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Let R and R’ be prime rings with involutions of the first kind and with respective
Lie subrings of skew elements K and K'. Furthermore assume (RC : C) # 1, 4,9,
16, 25, 64, where C is the extended centroid of R. It is shown that any Lie
isomorphism of K onto K’ can be extended uniquely to an associative isomor-
phism of (K) onto (K'), where (K) and (K') are respectively the associative
subrings generated by K and K'. © 1994 Academic Press. Inc.

I. INTRODUCTION

In his 1961 AMS Hour Talk, titled ‘‘Lie and Jordan Structures in Sim-
ple, Associative Rings,”” Herstein posed several problems he deemed
worthy of attention [4]. Among these were the following questions (which
we indicate in a rather loose fashion):

Problem 1. 1s every Lie automorphism ¢ of a simple associative ring
R given by (or ‘*almost’ given by) an automorphism o or the negative of
an antiautomorphism o of R?

304
0021-8693/94 $6.00

Copyright © 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.



LIE ISOMORPHISMS IN PRIME RINGS 305

Problem 2. If R is a simple ring with involution * and K denotes the
Lie ring of skew elements of R under *, is every Lie automorphism ¢ of K
induced by (or ‘*almost’” induced by) an automorphism o of R?

The qualification ‘‘almost’ refers to the possibility that ¢ and o may
differ by an additive mapping 7 of R into the center which sends commuta-
tors to 0.

The resolution of these problems in the classical case R = M(F), Fa
field, has been well-known for a long time ({7, Chap. 10]). In 1951 Hua {6]
solved Problem 1 for R a simple Artinian ring M, (D), D a division ring,
n = 3. A more general situation for Problem 1 was subsequently consid-
ered by Martindale ({8, 9}) in which Lie isomorphisms ¢: R — R' (R, R’
primitive in [8] and prime in [9]) were investigated and in which the matrix
condition n = 3 was replaced by the condition that R contains three
orthogonal idempotents whose sum is 1 (in [9] only two idempotents were
required). A close look at the results of these papers reveals the fact that
the image of ¢ in general requires a “‘larger’” ring than R’ and that the
image of 7 requires a ‘‘larger’’ field than the center of R’. We note that it
was precisely this necessity to enlarge certain rings that was the motiva-
tion for developing the notions of extended centroid and central closure
which proved so useful in characterizing prime GPI rings [10]. The final
breakthrough on Problem 1 was made only recently by Bresar |3]). Here,
as a corollary to a general result on biadditive mappings in prime rings, he
removed the assumption of orthogonal idempotents altogether and
thereby settled Problem 1 in full generality.

THEOREM 1 (Bresar {3, Theorem 3]). Let R and R’ be prime rings of
characteristic #2, neither of which satisfies the standard identity S,. Then
any Lie isomorphism ¢ of R onto R’ is of the form ¢ = o + 7, where o is
either an isomorphism or the negative of an anti-isomorphism of R into
the central closure of R' and 7 is an additive mapping of R into the
extended centroid of R' sending commutators to 0.

The present paper is concerned with Problem 2. Let R be a prime ring
with involution *, of characteristic #2, 3, with K = {x € R | x* = —x} the
skew elements of R, and C the extended centroid of R (see [13] for details
of these and various other notions we need). The involution * induces an
involution ¢ — ¢ on the field C; we say that * is of the first kind if ¢ — ¢ is
the identity mapping, otherwise * is of the second kind. Throughout this
paper all involutions are of the first kind. (For involutions of the second
kind the feeling is that the solution of Problem 2 is inherently easier and
should ultimately revert back to Theorem 1, partial results have been
obtained by Rosen [14], and in a subsequent paper we plan to make a
methodical study in this case). In a straightforward way * may be ex-
tended to an involution of the central closure RC according to rc — r*c,
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r € R, ¢ € C. Up to now the main result concerning Problem 2 was the
following theorem of Martindale {12} which we now state carefully, since
it plays a crucial role in the present paper.

THEOREM 2 (Martindale [12, Theorem 3.1]). Let R and R' be closed
prime rings of characteristic #2 with involutions of the first kind, with
algebraicly closed extended centroids C and C’', respectively, and with
skew elements denoted respectively by K and K'. We assume furthermore
that

(@) (R:C)#1,4,9,16, 25, 64.

(b) R contains two nonzero orthogonal symmetric idempotents e,
and e, such that e, + e # 1.

(c) Fori=1,2, e € (eRe; N [K, K]}, the associative subring
generated by e;Re; N [K, K].

Then any Lie isomorphism of [K, K] onto [K’, K'] can be extended
uniquely to an associative isomorphism of {({K, K1) onto ({K', K'}).

Our aim in this paper is to eliminate the requirement of idempotents
assumed in Theorem 2. We are now ready to state the main results of this

paper.

THEOREM 3. Let R and R' be prime rings with involutions of the first
kind and of characteristic #2, 3. Let K and K' denote respectively the
skew elements of R and R' and let C and C’ denote the extended centroids
of R and R', respectively. Assume that (RC: C) ¥ 1,4,9, 16, 25, 64. Then
any Lie isomorphism o of K onto K' can be extended uniquely to an
associative isomorphism of (K) onto {K'}, the associative subrings gener-
ated by K and K', respectively.

It is interesting to note that the possibility of the trace-like mapping 7:
R — C’ (which shows up in the statement of Theorem 1) appearing in the
conclusion of Theorem 3 does not in fact occur. We also mention that
counterexamples illustrating the dimension restrictions on (RC : C) may
be found in [12].

In view of our subsequent Remark 3 we have the following.

CoRrROLLARY. Ifin Theorem 3 R and R' are simple rings, then a can be
extended uniquely to an isomorphism of R onto R'.

Our plan of attack is to consider two cases: Case A in which R satisfies
a generalized polynomial identity (briefly, R is GPI) and Case B in which
R is not GPL. In Case A we are able to make use of Theorem 2. In Case B,
inspired by Bresar’s success with using bilinear mappings in proving The-
orem 1, we set up a certain trilinear mapping B : K* — K intimately related
to a. Then, making repeated use of a result (Lemma 1) on non-GPI prime
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rings which we believe may prove to be a useful technique in other situa-
tions, we are able to show (Theorem 4) that B is of a particularly useful
form. The upshot is that both Theorem 2 in Case A and Theorem 4 in Case
B enable us to prove that (x*)* = (x*)? for all x € K, which by Lemma 8 is
precisely the criterion for lifting « to an isomorphism of (K) onto (K').
Our main result, Theorem 3, is thereby proved.

We close this introductory section by compiling various notions and
results needed in the sequel. With the exception of Lemma 1 we state
these results in the form of Remarks. Throughout we assume that R is
prime; for Remarks 1 and 3 we assume (RC : C) > 25, for Remarks 6 and 8
we assume R is centrally closed, and for Remark 8 we assume that C is
algebraically closed.

Remark . Kisaprime Lie ring ({13, Corollary 5.12]) and its extended
centroid C(K) is equal to C = C(R) ([1, p. 946, Theorem)).

Remark 2. (K) = K + K o K, where K o K is the additive span of all
elements xy + yx, x, y € K, or, equivalently, of all squares x2, x € K ([5,
proof of Theorem 2.3]).

Remark 3. Each of (K), ({K, K}), and (S) contains a nonzero ideal of
R, where § is the symmetric elements of R ([5, proofs of Theorem 2.2,
Theorem 2.13, and Theorem 1.6)).

Remark 4. Any involution of M,(C), C an algebraically closed field, is
either transpose or symplectic.

Remark 5. 1If R has nonzero socle H and dim H = m, then H contains
a symmetric idempotent of rank =m ([13, Corollary 2.9}).

Remark 6. If R, and R, are respectively the rings of left and right
multiplications of R, then R¢R, = R ®¢ R°, where R is the opposite ring
of R ([9, Theorem 5)).

Remark 7. Let f: R — R be an additive mapping which is commuting
in the sense that [ f(x), x] = 0 for all x € R. Then there exists A € C and u:
R — C such that f(x) = Ax + u(x), x € R ([2, Theorem 3.2]).

LetRAX, Y,, Vs, ..., Zy, Z>, ...) be the free product over C of R and the
free noncommutative algebra C(X, Y1, ..., Z), ...). An additive subgroup
W of R is said to satisfy a generalized polynomial identity over C with
coefficients in R (briefly, W is GPI) if there is a nonzero element f(X,
Yi,..0,Zy, . ) ERKX, Yy, ... Zy, ...) such that f(x, vy, ..., 21, ...) = O forall
Ly, €W

Remark 8. R is GPI if and only if R has a minimal right ideal ¢R (i.e.,
the socle H # 0) and eRe = C (since C is algebraically closed) ({10,
Theorem 3)).
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Remark 9. K is GPlif and only if R is GPI (follows from [{1. Theorem
4.9)).

Our final result in this section provides a technique for specifically
studying prime rings which are not GPl and may be of independent inter-
est.

LeEMMA 1. Suppose R is not GPI. Let T; = {f,{X) € R(X)|j =1,
2, ...,n}i=1,2,....m, be mgiven subsets of Re{X), each of which is C-
independent. Then there exists x € K such that, for eachi = 1,2, ..., m,
Tdx) = {f;(x) |j = 1,2, ..., ni} is a C-independent subset of R.

Proof. Suppose to the contrary that for each x € K there exists some
i,i=1,2,..., m,such that T(x)is a C-dependent subset of R. Then the set
Tix, y) = {filoy:|j = 1,2, ..., n;} remains a C-dependent subset of R for
all y; € K. We form the element

g =[] 8. (fiiX)Ys, fis(X)Yie ool [(X)YDZ E RIX. Yy, ... Zy. ),
i=1

where S, is the standard polynomial in n; variables. Clearly ¢ # 0 but,
since Si(ay, as. ..., ay) = 0 whenever a|, as, ..., q; are C-dependent, g is a
GPl on K. By Remark 9 we have a contradiction since R is assumed to be
not GPI, and the lemma is proved.

2. TRILINEAR MAPPINGS

Throughout this section R is a closed prime ring over its extended
centroid C, with an involution * of the first kind and with characteristic
R # 2, 3. Furthermore, we assume that R is not GPI. As usual K denotes
the skew elements of R and note that K is a Lie algebraover C. Let Vbe a
C-space. We say that a mapping B: K” — V is n-linear if

(i) B(xy, X2, ..., X)) = Blx,,, X,y .00 X))
for all x;, xa2, ..., x, € K and all permutations o € §,.

(i) B{xy, ..., x;i + Vi, ..., Xp) = B{xy, ..., x;y ..., x,) + B(y, ...,
Yis «oos Y)
fori=1,2, ....,n,x1, ..., Xi, Yir ..., X, € K.

(i) B(xy, ..., ¢cxi, ..., X,) = ¢Blxy, ..., xjs ... X))
foralli=1,2,3,...,n,x,x2, ..., X, €E K, c € C.

Consider then an n-linear mapping B: K" — K. The mapping T: K — K
given by T(x) = B(x, x, ..., x) is called the rrace of B; T 1s said to be
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commuting if [T(x), x] = 0 for all x € K. Our aim in this section is to prove
the following.

THEOREM 4. Under the conditions stated above, let B: K? — K be a
trilinear mapping whose trace T is commuting. Then there exists \ € C
and a bilinear mapping pu: K x K — C such that

68(x, vy, ) = AMxyz + xzy + yxz + yzx + vy + 2vx)

+ wly, 2x + ply, 2)y + plx, y)z,

forall x,y, z € K.

This result is highly instrumental in the next section when we show that
Lie isomorphisms preserve cubes. The proof of Theorem 4 follows from a
series of observations and lemmas.

We begin by linearizing our given condition

[B(x, x, x), x] = 0, x €K, (N
through various stages. By replacing x with x + v in (1) we are led to

[B(x, x, x), y] + 3[B(x, x. ), x] + 3[B(x. x, v), ¥}

+ 3[B(x, v, ¥), x] + 3[B(x. v, ¥).v] + [B(y, v, y). x] = 0.
(2)

Replacing y with —y and y with 2y in (2) we obtain

[B(x, x, x), y] + 3[B(x, x, ¥), x] = 0,
i.e., [B(x, x, ¥), x] = =}[B(x, x, x), y]. (3)

(B(x, x, y), y] = —{Blx, y, ), x]. (4)
Substitution of x by x + z in (3) then results in
2[B(x, y, 2), x) + [Blx, x, y), 2} + [Blx, x, 2). ¥} = 0 (5)
and finally replacement of x with x + u in (5) leads to

[B(x, ¥, 2), u] + {B(x,y, u), 2] + [Blx, z, u), y] + [B(y, z, ), x] = 0
(6)

for all x, y, z, u € K.
Before proceeding to our first lemma it is convenient to define ¢ (y) =
Xy +xTlyx 4+ -+ yxi, x,y ER,i=0,1,2, .., (it is understood that
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¢.(y) = y) and then to immediately note that
buly, x] = [y, x"*1]. (7

LemMMA 2. If x € K is algebraic over C of degree m + 1 then
B(x, x, x) = 270 Bix!, B; € C.

Proof. Wesetb = B(x, x,y),y € K, a = B(x, x, x), noting from (3) that
[b, x] = —3%[a, y]. From (7) we have ¢,[b, x] = [b, x*"],i=10,1, 2, ...
ertlng E:':(‘)‘ a,-x’ =0,a € C, a,+; = 1, we see Ego (1’,'+|¢p[b, X] =
[, o ajexit1] = [b, 246" a;x/] = 0, whence 22 a;. 1¢.[a, y] = 0 for all
y € K. By Remark 9 the element f(x) = 2 ;. ¢,[a, X] must be the zero
element of R-(X). This means in particular that

; aiidula, yl =0 (8)

for all y € R. With the help of Remark 6, Eq. (8) may be translated into the
tensor product equation

i ity 2 E7RxNa®1-1@a) =0. )]
i= J=0

(=0

Reversing the summation and rewriting (9), we have

i { > a,-Hx"‘ja} Q x/ ~ i { > a,~+1x"‘f} Qax/=0. (10)

j=0 | j=i=m Jj=0 |j=i=m

For each summand of the tensor product in (10) let us agree to call the
factor to the left of the tensor sign the coefficient of the factor to the right
of the tensor sign. From our assumption that x is algebraic of degree m +
1 we know that 1, x, ..., x™ are C-independent. Suppose (to the contrary
of what we are trying to prove) that 1, x, ..., x™, a are independent. We
make the important observation that the coefficient of « in (10) is 272,
@i xi = xm + E,fla' a1 X, a polynomial in x of degree m. For j > 0 the
coefficient of ax/in (10) is a polynomial in x of degree <m. For eachj > 0,
if ax/is a linear combinationof 1, x, ..., x™, a, ax, ..., ax/~! we rewrite (10)
accordingly and note that the coefficient of a in the rewritten form of (10)
remains a polynomial in x of degree m. A contradictionto 1, x, ..., x", a
being independent is thereby reached, and so we may finally conclude
that a = B(x, x, x) = Z[L, Bxi, B; € C.
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LeMMA 3. If 7 € K is not algebraic of degree <6 then B(z, z, 7) =
az* + B + yz,a, B8,y EC.

Proof. Replacing x by z? in (5) we have
2AB(z%, v, 2), 22) + [B(2}, 2%, ¥), 2) + [B(Z}, 22, 2), y) = 0,  (11)
for all y € K, Applying (7) to the first summand of (11) we obtain
$:22[B(2%, ¥, 2), 2) + [B(23, 2%, ¥), 2} + [B(2, 2%, 2), y] = 0,
which in view of (5.) again may be rewritten as

—d)zz[B(Z’ 2, 23)9 yl - ¢22[B(Zs Z,¥), ZS]

+ (B2, 2% y), 2} + [B(Z, 2, 2), ] = O. (12)

Using (7) in connection with the second summand in (12) we then have

—¢a[B(z, z, 2%), y) — 5Bz, z, ¥), z]

+ B, 2, ¥), 2] + [B(Z, 2%, 2), ] = O. (13)

An application of (3) to the second summand of (13) results in

—¢alB(z, z, 2%), y] + 32(B(z, 2, 2), ¥]

+ [B@. 2, y), 2] + (B, 2, 2), ] = 0. (14

We then apply ¢, to (14) and use (7) to obtain

~¢2[B(z, z, 2%, y] + 3%(B(z, z, 2), ¥]

+ (B, 2, ), 21 + 6:B@, 2, 2), 3] = 0. (15)

Using (3) on the third summand of (15) we have

—¢A(B(z, 2, 2%), y] + $b2[B(z, z, 2), ¥] (16)
—4[B(Z, 2, 2), y] + 62[B(, 2%, 2), y] = 0
Muitiplication of (16) by ~3 and rearrangement of terms yields

[B(Z3, 22, 2%, y] — 3¢.:(B(Z, 23, 2), ¥]

+ 363BG, 2, ), ¥l — $HBG, 2, 2), y] = 0. (17)

For simplification of notation we rewrite (17) as

(d, y] = 3¢.lc, y] + 3bk(b, y] — d2la, ¥y =0, y€EK, (I8
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where a = B(z, 2, 2), b = B(*, 2, 2), ¢ = B(Z*, 2, 2). d = B(Z}, 2, ). By
Remark 9 f(X) = [d, X] — 3¢.lc, X] + 3d2{b, X1 — dhla, X} must be the
zero element of R(X) and so in particular

[d, y] = 3¢.lc, y] + 362b, y] = dlla, 1 = 0. (19)

for all y € R. Using Remark 6 we may translate (19) into the tensor
product equation

d®1 - 1R0d-3FR1+:0z+1Q3Nc®1-1Q@¢)
+322R NI +272R02z2+1R22HhKRX]T1 —1Rb) (20)
- (ZRI+zQ:+1RDw®1-1®a)=0.

Two side calculations yield

PRI +:0z+1322=2QR1+2Rz+32922+2:87+1®@z4

2n
(ZR®1+z2@z+ 1@ =21 +37Rz2+62R2+77Q7
+672®7+3: 927+ 1 Q5 (22)

Inserting (21) and (22) in (20) and then expanding in full we see that

d®1 -18d -3 @1 +z20®@z+cQ@Z2-22Qc -8 ¢z
— 1@z} +3{p®1 +270 @z +3726 Q72 +2:h® F
+ bR -7 Qb —22Rbz - 322® b2 - 2z @ b
- 1@k —{a®1+37a@2+6aQ2+772a®2 (23)
+62aQ@ 7 +32a@7 +a®
~®a-37Qaz - 6* Q@ az? — 72 R a® — 62* @ at
-3z®az’ - 1 ®azf} = 0.

Systematically rearranging the terms of (23) we have

(d— 322 + 3% — 2%a) ® 1 + (—3zc + 62°h — 3z%a) ® 2
+ (=3¢ + 922b — 67°a) ® 2 + (6zb — T2a) ® 2
+ 3 -62a) R~ 324 —aQH+2Ra
4372 @az+ 62 @azr + 72 ®a’ + 622 @ az* + 3z ® a’
+1®azt —322Rb - 622 bz — 922 Q b — 62 @ b’
—3QRbP +322Rc+3z2R®cz+3QcF-18d=0.

(24)

Since z is not algebraic of degree =<6 we may speak of the degree of
polynomials in z whose powers of z do not exceed 6. We know that 1,
zZ, ..., 25 are independent. Suppose (contrary to what we are trying to
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prove) that 1, z, ..., z% a are independent. In a similar fashion to the proof
of Lemma 2 we note that the coefficient of a in (24) 1s z* whereas the
coefficients of az, az?, ..., azb, b, bz, ..., bZ%, ¢, cz, cZ8, d in (24) are all

polynomials in z of degree <6. Consequently, writing if necessary any of
the above elements as linear combinations of preceding elements and then
rewriting (24) accordingly, it follows that the coefficient of 4 in the rewrit-
ten form of (24) remains a polynomial in z of degree 6. That is a contradic-
tionto 1, z, ..., z8, a being assumed independent and so a = B(z, z, 2) =
>t o Bizl. Since B(z, z, z) is skew we finally have B(z, z, 2) = a2’ + B2° +
vz, a, B, vy € C, as desired.

LEMMA 4. Ifa € Kis not algebraic of degree 6 then Bla, a, a) = \a® +
wa for some A, u € C.

Proof. If a is algebraic of degree =5 then by Lemma 2 B(a, a, a) =
270 B:a' for some m < 4. But B(a, a, a) is skew and so B(a, a, a) = Ba* +
Bia. Therefore we may assume « is not algebraic of degree =6. In the free
product R(X) we consider the following sets of elements:

{Mda, X)|i= 1,2, .., n}, the set of all monomials of the form
arXhak .- Xkat wherejo+j + - +j=6andk + ky + -+ k, =6

{(X+ayli=0,1,...,6}

{X-a)jli=0,1,...,6}
Since |, a, ..., a® are independent, each of the above three sets is an
independent subset of R~(X). By Lemma 1 there exists x € K such that
each of the sets {M;(a, x)}, {{x + @)}, {(x — a)} is an independent subset of
R. We let V denote the C-span of the set {M.(a, x)}. Since none of the
elements a, x, a + x, x — a are algebraic of degree <6 Lemma 3 implies
that the traces T(a), T(x), T(x + a), T(x — a) are all elements of V and in
fact are of ‘‘degree’ <5 in x and ‘‘degree”’ <5 in a. It then follows from
the equations

Tx + a) = Tx) + T(a) + 3B(x, x, a) + 3B(x, a, a)
T(x — a) = T(x) — T(a) — 3B(x, x, a) + 3B(x, a, a)

that B(x, x, a) and B(x, a, a) are also elements of V of degree <5 in both x
and «. Using (3), we may then conclude from

[B(x, x, x), a] = —3[B(x, x, a), x]
that B(x, x, a) is of degree 1 in a. Next, using (4), from

[B(x, x, a), a] = —|B(x, a, a), x]

481/169/1-22
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we see that B(x, a, a) is of degree <2 in a. As a result it follows from
[B(x, a, a), a] = —3lB(a, a, a), x]

that B(a, a, a) has degree =3 in a. Since B(a, a, a) is skew we then have

B(a, a, a) = A@® + pa, A\, u € C, as desired.

LEMMA 5. Ifa € K is algebraic of degree 6 there exist A, p € C such
that B(a, a, @) = \@® + pa.

Proof. In the free product R-{(X) we consider the following five sets:

{Mfa, X)|i=1,2, ..., n}, the set of all monomials of degree <6 in X
and of degree <5 in a

Xili=0,1,..,6)
{(X-a)|i=0,1,..,6}
(X +a)y|i=0,1, .., 6
(X +2ay]i=0,1,.., 6.

Each of these sets is a C-independent subset of R(X), so by Lemma 1
there exists x € K such that each of the five sets {M;(a, x)}, {x’}, {(x — a)'},
{(x + a)}, {(x + 2a)} is an independent subset of R. We let W denote the
C-span of the set {M.(a, x)} and let W' denote the subspace of W whose
elements are of degree <3 in x. Since none of the elements x, x — a, x + a,
x + 2a are algebraic of degree 6, Lemma 4 implies that the traces 7(x),
T(x — a), T(x + a), T(x + 2a) all belong to W'. By adding the equations
T(x + a) = T(x) + T(a) + 3B(x, x, a) + 3B(x, a, a)
T(x — a) = T(x) — T(a) — 3B(x, x, a) + 3B(x, a, a),
we have 6B(x, a,a) = T(x + a) + T(x — a) — 2T(x), and so B(x, a, a) € W'.
Next, from the equations
T(x + 2a) = T(x) + 8T(a) + 6B(x, x, a) + 12B(x, a, a)
8T(x + a) = 8T(x) + 8T(a) + 24B(x, x, a) + 24B(x, a, a),

we obtain
87(x + a) — T{x + 2a) = 7T(x) + 18B(x, x, a) + 12B(x, a, a)
and so B(x, x, a) € W'. In W we have the equation

[B(x, x, x), a] = —3[B(x, x, a), x]
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from which we may conclude that B(x, x, a) has degree 1 in a. We there-
fore see from

(B(x, x, a), al = —[B(x, a, a), x]

that B(x, a, a) has degree <2 in a. Since a is algebraic of degree 6 we know
from Lemma 2 that B(a, a, a) = 2~ v:d', v; € C, and so [B(a, a, a), x) €
W. Therefore from the equation

[B(a, a, a), x] = —3[B(x, a, a), a]

we see that B(a, a, a) is of degree =3 in a, and the proof of the lemma is
complete.
Together Lemma 4 and Lemma 5 imply

LEMMA 6. For all a € K there exist A, . € C such that B(a, a, a) =
A + pa.

We next show that X is independent of 4.

LEMMA 7. There exists A € C such that for all a € K B(a, a, a) =
ra® + ula)a, wla) € C.

Proof. Let a, b be any elements of K, neither of which is algebraic of
degree <3. In the free product R-(X) we consider the two sets

{Mda, X)|i=1,2, ..., n}, the set of all monomials of degree =6in X
and of degree <3 in a.

{Mib,X)|i= 1,2, ..., m}, the set of all monomials of degree =6 in X
and of degree <3 in b.

These are each independent subsets of Rc(X) and so by Lemma 1 there
exists x € K such that the sets {M;(a, x)} and {M;(b, x)} are both indepen-
dent subsets of R. Let U denote the C-span of the set {M(a, x)}, and let U’
denote the subspace of U where elements are of degree =<3 in x. By
Lemma 6 7(x), T{a), T(x + a), T(x — a) all belong to U’ and so from the
equations

T(x + a) = T(x) + T(a) + 3B(x, x, a) + 3B(x, a, a)
T(x — a) = T(x) — T(a) — 3B(x, x, a) + 3B(x, a, a)

(25)

we conclude that B(x, x, a) and B(x, a, a) both lie in U’. From
[B(x, x, x}, a} = —3[B(x, x, a), x]

we see that B(x, x, a) is of degree | in a, hence from
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[B(x, x, a), a] = —[B(x, a, a), x]

we see that B(x, a, a) has degree =2 in a. Next from

[B(x, a, a), al = —4[B(a, u, a), x]

we see that B(x, a, a) has degree | in x, hence from
[B(x, x, a), a] = —|B(x, a, a), x]

we see that B(x, x, @) has degree <2 in x. Returning to Eq. (25) and using
Lemma 6 we write

AMla + 0 + wyla + x) = Md® + poa + Axd + puax (26)

+ 3B(x, x, a) + B(x, a, a)
for suitable A;, u; € C. Since the degrees of B(x, x, a) and B(x, a, a) either
in x or in a do not exceed 2 we conclude from (26) that A; = A and A = A3,
whence A; = A;. In a similar fashion, writing B(b, b, b) = \3b* 4+ usb, our
argument shows that Aj = A; and therefore A, = Ay = A, Incasey € K is
algebraic of degree =3 we know by Lemma 2 that B(y, y, y) = ny, so,
writing y? = yy, we have B(y, y, y) = Ay} + uy — Ay} = Ay + (n — yA)y.
The proof of Lemma 7 is now complete.

Proof of Theorem 4. By Lemma 7 there exists A € C such that
B(x, x, x) = A3 + y(x)x, v(x) € C, (27)

for all x € K. We proceed to linearize (27) in the usual fashion. Replace-
ment of x by x + y in (27) results in

3B(x, x, ¥) + 3B(x, y, y) = Mxly + yxy + yx* + xy* + yxy + yx) + hy
(28)

for all x, y € K, where A, is a linear term in x and y. Replacement of y by
—y in (28) then quickly leads to

3B(x, y, y) = Mxy? + yxy + yx) + hy, (29)

where h; is linear in x and y. Replacement of y by y 4+ zin (29) then results
in

6B(x,y,2) = Mxyz + xzy + yxz +yzx + zxy + zyx) + h  (30)
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for all x, y € K, where
h(x,y,2) = alx, y, 2)x + Bx, y, 2y + v(x, y, 2)z. (31

We note from (30) that h: K? — K is a trilinear mapping. We define a
mapping u: K X K— C in the following fashion. Given (y, z) € K x K
choose x € K such that x does not lie in the span of v and z (such x exist
since K is infinite dimensional over C). Now write

h(x,y,z) = ax + By + yz

and define u(y, z) = a. To show that u is well-defined let ¥ € K such that
u & span {y, z}. Suppose first that ¥ = 7,.x + 7,y + 73z (necessarily 7, # 0).
Then

h(u, y, 2) = 7ihx, y, 2) + 72h(y, y, 2) + 73hlz. ¥, 2
Ti{ax + By + y2) + 1By + ¥22) + Ti(Bsy + ¥32)
alr\x + Ty + 132) + Bay + vaz = au + By + vaz.

I

j)

We may thus assume that «, x are independent modulo span {y, z}. In this
case we write

hix,y,z) + hlu, y, 2) = hlx + u, y, 2)
whence
ax + By + yz+ o+ By + viz = axx + u) + By + yaz. (32)

It follows from (32) that @« = a; and a; = a; and so a = «, as desired.
We next show that u is bilinear. Let y, y', z € K, 7 € C, and choose x €
K such that x & span{y, y', z}. The equations

hix,y,2) =ax + By + yz = hix, 2, y)
hx,y +y,20=my+y,2x + By +y) + vz

=h(x,y,2) + hlx,y", ) =y, dx + B2y + vaz + wly', 2x + By’ + vz
hix, 7y, 2) = plry, 2)x + Bg7y + Yaz

=th(x,y,2) = Ty, 2)x + By + yz

clearly imply that u is bilinear.
Now let x, y, z € K be independent. From

hix,y,2) = wly, x + By + yz
= h(y, x,2) = plx, 2y + Bix + vz
= h(z, x,y) = ulx, )z + Bax + y2¥
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we then conclude that
h(x, ¥, 2) = wly, 2)x + plx, 2y + plx, y)z.

Next suppose y, z are independent but x € span{y, z}. Choose u &
span{y, z}. Then x + u & span{y, z} and we have
h(x, y,2) = hlx + u, y, ) — hlu, y, 2)
=uly, D+ ) + wlx + u, )y + plx + u, y)z
= uly, u — wlu, 2)y — plu, y)z

u(y, 2)x + ulx, 2y + plx, y)z.

Finally, if span{x, y, z} is one-dimensional, we choose u & span{x, y, z}
and write
h(x,y,2) = h(x,y, 2z + 1) — hix,y, u)
=y, 2+ wx + plx, z + wy + pulx, y)z + w)
= mly, wx — plx, u)y — plx, y)u

w(y, 2Dx + ulx, 2y + ulx, y)z

making use of the preceding case. This completes the proof of Theorem 4.

3. Lie [SOMORPHISMS

Throughout this section R and R’ are prime rings with involutions of the
first kind, of characteristic #2, 3, with respective skew elements K and
K’, and with respective extended centroids C and C'. We also make the
assumption that (RC : C) # 1, 4, 9, 16, 25, 64. For W a subset of R we
denote by (W) the associative subring of R generated by W. Finally, under
the above conditions, we suppose that « is a Lie isomorphism of K onto
K’ given by x — x%, x € K. The main result of this paper is then to prove
that « can be extended uniquely to an associative isomorphism of (K)
onto {(K').

We begin by showing that without loss of generality R and R’ may be
assumed to be closed prime rings with C and C’ algebraically closed
fields. Indeed, since (RC : C) # 16, we know from Remark | that C =
C(K) where C(K) is the extended centroid of the prime Lie ring K. From
the Lie isomorphism a we see that K’ is also a prime Lie ring, in which
case it follows that C’ = C(K"'). The Lie isomorphism a then induces an
isomorphism ¢ — ¢ of C onto C’ and « may be extended to a Lie isomor-
phism ¢: KC — K'C’ given by Zx;c; —> 2x7¢i, x;i € K, ¢; € C (see [12,
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p- 934] for details). Therefore without loss of generality we may assume
that R and R’ are already centrally closed. Now let F be an algebraic
closure of C and let F’ be an algebraic closure of C’ such that the isomor-
phism ¢ — & of C onto €’ is extended to an isomorphism A — X of F onto
F’. We then form R = R & Fand R’ = R’ ®¢ F' (see (13, Theorem
2.11]), noting that R and R’ are closed prime rings with involutions, with
respective extended centroids £ and F’, and with respective skew ele-
ments K ®c F and K’ ®- F’. Now we extend « to a Lie isomorphism
O KQQcF—-K' Q¢ F'viax@A—x*® A, x € K, A € F. This mapping is
well-defined (the crucial observation being that (xc)* @ A=xCQRc A =
X2 ®c A = x* Q¢ (ch), x € K, ¢ € C, A € F). We leave it for the reader to
verify the straightforward details that ¢ is a Lie isomorphism. Clearly we
have the conditions that (R : F) # 1, 4, 9, 16, 25, 64. Therefore we may
assume to begin with that R = R and R’ = R’ are closed prime rings with
algebraically closed extended centroids.

We next present a criterion for extending « to an associative isomor-
phism of {K) onto {K').

LEMMA 8. « can be extended to an isomorphism B: (K) — (K") if and
only if (x})* = (x*)? for all x € K.

Proof. The “‘only if”’ part being obvious, we assume
() = (xp (33)

forall x € K. By Remark 2 (K) = K @& K ¢ K. Replacement of x by x *+ y in
(33) results in

20xy? + yxy + yix)e = 2x(yN? + 2y°x®y* + 2(ye) x> (34)
for all x, y € K. Also we have

(xy? = 2yxy + y2x)* = [[x, y), yI* = [Ix*, 1, »7] (35)
= 1y = 2ywey + ()

Adding (34) and (35) and then dividing by 3, we see that
(xy? + Y= = x2(y)? + (y)x® (36)
for all x, y € K. We now define a mapping 3: (K) — (K') according to
x @ Ty? - x* D I(y)?, x,y: €K
To show that 8 is well-defined it suffices to show that if Zy? = 0 then

S(y#) = 0. Indeed, for x € K we have Zy2x + Zxy? = 0 whence by (36) we
see that Z(yf)x* + x2Z(y{)* = 0. But a nonzero symmetric element of R’
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can only anticommute with all skew elements of R when K’ is one-
dimensional, a condition which is ruled out by (R : C) > 4. Therefore we
conclude that =(y¥)* = 0 and thus g is a well-defined additive mapping of
(K) onto (K").

From the identity xy = ${(x + v)? — ¥ — v> + [x, v]} we see from the
definition of 3 that for x, v € K,

() = Hl(x + y)7]F — () = (3 + [x, y]8}

%“xa 4 yaF _,(xuy _.‘yuf +_[xuyyu” (37)

I

= xuyu — xﬁylﬁ.

From the identity x°y = ¥{x o [x, y] + x° o y} we obtain

Hlx o [x, y])? + (e y)
%{xu ° [.\'”‘, _,V”] + ('\-n): ° _V“ (38)

= (xa)lyu = (xl)/jy[{

(xly)/ﬁ

Il

making use of (36). Together (37) and (38) imply
(ux)f = ubxh, u€(K), x€eK, (39)

and, since (K ) is generated by K, it follows from (39) that 8 is 4 homomor-
phism of {K) onto (K'). By symmetry the Lie isomorphism x¢ — x of X'
onto K can be extended to a homomorphism y: (K') — (K). Since Sy is
the identity on K and yg is the identity on K’ it is clear that 8 is an
isomorphism.

At this point we divide our analysis of « into two separate cases.

Case A: R is GPI.
Case B: R is not GPI.

Case A. By Remark 8 R has nonzero socle H. Since (R : C) = 36 we
know from Remark S that H contains a symmetric idempotent ¢ of rank
n = 6. Then ¢Re = M,(C) and by Remark 4 ¢Re has either the transpose
or the symplectic involution. In either of these cases it is well-known that
eRe contains orthogonal symmetric idempotents ¢, and ¢> each of rank 2.
It is then easy to check that for i = 1, 2 ¢; lies in the subring generated by
[K, K} N e;Re;. Finally, o clearly induces a Lie isomorphism oy from { X,
Klonto [K’, K'], and so the conditions of Theorem 2 have now been met.
We may therefore conclude that ag can be extended to an associative
isomorphism o: T — T', where T = ((K, K]) and T" = ((K', K']). It is
easily seen that (K N 7)° = K' N T’. Indeed, this follows from writing x €
KNTasx =2 (ujur -+ up, + (=", -+ 1)), u; € [K, KJ. and then
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applying the isomorphism o. Similarly, (S N T)* = §' N T', where § and
S’ are respectively the symmetric elements of R and R’'. We also claim
that o agrees withocon K N T, Indeed, forxe KN T,y € [K, K], we have
[x2, yo} = [x, y}* = [x, y}® — [x, y7] = [x7, y7}, whence x* — x” commutes
with [K’, K'] and so by Remark 3 x* — x“ is central. But we have already
seen that x” (as well as x*) must be skew, and so x® — x” = 0,

Since R is GPI the socle H of R is nonzero by Remark 8 and so by
Remark 3 H C T. We note that # itself is a simple ring. If 7 # 0 is an ideal
of TthenI N H #0isanidealof HandsoI N H=H,ie., I DH It
follows that H is also the socle of T. It is easy to show via o that R’ must
also be GPI with socle H".

We now fix 7 € K. We claim first of all that

{u, t}* = (u”, 1¢], uE H. (40)

Indeed, since ({H N K) = H by Remark 3 and the simplicity of H we may
assume without loss of generality that u = x;x; -+ x,, x, € H N K. For
n=11[x, 1) = [x,, 8]* = [x{, %] = [x], ¢*]. Inductively we have

[x1x2 - X 117 = {1062 =+ Xy 1] + X1, £]x2 =+ X0}7
= x{le x0T+ Ly, 170 0 xg)”
= 'xtl’[(xz o xn)"a ta] + [x(]rq l"‘](xz et Xn)”

= [xT(x2  x)7, 10] =[x - x0)7, 0],

and so our claim is established.
From [u o t, u] = [t, u} ° u we see, making use of (40), that

[( o), ™} = [, ul o u® = [u” o t*, ue)

for all u € H. In other words, i, u” — (u o N — u” o t* is an additive
commuting function on the ring H°. By Remark 7 there exists A € C' and
w: H? — C’ such that

(e )" — u” ot = xu” — u(u), u€EH. 41)
Choosing « € H N K we see that A = 0 by comparing the skew and
symmetric parts of (41). Next, choosing u € S N H, we see from (41) that
w(u®) = 0; that is
(Uot) = uote ueE SNH. (42)
Together (40) and (42) imply that

(ut)? = u°te, UESNH,
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whence

Lo s

(tyuy - - up )™ = uius - ujte, weESNH. (43)
But (§ N H) = H by Remark 3 and so (43) implies
(un) = ute, ueE H teKk.
Similarly (fv)° = t*v°, v € H, t € K and so

W) = (ut’)7ve = (urtv)” = {(unK(tv)}
= [(u)t]e(t)” = (u)"t*v” = u°(t*Pv”

forall u, v € H, t € K. Therefore UZ[(*)x — (+2)}]U° = 0 whence (£)* =
(t2)? for all 1 € K. Lemma 8 is thereby applicable and so we have suc-
ceeded in showing in Case A that « can be extended to an isomorphism of
{K) onto (K").

Case B. We begin by pointing out that necessarily R’ is not GPI.
Indeed, since R is not GPI it follows that (K : C) = «, whence (K' : C') =
«, If R' is GPI we have already seen in our discussion of Case A (with a~!
now playing the role of a) that o~ ! may be lifted to an isomorphism of o’
of (K') onto (K ). Using ¢’ we easily reach the contradiction that R must
be GPI.

We define a C'-trilinear mapping B: (K')} — K’ as

B(x=, y=, z%) = ¥dxyz + xzy + yxz + yzx + zxy + zyx)*

for all x, y, z € K. Its trace B(x*, x*, x®) is obviously commuting since
B(x=, x*, x*) = (x*)* and [(x*)*, x] = 0 for all x € K. Thus by Theorem 4
there exists A € C' and a C’-bilinear mapping u: K’ X K’ — C’ such that

(xyz + xzy + yxz + yzx + zxy + zyx)®
= }\(xotyuzu + Xazuya + yuxazn + yazuxu + Zuxaya + zayﬂxu) (44)
+ uly, 2x* + plx, 2)y* + ulx, y)z=,

for all x, y, z € K, where for notational ease we are simply writing u(x, y)
for u(x®, y*). Our aim, of course, is to show that A = 1 and that u = 0,
whence (x3)* = (x*)3, and Lemma 8 may accordingly be invoked to obtain
the desired conclusion that @ may be extended to an isomorphism of (K)
onto (K').

We now proceed to draw some consequences from (44). First setting
x = z in (44) and dividing by 2, we obtain
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(xfy + xyx + yx?)* = MxoPy* + xoyox® + yo(x)?

(45)
+ wlx, y)x® + dulx, x)ye.
Now, setting x = y in (45), we have
(xH* = Mx) + dulx, x)xe. (46)

From 3xyx = x2y + xyx + yx? — [[y, x], x] we conclude using (45) that
3xyx)™ = A(x¥)2ye + xoyex® + y*(x*)’] + plx, y)x* + fulx, x)y®

_ [(xa)lya — zxayaxa + ya(xa)Z]

(A + 2xeyexe + (A — D[(x9)%y® + y*(x*)?]

il

+ ulx, y)x* + tulx, x)ye,

whence

Coyx)e = (1 + Df3xyexs + (= DAy +y20ef] o
+ Julx, y)x® + gulx, x)y°.

LEMMA 9. A = 1, ie., (xyx)* = x2yox® + dulx, y)x® + sulx, x)y?.

Proof. Choose x* € K’ such that x* is not algebraic of degree =6
(such x* exist since otherwise K’ would be Pl). In the free product R;{Y)
consider the C’-independent subset {Mi(x*, Y) |i =1, 2, ..., n} of all
monomials of the form (x*)yeYi(x)Jt - - - Yix%)t where jo + j, + -+ + i <
6andi; + i + -+ + iy = 6. By Lemma I there exists y* € K’ such that
{M(x, y*)} is an independent subset of R". We compute (x’yx*)* in two
ways and compare the resuits, being only interested in the coefficients of
(x2)%y* and (x*)’y*x=. On the one hand,

A1
3

+ duld, L]+ duld, x)ye,

@y = AR O 1+ A B et

where [ 1 = AMx®)® + ulx, x)x Using [ 2 = A2(x™)® + Aulx, x)(x9)* +
iu(x, x)%(x*)? we may write (48) as

A— 1

(Pyxdy = A x®)bye + 0(x?) yex® + -+ - . (49)
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On the other hand,

(S3yxd)e = [x(x?yx?)x]e

A+ 2 A= A=,
- 3 {}'r+ 3 (x){}+ 3 {}(x)
+ hulx, yx)x® + dulx, x){ },
where
{ } = (Pyx)e = [x(xyx)x]”
A+2 A )2 A1 a)2
=3 xo Jxr + 3 (x)’[ ]+ 3 [ J(x®)
+ dulx, xyx)x® + dulx, x) ]
where in turn
-1 A -1 )
[ 1= (xyx)*= > ; - X2y x® + A (x*)2y« + y*(x)*

+ dulx, y)xe + dulx, x)y°.
Therefore

(x3yx3)a —_ (Lj_)} (xa)ﬁya

[A+2O—1y+x—1x+2x—l
3 3 3 3 3

)\_])2}\+2:, a)Sya ya
+( 3 3]

A= 1Y A+ D — 1)
= (_:_;__) (xn)(:ya + _(___%_L (xa)iyaxa 4+ e

(50)

(50

Equating the coefficients of (x*)6y> and (x*)’y*x= in (49) and (51) we have

B -5 >

(52)
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+ —_ 2
_(_)\__.__2_)(.}1___1_)_ = (53)
9
From (52) we find that A = 1 or A2 = ((A — 1}/3)?, whence A = 1, =4, or L.
From (53) we have A = [ or A = —2. It follows that A = [ and the lemma is
proved.

LEMMA 10. u = 0.

Proof. Let x© # 0 be arbitrary but fixed in K’. In the free product
R (Y) we define the independent set {(Mi(x, ¥Y)|i= 1,2, ..., n} to be the
set of all monomials of the form (xoyoYi(x®)/ - - - Yi(xoyt, where i, + i +

=30 =3 o+ i+ +jk=4 and

Jq = 3 if x is not algebraic of degree = 3 (54)
41 = 2 if x is algebraic of degree 3 (55)
Ji = 1if x is algebraic of degree 2. (56)

In case of (55) we can replace (x®)* by Bx*, 8 € C’, and in case of (56) we
can replace (x%)? by y € C' and hence (x*)* by yx«. By Lemma 1 there
exists y* &€ K’ such that the set {M;(x%, y*)} is an independent subset of
R'. We compute (xyxyxyx)* in two ways and compare the results, being
only interested in the coefficients of (y®)ix*y>x.
On the one hand, making use of Lemma 9, we have
[yx)y(xyx)] = (xyx)=y*(xyx)® + du(y, xyx)(xyx)® + §ulxyx, xyx)y~
= [xeyex + dulx, y)x* + dulx, 0y ]y lxy x=

+ Aplx, y)x* + dulx, x)y°) 57)

+ du(y, xyx)eey* x> + dulx, y)x* + julx, x)y*]

+ ulxyx, xyx)y*

= xayaxayaxayaxa + %[.L(X, x)(ya)zxayaxa 4+ e
On the other hand, again using Lemma 9, we have

[x(yxyxy)x]® = x*(yxyxy)*x® + dulx, yxyxy)x® + du(x, x)(yxyxy)*
= x2{y*(xyx)*y* + duly, xyx)y® + duly, y)xyx)ebxe
+ ulx, yxyxy)x®
+ dux, ) {ye(xyx)*y® + 3y, xyx) v + duly, y)(xyx)*}
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It

= xeye{xoyex® + dulx, y)x + dulx, )y by xs
+ (Y, xyx)x®y*x®
+ duly, yxe{xey x® + dulx, y)x + dux, x)ypx
+ dulx, yxyxy)x® (58)
+ dulx, )y {xyex + dulx, y)x® 4+ dulx, )yety®
+ taplx, X)uly, xyx)y*
+ deulx, uly, Yy xs + dulx, y)x= + dulx, )y}

is understood that (58) will be further rewritten by replacing (x*)? by Bx*

in case (55) holds and replacing (x*)? by y and (x*)* by yx® in case (56)
holds. Now, comparing the coefficients of ( y*)Zx* y*x* in (57) and (58) we
see that u(x, x) = u(x*, x®) = 0 for all x* € K’'. Linearizing we have
u(xe, y*) = 0 for all x*, y* € K’ and the proof of Lemma 10 is complete.

Together Lemma 9 and Lemma 10 imply that (x*)« = (x*)} forall x € K

and so by Lemma 8 we have succeeded in showing in Case B that « can be
extended uniquely to an isomorphism of (K) onto (K’). Our analyses of
Case A and Case B combine to immediately give us the proof of our main
result, Theorem 3, a complete statement of which is given in Section 1.
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