standard constructions of context-free
grammars carry over to conjunctive grammars, and consequently the languages generated
by them are recognizable in polynomial time. On the other hand, the class of languages
generated by conjunctive grammars is quite expressive, as it properly contains all those lan-
guages that are obtained as intersections of finitely many context-free languages. However,
the exact relationship between the class of conjunctive languages and the languages gen-
erated byACFGs remains to be determined. IntuitiveCFGs should be more powerful
than conjunctive grammars, but it is not even clear whether each conjunctive language is
generated by aACFG. However, in the linear case these concepts yield the same language
class.

For future work it also remains to study the language classes that are obtained by (state-)
alternating variants of non-context-free phrase structure grammars. Here growing context-
sensitive grammars [5], context-sensitive grammars, monotone grammars and arbitrary
phrase structure grammars come to mind. For example, in [16] two of the authors have
studied the computational power of the alternating variant of the shrinking two-pushdown
automaton of Buntrock and Otto [1].
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Appendix

The diagram below depicts the known inclusion relations between some of the language
classes discussed in the paper and some well-known language and complexity classes. By
~-> we denote an inclusion,——= denotes a proper inclusion, and—= denotes
equality.
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Il
Lii(ECFG)
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