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Abstract

Let A be an integral domain with field of fractionsK . We investigate the structure of the overrin
B ⊆ K of A that are well-centered onA in the sense that each principal ideal ofB is generated by an
element ofA. We consider the relation of well-centeredness to the properties of flatness, local
and sublocalization forB over A. If B = A[b] is a simple extension ofA, we prove thatB is a
localization ofA if and only if B is flat and well-centered overA. If the integral closure ofA is
a Krull domain, in particular, ifA is Noetherian, we prove that every finitely generated flat w
centered overring ofA is a localization ofA. We present examples of (non-finitely generated)
well-centered overrings of a Dedekind domain that are not localizations.
 2004 Published by Elsevier Inc.
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1. Introduction

All rings we consider here are assumed to be commutative with unity. IfR is a ring, we
denote byU(R) the multiplicative group of units ofR. If A is an integral domain with field
of fractionsK, we refer to a subringB of K with A ⊆ B as anoverring of A.

Fix an integral domain A with field of fractions K and an overring B of A.
We say thatB is well-centered on A if for eachb ∈ B there exists a unitu ∈ B such that

ub = a ∈ A. Thus,B is well-centered onA iff each element ofB is an associate inB of an
element ofA iff each principal ideal ofB is generated by an element ofA.
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The overringB of A is a localization of A if B = S−1A = AS , where S is a
multiplicatively closed subset of nonzero elements ofA. ThusB is a localization ofA iff
B = AU(B)∩A. A localization ofA is both flat overA and well-centered onA. Conversely,
we prove in Theorem 4.3 that a simple flat well-centered overring of an integral domA
is a localization ofA. If the integral closure ofA is the intersection of a family of valuatio
domains of finite character, we prove in Theorem 4.15 that every finitely generate
well-centered overring ofA is a localization ofA. Thus every finitely generated fl
well-centered overring of an integral domainA which is either Krull or Noetherian is
localization ofA (Corollary 4.16). On the other hand, we establish in Theorem 3.16
existence of non-finitely generated flat well-centered overrings of a Dedekind doma
are not localizations.

The overringB of A is a sublocalization of A if B is an intersection of localization
of A. ThusB is a sublocalization ofA if and only if there exists a family{Sλ}λ∈Λ of
multiplicatively closed subsets of nonzero elements ofA such thatB = ⋂

λ∈Λ ASλ . It is
well known [12,32] that a sublocalizationB of A is an intersection of localizations ofA

at prime ideals. Indeed
⋂

λ∈Λ ASλ = ⋂{AP : P ∈ SpecA andP ∩ Sλ = ∅ for someλ ∈ Λ}
(see Discussion 2.1).

A sublocalizationB of A need be neither well-centered onA nor flat overA. We discuss
in Section 2 the sublocalization condition in relation to the properties of flatness and
centeredness for an overringB of A. We give in Corollary 2.8 necessary and suffici
conditions for each sublocalization overring of a Noetherian domainA to be a localization
of A.

We prove in Theorem 3.6 that every finitely generated well-centered overrin
an integrally closed domain is flat and therefore, in particular, a sublocalizatio
Example 3.24 we establish the existence of a non-Archimedean well-centered ov
of a factorial domain.

Our interest in the well-centered property of an overring of an integral domainA arose
from conversations that the first author had with Jack Ohm a number of years ag
property arises naturally in relation to results established by Ohm in Theorem 5.
Example 5.3 of [26]. M. Griffin in [16, p. 76] defines well-centeredness of a valuativ

with ring B containing the domainA in a manner equivalent to the definition ofB being
well-centered onA given above. We thank Muhammad Zafrullah for pointing out to
this reference to Griffin. We also thank the referee for several helpful suggestions tha
improved the paper.

2. When a sublocalization is flat or a localization

Interesting work on the structure of flat overrings of an integral domain has been
by Richman in [32] and Akiba in [1]. Richman observes that an overringB of A is a flat
A-module if and only ifBM = AM∩A for every maximal (or equivalently prime) idealM

of B [32, Theorem 2]. In particular, ifB is a flat overring ofA thenB is a sublocalization
of A. The converse of this result, however, is not true in general. We indicate b
methods for obtaining sublocalizationsB of A that fail to be flat overA.
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Discussion 2.1. (1) If B is a flat overring ofA, then every idealJ of B is extended fromA.
Indeed, for each maximal idealM of B we haveBM = AM∩A, henceJBM = JAM∩A =
(J ∩ A)AM∩A = ((J ∩ A)B)BM . ThusJ = (J ∩ A)B. It is not true, however, that a fla
overringB of an integral domainA need be well-centered onA (cf. Proposition 3.13 and
Example 4.6). The distinction is that principal ideals of a flat overringB need not be the
extension of principal ideals ofA.

(2) If S is a multiplicatively closed subset of an integral domainA with 0 /∈ S, then

AS =
⋂

{AP : P ∈ SpecA andP ∩ S = ∅}.

Therefore if{Sλ}λ∈Λ is a family of multiplicatively closed sets of nonzero elements oA

andB = ⋂
λ∈Λ ASλ , then

B =
⋂

{AP : P ∈ SpecA andP ∩ Sλ = ∅ for someλ ∈ Λ}.

ThusB is a sublocalization overA if and only if

B =
⋂

{AP : P ∈ SpecA andB ⊆ AP }.

In contrast with this characterization of a sublocalization, the condition that for
P ∈ SpecA eitherPB = B or B ⊆ AP is, in general, stronger than the sublocalizat
property. Indeed, by [32, Theorem 1], this latter property is equivalent to flatnessB

over A. Thus every flat overring is a sublocalization. Hence every flat overring o
integrally closed domain is again integrally closed [32, Corollary, p. 797]. Also f
Richman’s characterization thatB is a flat overring ofA iff for each Q ∈ SpecB, we
haveBQ = AQ∩A [32, Theorem 2], it follows that ifB is a quasilocal flat overring ofA,
thenB is a localization ofA.

(3) A useful observation is that if an overringB ⊆ K of A has one of the properties o
being flat, well-centered, a localization, or a sublocalization overA, then for each subrin
C of B with A ⊆ C, it follows that B as an extension ofC is, respectively, flat, well
centered, a localization, or a sublocalization. This is easily seen in each case.

(4) If B is a flat overring ofA andC is a subring ofB with A ⊆ C such thatB is
integral overC, thenC = B. For in this caseB is a flat integral overring ofC, so by [32,
Proposition 2],C = B.

(5) The localization, well-centered and flatness properties are transitive in the sen
if B is an overring ofA andC is an overring ofB, then one of these properties holding
B overA and forC overB implies the property also holds forC overA.

(6) The localization and flatness properties also behave well with respect to comp
in the following sense: for an arbitrary overringC ⊆ K of A, if B is a localization or a fla
overring of A, thenC[B] is, respectively, a localization or a flat overring ofC. For if
B = S−1A, thenC[B] = S−1C, while for flatness ifQ ∈ SpecC[B] andP = Q ∩ B, then
BP = AP∩A impliesC[B]Q = CQ∩C .

It would be interesting to know precise conditions for a Noetherian integral do
to admit a non-Noetherian sublocalization overring. In Corollary 2.8, we describ
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class of Noetherian domainsA for which each sublocalization overA is a localization
of A. In particular, a Noetherian domain in this class does not admit a non-Noeth
sublocalization overring.

We begin with more general considerations. We use RadI to denote the radical of a
idealI .

Discussion 2.2. If R is a ring, we defineP ∈ SpecR to be anassociated prime of an ideal
I of R if there existsa ∈ R such thatP is a minimal prime over(I :R a) = {r ∈ R: ra ∈ I }
[4, p. 289], [21, p. 92], [5]. An integral domainA has the representation

A =
⋂

{AP : P is an associated prime of a principal ideal ofA}

[5, Proposition 4]. Moreover, if each principal ideal ofA has only finitely many associate
primes, then by [5, Proposition 4] forS a multiplicatively closed subset ofA, we have

AS =
⋂

{AP : P is an associated prime of a principal ideal andP ∩ S = ∅}.

Lemma 2.3. Let P be a prime ideal of an integral domain A. Then the following three
properties are equivalent:

(1) For each family Q of prime ideals of A, if P ⊆ ⋃
Q∈QQ, then P ⊆ Q for some Q ∈Q.

(2) For each family Q of minimal primes over principal ideals of A, if P ⊆ ⋃
Q∈Q Q, then

P ⊆ Q for some Q ∈Q.
(3) P is the radical of a principal ideal.

Proof. (1⇒ (2) obvious.
(2) ⇒ (1). Let P ⊆ ⋃

Q∈QQ, whereQ is a set of prime ideals. ThusP is contained in
the union of the setM of all minimal primes over principal ideals contained in one of
primesQ ∈ Q. HenceP is contained in some prime inM which is contained in a prim
Q ∈Q.

(1) ⇒ (3). Let Q be the set of prime ideals ofA that do not containP . Thus
P �

⋃
Q∈QQ. Let c be an element inP \ ⋃

Q∈QQ. SinceP andAc are contained in
the same prime ideals, it follows thatP = Rad(Ac).

(3) ⇒ (1). Assume thatP = Rad(Ac) for some elementc ∈ A. Let Q be a family of
prime ideals ofA so thatP ⊆ ⋃

Q∈Q Q. Thusc ∈ Q for some prime idealQ ∈ Q, which
implies thatP ⊆ Q. ✷

We generalize below the theorem for Dedekind domains stated in [11, p. 257] (see

Theorem 2.4. Let A be an integral domain with field of fractions K, and let P be a
set of prime ideals in A. Consider the sublocalization B = ⋂

P∈P AP . The following are
equivalent:

(1) B is a localization of A.
(2) If x ∈ K \ A, and (A :A x) ⊆ ⋃

P∈P P then (A :A x) ⊆ P for some P ∈ P .
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Moreover, if each principal ideal of A has only finitely many associated primes, then the
following condition is equivalent to the two conditions above:

(3) If Q is an associated prime of a principal ideal such that Q ⊆ ⋃
P∈P P , then Q ⊆ P

for some P ∈ P .

Proof. (1) ⇒ (2). Assume thatB = AS for some multiplicative subsetS of A. Let x ∈ K

such that(A :A x) ⊆ ⋃
P∈P P , thus(A :A x)∩S = ∅, hencex /∈ AS = B. Thus there exist

a primeP ∈P such thatx /∈ AP . It follows that(A :A x) ⊆ P .
(2) ⇒ (1). Let S = A \ (

⋃
P∈P P). We prove thatB = AS . If s ∈ S, thens is a unit

in AP for all P ∈ P , hences is a unit inB. It follows thatAS ⊆ B. On the other hand le
b ∈ B \ A, thus(A :A b) � P for all P ∈ P . By assumption(A :A b) �

⋃
P∈P P), that is,

(A :A b) ∩ S �= ∅. It follows thatb ∈ AS .
Assume now that each principal ideal ofA has only finitely many associated primes.
(2) ⇒ (3). Since principal ideals inA have only finitely many associated primes,

associated prime of a principal ideal is of the form Rad(A :A x) for somex ∈ K [17,
Proposition 3.5].

(3) ⇒ (2). Let x ∈ K such that(A :A x) ⊆ ⋃
P∈P P . By assumption, there are on

finitely many prime idealsQ1, . . . ,Qn minimal over(A :A x). If none of the primesQi

is contained in
⋃

P∈P P , then choose an elementti ∈ Qi \ ⋃
P∈P P for eachi. Thus for

some positive integerm, we have(
∏n

i=1 ti )
m /∈ ⋃

P∈P P , a contradiction. Hence at lea
one of the idealsQi is contained in

⋃
P∈P P , which implies that(A :A x) is contained in⋃

P∈P P . ✷
Theorem 2.5. Let A be an integral domain with field of fractions K . Each sublocalization
over A is a localization of A if and only if for each x ∈ K \ A, the ideal Rad(A :A x) is the
radical of a principal ideal.

Moreover, if each principal ideal of A has only finitely many associated primes, then
each sublocalization of A is a localization iff each associated prime of a principal ideal is
the radical of a principal ideal.

Proof. If each ideal of the form Rad(A :A x) is the radical of a principal ideal, then ea
sublocalization ofA is a localization by Theorem 2.4.

Conversely, assume that each sublocalization ofA is a localization ofA. Let x ∈ K \A.
By Theorem 2.4,(A :A x) is not contained in the union of the prime ideals not contain
(A :A x). Let c be an element in(A :A x) that does not belong to this union. Thus(A :A x)

andAc are contained in the same prime ideals, which implies that Rad(A :A x) = Rad(Ac).
Assume now that each principal ideal ofA has only finitely many associated primes, a

that each sublocalization ofA is a localization. LetP be a prime associated with a princip
ideal of A. By Theorem 2.4,P is not contained in a union of primes not containingP .
Hence, by Lemma 2.3,P is the radical of a principal ideal.

Conversely, if each principal ideal ofA has only finitely many associated primes a
if each associated prime of a principal ideal is the radical of a principal ideal, then
sublocalization ofA is a localization by Theorem 2.4.✷
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We apply the above results to various classes of integral domains. In Corollary 2
describe the class of Mori domains and the class of semi-Krull domains for which
sublocalization is a localization. In Corollary 2.8 we characterize the Noetherian do
having this property.

We recall thatA is aMori domain if A satisfies the ascending chain condition on integ
divisorial ideals [2]. In particular, a Mori domain satisfies the ascending chain conditi
principal ideals (a.c.c.p.). Examples of Mori domains include factorial and Krull dom
as well of course as Noetherian domains. An integral domainA is semi-Krull [23], if
A = ⋂

P AP , whereP ranges over the set of height-one primes ofA, this intersection
has finite character, and for each height-one primeP , every nonzero ideal ofAP contains
a power ofPAP .

A nonzero prime ideal of a Mori domain or a semi-Krull domain is an associ
prime of a principal ideal iff it is a prime divisorial ideal (see [2, Theorem 3.2] and
Theorem 1.7]). Thus by Discussion 2.2, ifAS is a localization of a Mori domainA or a
semi-Krull domainA, thenAS = ⋂

P∈P AP , whereP is the set of prime divisorial ideal
P ∈ SpecA such thatP ∩ S = ∅. Therefore ifB is a sublocalization overA, thenB has
the formB = ⋂

P∈P AP , whereP is a set of prime divisorial ideals inA.
Theorem 2.4 implies:

Corollary 2.6. Let A be a Mori domain or a semi-Krull domain and let P be a set of prime
ideals in A. Consider the sublocalization B = ⋂

P∈P AP . The following are equivalent:

(1) B is a localization of A.
(2) If Q is a prime divisorial ideal of A and Q ⊆ ⋃

P∈P P , then Q ⊆ P for some P ∈P .

Theorem 2.5 implies:

Corollary 2.7. Let A be a Mori domain or a semi-Krull domain. Each sublocalization over
A is a localization of A if and only if each prime divisorial ideal of A is the radical of a
principal ideal.

Corollary 2.8. Let A be a Noetherian integral domain. Each sublocalization over A is
a localization of A if and only if each associated prime of a principal ideal of A is the
radical of a principal ideal. In particular, if A has these equivalent properties, then nonzero
principal ideals of A have no embedded associated primes.

A Krull domain has torsion divisor class group iff each prime divisorial ideal (tha
prime ideal of height one) is the radical of a principal ideal. Hence Corollary 2.7 imp

Corollary 2.9. A Krull domain A has torsion divisor class group if and if every
sublocalization over A is a localization of A.

Corollary 2.10. Let A be a one-dimensional integral domain. If each maximal ideal of A

is the radical of a principal ideal, then every sublocalization over A is a localization of A.
The converse holds if A has Noetherian prime spectrum.
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Proof. A commutative ring has Noetherian spectrum iff each prime ideal is the ra
of a finitely generated ideal [27]. Thus a one-dimensional integral domain has Noet
spectrum iff each nonzero element is contained in only finitely many maximal idea
principal ideals have only finitely many associated primes. Thus Corollary 2.10 fo
from Theorem 2.5. ✷
Question 2.11. What (Noetherian) integral domainsA have the property that eve
sublocalization extension is flat?

For a one-dimensional integral domain with Noetherian spectrum we give in T
rem 2.12 a complete answer to Question 2.11.

Theorem 2.12. Suppose A is a one-dimensional integral domain with Noetherian
spectrum. Then every sublocalization over A is flat over A.

Proof. LetB be a sublocalization overA. We may assume thatB � K, whereK is the field
of fractions ofA. By Discussion 2.1(2), there exists a family{Pα} of prime ideals ofA such
thatB = ⋂

α APα . Since dimA = 1, we may assume that eachPα is a maximal ideal ofA.
Let Qα = PαAPα ∩ B. We haveBQα = APα andB = ⋂

α BQα . SinceA has Noetherian
spectrum, the family{BQα } has finite character in the sense that a nonzero elementB

is a unit in all but finitely many of theBQα . To prove thatB is flat overA, we show for
each maximal idealQ of B thatBQ = AQ∩A. Let P = Q ∩ A and letS = A \ P . By [18,
Lemma 1.1] we haveS−1B = ⋂

α(S−1BQα). SinceBQα is a one-dimensional quasiloc
domain,S−1BQα is eitherBQα if S ∩ Qα �= ∅ or K otherwise. SinceAPα = BQα , we see
thatQα is the unique prime ofB lying overPα . Thus ifQ �= Qα , thenS ∩Qα is nonempty
andS−1BQα = K. If this were true for eachα, thenS−1B = ⋂

α S−1BQα = K, but clearly
S−1B ⊆ BQ, a contradiction. HenceQ = Qα for someα and thereforeAP = BQ. ✷

3. Properties of flat and well-centered overrings

Richman observes [32, Theorem 3] that a flat overring of a Noetherian dom
Noetherian. There exist Noetherian integral domains with non-Noetherian sublocaliz
that are ideal transforms ([7] and [8, Theorem 3.2]). IfB is a non-Noetherian idea
transform of a Noetherian domainA, thenB is not flat overA by the result of Richman
mentioned above. Proposition 3.1 shows thatB with these properties also fails to be we
centered onA.

Proposition 3.1. A well-centered extension of a Noetherian domain is Noetherian.

Proof. If B is well-centered onA, then every ideal ofB is the extension of an idea
of A. Thus if A is Noetherian, then every ideal ofB is finitely generated andB is also
Noetherian. ✷
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We observe in Theorem 3.6 that a finitely generated well-centered overring
integrally closed domain is a flat extension. In the proof of this result we use Propositi
which holds for arbitrary well-centered extension rings.

Proposition 3.2. Let S be a well-centered extension ring of a ring R. If M is a maximal
ideal of R such that MS �= S, then MS is a maximal ideal of S.

Proof. We have a natural embeddingR/M ↪→ S/MS. Moreover the fact thatS is well-
centered overR implies thatS/MS is well-centered overR/M. Since a well-centere
extension of a field is a field,S/MS is a field andMS is a maximal ideal ofS. ✷

For an extension ringS of a ring R, we consider the following condition that is
general weaker than the well-centered property.

Definition 3.3. An extension ringS of a ringR is said to bealmost well-centered on R

if for eachs ∈ S there exists a positive integern depending ons and an elementu ∈ U(S)

such thatusn ∈ R.

The following remark concerning almost well-centered extensions is clear.

Remark 3.4. If S is an almost well-centered extension ring of a ringR, then for each idea
J of S we have RadJ = Rad(J ∩ R)S.

In view of Remark 3.4, we have the following analogue of Proposition 3.2.

Proposition 3.5. Let S be an almost well-centered extension ring of a ring R. If M is a
maximal ideal of R such that MS �= S, then RadMS is a maximal ideal of S.

Theorem 3.6. If B is a finitely generated almost well-centered overring of A and if A is
integrally closed in B, then B is flat over A. In particular, every finitely generated almost
well-centered overring of an integrally closed domain A is flat over A.

Proof. Let Q be a maximal ideal ofB and letP = Q ∩ A. Then Rad(PB) = Q by
Proposition 3.5. The Peskine–Evans version of Zariski’s Main Theorem [9,30] im
there existss ∈ A\P such thatAs = Bs . In particular,AP = BQ. ThusB is flat overA. ✷
Proposition 3.7. If B = A[u] is a simple overring of A, where u is a unit of B, and if A is
integrally closed in B, then B is a localization of A.

Proof. Sinceu−1 ∈ B it follows that u−1 is integral overA [19, Theorem 15]. Thu
u−1 ∈ A andB is a localization ofA. ✷
Corollary 3.8. A simple almost well-centered overring of an integrally closed domain is a
localization.
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Proof. Let B = A[b] be a simple almost well-centered overring of an integrally clo
domainA. By Theorem 3.6,B is flat overA. SinceB is almost well-centered overA,
there exist a positive integern and a unitu ∈ U(B) such thatubn = a ∈ A. ThusB is a flat
integral overring ofA[bn] = A[u]. By Discussion 2.1(4),B = A[u] andB is a localization
of A. ✷

Theorem 3.6 and Corollary 3.8 may fail ifA is not integrally closed. We us
Proposition 3.9 to show in Example 3.10 the existence of Noetherian integral do
that admit simple proper well-centered integral overrings. Corollary 2.8 shows that
integral domains having this property there are principal ideals with embedded asso
prime ideals.

Proposition 3.9. Let B be an integral domain of the form B = K + M, where K is a field
and M is a nonzero maximal ideal of B . If A is a subring of B such that M ⊂ A, then B is
well-centered on A.

Proof. Letb ∈ B. Thenb = k+m, wherek ∈ K andm ∈ M. If k = 0, thenb ∈ A. If k �= 0,
thenk is a unit ofB anda := b/k = 1+ (m/k) ∈ A. HenceB is well-centered overA. ✷
Example 3.10. A simple well-centered integral (thus not flat) proper overringB of a
Noetherian integral domainA such thatB is a sublocalization ofA. Moreover, each heigh
one prime ofA is the radical of a principal ideal.

Let E = F(c) be a simple proper finite algebraic field extension, letB be the localized
polynomial ringE[X,Y ](X,Y ), letM = (X,Y )B, and letA = F +M. ThenA is Noetherian
andB = A[c] is a simple, proper integral extension ofA. HenceB is not flat as anA-mo-
dule [32, Proposition 2]. Proposition 3.9 implies thatB is well-centered onA.

SinceB is factorial,B is the intersection of the ringsBQ asQ ranges over the nonze
principal prime ideals ofB. For suchQ we haveQ � M ⊂ A, thusB ⊆ AQ, soBQ = AQ.
It follows that B is a sublocalization overA. SinceB is a unique factorization domain
each height-one prime ofB is principal. SinceM ⊂ A, each height-one prime ofA is the
radical of a principal ideal. ✷

The following example whereB is not well-centered onA illustrates restrictions on
generalizing Proposition 3.9.

Example 3.11. Integral domains of the formA = A0 + M ⊆ B = B0 + M, whereA0,B0
are subrings ofA andB, respectively, andM is a maximal ideal ofB such thatB is not
almost well-centered onA.

Let X be an indeterminate over the fieldQ of rational numbers and letB = Z[X] +
(X2 + 1)Q[X]. ThenM := 2B = 2Z[X] + (X2 + 1)Q[X] is a maximal ideal ofB, and
B = Z[X] + M. Let A = Z + M. The domainB fails to be almost well-centered onA
since the only units ofB are 1 and−1 and no power ofX ∈ B is in A. Hence no power o
X ∈ B is an associate inB with an element ofA. ✷
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Discussion 3.12. Let B be an overring of an integral domainA and letS = U(B) ∩ A.
ThenB = BS is a well-centered overring ofAS if and only if B is a well-centered overrin
of A. Moreover,U(AS) = U(BS) ∩ AS , andB is a localization ofA if and only if AS = B.
Thus in considering the question of whether an overringB of an integral domainA is a
localization ofA, by passing from the ringA to its localizationAU(B)∩A, we may assum
thatU(B)∩A = U(A). The localization question is then reduced to the question of whe
A = B. In general, ifB is a well-centered overring ofA which properly containsA, then
U(A) � U(B). For if b ∈ B \ A and u ∈ U(B) is such thatub ∈ A, then u−1 /∈ A so
u ∈ U(B) \ U(A).

If A is a Dedekind domain, then every overringB of A is a flatA-module, thus a sub
localization overA. Moreover, we have:

Proposition 3.13. Let A be a Dedekind domain. The following conditions are equivalent:

(1) A has torsion divisor class group.
(2) Every overring of A is a localization of A.
(3) Every overring of A is well-centered on A.
(4) A has no proper simple overring with the same set of units.

Proof. (1) ⇔ (2). By Corollary 2.9, (2) holds if and only if each maximal ideal ofA is the
radical of a principal ideal, and this is equivalent to (1).

It is clear that(2) ⇒ (3) and(3) ⇒ (4). Thus it remains to show:
(4) ⇒ (2). Assume that (2) does not hold. ThenA has a maximal idealP that is not the

radical of a principal ideal. We claim thatB = A[P−1] is a simple flat overring ofA with
U(B) = U(A). Indeed, ifb ∈ P−1\A, we haveB = A[b] since both of these rings are equ
to

⋂{AQ: Q ∈ SpecA andQ �= P }. Suppose there exists an elementu ∈ U(B) \ U(A).
Thenu is not a unit inAP , but eitheru or u−1 is in AP . We may assume thatu ∈ AP , thus
u ∈ PAP . Thenu ∈ A and RaduA = P , a contradiction. ✷

We show in Theorem 4.5 that ifB is a finitely generated overring of a Dedeki
domainA, then B is a localization ofA iff B is well-centered onA iff B is almost
well-centered onA. However, for overrings of a Dedekind domain having nontors
class group, we present in Theorem 3.16 examples of well-centered overrings that
localizations and examples of almost well-centered overrings that are not well-cente

If A is a Dedekind domain, we denote its class group byC(A); if I is a nonzero
fractional ideal ofA, we denote the ideal class ofI by CA(I), and if P is a subset o
MaxA, we denote the set{CA(P ) |P ∈ P} by CA(P). The complement of a subsetP of
MaxA is denoted byPc. We denote the submonoid generated by a subsetS of a monoid
by M(S), and the subgroup generated by a subsetS of a group byG(S). Thus, if S is a
set of nonzero fractional ideals of a Dedekind domainA viewed as a subset of the ide
monoid ofA, we haveM(CA(S)) = CA(M(S)).

We recall that ifA is a Dedekind domain, andB is an overring ofA, then there exists
unique set of maximal idealsP in A such thatB = ⋂{AP : P ∈ P}. The overringB of A
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xists
can also be described as the compositum of the overringsA[Q−1] such thatQ ∈ MaxA\P .
Thus for eachQ ∈ MaxA we haveQB = B if and only if Q ∈ Pc.

Proposition 3.14. Let A be a Dedekind domain with field of fractions K and let B � K be
an overring of A, thus

B =
⋂

{AP : P ∈P}

for a unique subset P of MaxA. Let J be a nonzero ideal of B . Then J = IB where I is
an ideal of A belonging to M(P). Moreover, we have

(1) J is a principal ideal of B ⇔ CA(I) ∈ G(CA(Pc)).
(2) J is an extension of a principal ideal of A ⇔ CA(I) ∈ −M(CA(Pc)).

Proof. Part (1) follows from [6, Corollary 3]. For part (2), assume first that there e
a principal idealI0 of A such thatIB = I0B. SinceI ∈ M(P), it follows thatI0 = II1,
whereI1 ∈M(Pc). ThusCA(I) = −CA(I1) ∈ −M(CA(Pc)).

Conversely, letCA(I) ∈ −M(CA(Pc)). There exists an idealI1 ∈M(P c) such thatII1
is a principal ideal ofA. Also J = (II1)B. ✷

Proposition 3.14 implies:

Corollary 3.15. Let A be a Dedekind domain with field of fractions K and let B � K be
an overring of A, thus

B =
⋂

{AP : P ∈P}

for a unique subset P of MaxA. Then

(1) B is a well-centered extension of A ⇔ (CAM(P)) ∩ G(CA(Pc)) ⊆ −CA(M(Pc)).
(2) B is an almost well-centered extension of A ⇔ each element of M(CA(P)) ∩

G(CA(Pc)) has a positive integer multiple in −M(CA(Pc)).

Theorem 3.16.

(1) There exists a Dedekind domain A having a well-centered overring that is not a
localization.

(2) There exists a Dedekind domain A having an almost well-centered overring that is
not well-centered.

Moreover, in each case the domain A can be chosen so that it has exactly two almost
well-centered overrings that are not localizations of A, these two overrings being also the
unique almost well-centered overrings D of A such that U(D) ∩ A = U(A).
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Proof. We will use the well known result of Claborn [6] that every Abelian group is
ideal class group of a Dedekind domain, along with the fact that for a countably gen
Abelian groupG and a nonempty subsetS of G, there exists a Dedekind domainA with
class groupG such thatS = {C(P ): P ∈ MaxA} if and only if S generatesG as a monoid
[14, Theorem 5].

LetA be a Dedekind domain having ideal class group the infinite cyclic groupZ. Define

B =
⋂{

AQ: Q ∈ MaxA andC(Q) � 0
}
.

Since the set{C(P ): P ∈ MaxA} generatesZ as a monoid, there existsP ∈ MaxA

with C(P ) > 0. ThusB is a proper overring ofA. For a nonzero nonunita ∈ A, if
aA = P

e1
1 · · ·Pen

n is the factorization of the principal idealaA as a product of maxima
ideals, then 0= e1C(P1) + · · · + enC(Pn). ThereforeC(Pi) � 0 for at least one of thePi .
It follows that A \ U(A) = ⋃{Q: Q ∈ MaxA andC(Q) � 0}. Since the maximal ideal
of B lie over the idealsQ of A with C(Q) � 0, we see thatB \ U(B) = ⋃{QB: Q ∈
MaxA andC(Q) � 0}, henceU(B) ∩ A = U(A).

By Corollary 3.15,B is almost well-centered onA: indeed, since there existsP ∈ Pc

with CA(P) > 0, each element ofM(CA(P)) has a power in−M(CA(Pc)). Moreover, if
there existsP ∈ MaxA with C(P ) = 1, by Corollary 3.15,B is well-centered onA.

To obtain an example whereB is almost well-centered but not well-centered onA we
argue as follows. By [14, Theorem 8], there exists a Dedekind domainA with class group
Z such that{C(P ): P ∈ MaxA} = {−1,2,3}. The overring

B =
⋂{

AQ: Q ∈ MaxA andC(Q) � 0
}

is a principal ideal domain, since the primesP ∈ MaxA such thatPB = B generateZ as a
group. Hence forQ ∈ MaxA with C(Q) = −1, we haveQB = bB is a principal ideal tha
is not generated by an element ofA.

Next we show that for each Dedekind domainA with ideal class groupZ as constructed
above, there are precisely two proper almost well-centered overringsD of A such that
U(D)∩A = U(A). These are the overringB as defined above andC = ⋂{AP : C(P ) � 0}.
A proof that A � C, C is almost well-centered overA, and thatU(C) ∩ A = U(A) is
similar to that given above to showB has these properties. Moreover, ifD is an overring
of A such thatU(D) ∩ A = U(A), then eitherD ⊆ B or D ⊆ C. For otherwise, eithe
there exists aQ ∈ MaxA with C(Q) = 0 such thatQD = D or there existP,Q ∈ MaxA

with C(P ) = r > 0, C(Q) = −s < 0 andPD = QD = D. In the first case,Q = aA is
principal anda ∈ U(D) ∩ A \ U(A). In the second caseP sQr = aA is principal and again
a ∈ U(D) ∩ A \ U(A).

It remains to show that ifA � D � B or A � D � C, thenD is not almost well-centere
overA. If A � D � B, then the ideal class group ofD is a proper homomorphic image ofZ
and hence a finite cyclic group, thus each nonzero ideal ofD has a power that is a princip
ideal. SinceD � B, there existsP ∈ MaxA with C(P ) < 0 such thatPD ∈ MaxD. By
Proposition 3.14(2), no power ofPD is an extension of a principal ideal ofA. Therefore
D is not well-centered onA. The proof that an overringD of A with A � D � C is not
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well-centered onA is the same. ThusB andC are the unique proper almost well-cente
overrings ofA such that every nonunit ofA remains a nonunit in the overring.

If A has no principal maximal ideals, thenB andC as defined in the previous paragra
are the unique almost well-centered overrings ofA that are not localizations ofA. For
if D is a proper well-centered overring ofA distinct fromB andC, then there exists
localizationE of A such thatA � E ⊆ D. SinceA has no principal maximal ideals, th
ideal class group ofE is a proper homomorphic image ofZ. ThereforeE has finite class
group and every overring ofE is a localization ofE. ThusD is a localization ofE andE

is a localization ofA, soD is a localization ofA. ✷
Proposition 3.17. Let A be a Dedekind domain such that each ideal class in the class
group C(A) of A contains a maximal ideal. If C(A) is torsionfree, then each overring of
A is an intersection of two principal ideal domains that are well-centered overrings of A.

Proof. Let B = ⋂
P∈P P be an overring ofA, whereP is a set of maximal ideals ofA.

SinceC(A) is torsionfree it can be linearly ordered. With respect to a fixed linear ord�
on C(A), defineB+ = ⋂

{P∈P andCA(P )�0} AP andB− = ⋂
{P∈P andCA(P )�0} AP . Then

B = B+ ∩ B−, the empty intersection being defined as the field of fractions ofA. Since
each ideal class ofA contains a prime ideal, Proposition 3.14 implies thatB+ andB−
are well-centered overA and that each prime ideal ofB+ andB− is the extension of a
principal ideal ofA. ThusB+ andB− are principal ideal domains that are well-cente
overrings ofA with B = B+ ∩ B−. ✷

In Section 4 we use the following well-known general result characterizing
overrings, see, for example, [1, Theorem 1]. The implication(1) ⇒ (2) in Proposition 3.18
holds without assuming thatB is an overring ofA, cf. [4, Exercise 22, p. 47].

Proposition 3.18. Assume that B is an overring of an integral domain A and that S ⊆ B

is such that B = A[S]. Then the following conditions are equivalent:

(1) B is a flat extension of A.
(2) For any element s ∈ S we have (A :A s)B = B .

If B is well-centered overA, then B = A[U(B)]. Thus the following corollary o
Proposition 3.18 is immediate.

Corollary 3.19. Assume that B is a well-centered overring of the integral domain A. Then
the following conditions are equivalent:

(1) B is a flat extension of A.
(2) For each unit u ∈ B we have (A :A u)B = B .

We recall that an integral domainB is said to beArchimedean if for each nonunitb ∈ B

we have
⋂∞

n=1 bnB = (0).
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Remark 3.20. If B is a localization of an Archimedean domainA such that the conducto
of B in A is nonzero, thenB = A.

Indeed, supposeB = AS and let 0�= a ∈ (A :A B). Then for eachs ∈ S we have
a/sn ∈ A for all n � 1. SinceA is Archimedean, it follows thats is a unit inA. Hence
B = A.

Proposition 3.21. Suppose B is an overring of a Mori integral domain A. If the conductor
of B in A is nonzero and B is flat over A, then A = B .

Proof. SinceA is Mori and (A :A B) �= 0, there exists a finite subsetF of B such that
(A :A B) = (A :A F). SinceB is flat overA, Proposition 3.18 implies that(A :A F)B = B,
hence(A :A B) = (A :A B)B = B. ThereforeA = B. ✷
Example 3.22. If A is not Mori, the conclusion of Proposition 3.21 need not hold.

Indeed, letk be a field and letR = k[X,Y ] be a polynomial ring overk. Then
B := R[1/Y ] is a localization ofA := R + XB. The conductor ofB in A containsXB

and hence is nonzero. Moreover,A � B sinceY−1 ∈ B \ A. ✷
The following structural result is proved by Querré in [31].

Proposition 3.23 [31]. If A is a Mori domain and B is a sublocalization over A, then B is
also Mori. In particular, a flat overring of a Mori domain is again a Mori domain.

We observe in Proposition 3.1 that a well-centered overring of a Noetherian dom
Noetherian. Example 3.24 shows that in general the Mori property is not preserved b
centered overrings. Indeed, Example 3.24 establishes the existence of a polynomiaA

over a field and a well-centered overringB of A that is not Archimedean. In particular,B

fails to satisfy a.c.c.p. and therefore is not Mori.

Example 3.24. A well-centered overring of a factorial domain (even of a polynomial r
over a field) is not necessarily Archimedean.

Let k be a field and leta, c be two independent indeterminates overk. Define

T0 = k
[
a, c,

{ a

cn
: n � 1

}]
.

Proceeding inductively, define integral domainsTm for m � 1 as follows: letVm = {vm,t : t

is a nonzero nonunit inTm−1} be a set of independent indeterminates overTm−1 and define

Tm := Tm−1

[{
vm,t ,

1

vm,t

: vm,t ∈ Vm

}]
.

ThusTm is a domain extension ofTm−1 obtained by adjoining the indeterminates inVm

along with their inverses. LetV = ⋃∞
m=1 Vm and defineW to be the union of the set{a, c}
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with the set{tvm,t : vm,t ∈ V }. The elements ofW are algebraically independent overk.
ThusA := k[W ] is a polynomial ring over the fieldk. DefineB := ⋃∞

m=1 Tm. SinceT0 is
an overring ofk[a, c], we see thatB is an overring ofA. Since every element ofTm−1 is
an associate inTm to an element ofA, it follows thatB is well-centered onA. The domain
B is not Archimedean sincea/cn ∈ B for all positive integersn althougha, c ∈ B andc is
not a unit inB; indeed,c /∈ U(T0) andT0 is a retract ofB under the retraction overT0 that
sends eachv ∈ V to 1. ✷

4. Finitely generated well-centered extensions

The structure of a simple flat extensionS = R[s] = R[X]/I of a commutative ringR is
considered in [28,29,32–34].Richman in [32, Proposition 3] shows that ifA is an integrally
closed domain andB = A[a/b] is a simple flat overring ofA, then(a, b)A is an invertible
ideal ofA. We observe in Theorem 4.1 that a simple flat overringB generated by a unit o
B is a localization ofA. It follows (Corollaries 4.2 and 4.3) that well-centered simple
overrings are localizations.

Theorem 4.1. Let A be an integral domain and let B = A[u] be a simple flat overring of A,
where u is a unit of B . There exists a positive integer m such that u−r ∈ A for all integers
r � m. Thus B is a localization of A.

Proof. Sinceu−1 ∈ A[u], the elementu−1 is integral overA, henceA[u−1] is a finitely
generatedA-module. SinceB is a flat extension ofA, we have(A :A A[u−1])B = B.
Hence there existc0, . . . , cm ∈ (A :A A[u−1]) with 1 = c0 + c1u + · · · + cmum. Thus for
each integerr � m we have

u−r = c0u
−r + c1u

−r+1 + · · · + cmu−r+m ∈ A.

In particular,u−m,u−m−1 ∈ A. This implies thatB = A[um+1] is a localization ofA. ✷
Corollary 4.2. Let B = A[b] be a simple flat overring of an integral domain A. The
following are equivalent.

(1) B is a localization of A.
(2) B is well-centered on A.
(3) B is almost well-centered on A.
(4) The element b is associate in B with an element of A.
(5) Some power of b is associate in B with an element of A.

Proof. It is enough to prove(5) ⇒ (1). Assume for some positive integern thatbn = au

with a ∈ A andu ∈ U(B). Thenbn ∈ A[u] implies B is a flat integral overring ofA[u].
ThereforeB = A[u] [32, Proposition 2]. Hence by Theorem 4.1,B is a localization
of A. ✷

As an immediate consequence of either Theorem 4.1 or Corollary 4.2 we have:
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Corollary 4.3. If B is a simple flat well-centered overring of an integral domain A, then B

is a localization of A.

We present several additional corollaries of Theorem 4.1 concerning finitely gen
flat overrings.

Corollary 4.4. Let B be a finitely generated flat overring of an integral domain A and let
A′ denote the integral closure of A in B . If B is a localization of A′, then B is a localization
of A.

Proof. SinceB is finitely generated overA, if B is a localization ofA′, thenB = A′[u]
whereu−1 ∈ A′. It follows thatB = A[u][A′] is an integral flat overring ofA[u]. Therefore
B = A[u]. By Theorem 4.1,B is a localization ofA. ✷
Theorem 4.5. Let A be a Prüfer domain with Noetherian spectrum ( for example,
a Dedekind domain), and let B be a finitely generated overring of A. The following are
equivalent.

(1) B is a localization of A.
(2) B is well-centered on A.
(3) B is almost well-centered on A.

Proof. It is enough to prove(3) ⇒ (1). Assume thatB is almost well-centered onA.
By [13, Corollary 5.6],B = A[b] is a simple extension. Since every overring of a Prü
domain is flat, we obtain by Corollary 4.2 thatB is a localization ofA. ✷

In Proposition 3.13, we present examples of Dedekind domainsA ⊂ B such thatB is a
proper simple flat overring ofA andU(A) = U(B). Example 4.6 provides a more explic
construction of this type and also shows that the condition thatu is a unit inB is essentia
in Theorem 4.1.

Example 4.6. An example of a simple flat overringB of an integrally closed domainA
such thatA � B andU(A) = U(B).

Let X,Y andZ be indeterminates over a fieldk. Set

A = k

[
X,Y,XZ,YZ,

1

X + YZ

]
,

B = k

[
X,Y,Z,

1

X + YZ

]
.

ClearlyA andB have the same field of fractionsk(X,Y,Z) andB = A[Z]. To see tha
Z ∈ B \ A, observe that thek[Z]-algebra homomorphism defined by settingY = 1/Z and
X = 0 mapsA to k. AlsoU(A) = U(B) = {a(X + YZ)m | a ∈ k \ {0}, m ∈ Z}. SinceA is
a localization of the integrally closed domaink[X,Y,XZ,YZ], we see thatA is integrally
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closed. Finally,B is a flat extension ofA by Proposition 3.18 sinceXZ,YZ ∈ A and the
ideal(X,Y )B = B.

Question 4.7. Under what conditions onA is every finitely generated well-center
overring ofA a localization ofA?

If A is Noetherian, it follows from Corollary 4.16 that every finitely generated flat w
centered overring ofA is a localization ofA. In a situation where Question 4.7 has
positive answer, it follows that the finitely generated overring is actually a simple exten
for if B is a finitely generated overring ofA that is a localization ofA, thenB is a simple
extension ofA.

Remark 4.8. Let B = A[u,v] be a flat overring of a domainA, wherev ∈ U(B). Then
B = A[u,1/f (u)] for some polynomialf (X) ∈ A[X].

Indeed,B is a localization ofA[u].

Proposition 4.9. Let B = A[u,1/u] be a flat overring of a domain A, where u ∈ U(B).
Then B = A[u + 1/u] . Moreover, if B is well-centered over A, then B is a localization
of A.

Proof. Let C = A[u + 1/u]. Since B = C[u] = C[1/u], we obtain by Theorem 4.
that u−n,un ∈ C for sufficiently largen. Henceu,1/u ∈ C, which impliesC = B. By
Corollary 4.2, ifB is well-centered overA, thenB is a localization ofA. ✷

We extend Proposition 4.9 as follows:

Proposition 4.10. Let A be an integral domain and let B = A[u,1/f (u)] be a flat well-
centered overring of A, where f (X) is a monic polynomial in A[X], and u,f (u) ∈ U(B).
Then B is a localization of A.

Proof. Sincef is monic,B is integral overC := A[f (u),1/f (u)]. ThusB is flat and
integral overC and thereforeB = C. Thus B = C is flat and well-centered overA.
Proposition 4.9 implies thatB = A[f (u) + 1/f (u)] and thatB is a localization ofA. ✷
Question 4.11. Under what conditions on an integral domainA is every flat overring ofA
well-centered onA?

Discussion 4.12. Akiba in [1] constructs an interesting example whereA is a 2-dimensiona
normal excellent local domain,P is a height-one prime ofA that is not the radical of a
principal ideal, andB = ⋃∞

n=1 P−n is the ideal transform ofA at P . ThusB = ⋂
Q AQ,

where the intersection ranges over all the height-one primes ofA other thanP . Akiba
proves thatPB = B. It follows that B is flat and finitely generated overA, but not a
localization ofA.
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We observe thatB is not almost well-centered overA. Indeed, assume thatB is almost
well-centered overA, and letb ∈ B \ A. Thusubm ∈ A for some unitu of B andm � 1.
Henceu ∈ U(AQ) for each height-one primeQ �= P of A. SinceA is normal, we have
bm ∈ B \ A, thusbm /∈ AP . It follows thatu ∈ PAP . Thereforeu ∈ A and

√
uA = P . This

contradicts the fact thatP is not the radical of a principal ideal. We conclude thatB is not
almost well-centered onA.

We observe thatB is not a simple extension ofA. Moreover, for every nonzero nonun
b ∈ B we haveC := A + bB � B. This follows becausePB = B implies dimB = 1 and
dim(B/bB) = 0. However,C/bB ∼= A/(bB ∩ A) and dim(A/(bB ∩ A)) = 1.

Theorem 4.13. Let B be a well-centered overring of an integral domain A. If there exist
finitely many valuation overrings V1, . . . , Vn of A such that A = B ∩ V1 ∩ · · · ∩Vn, then B

is a localization of A.

Proof. ForS a multiplicatively closed subset ofA, we have

S−1A = S−1B ∩ S−1V1 ∩ · · · ∩ S−1Vn,

so by replacingA by its localization(U(B) ∩ A)−1A, we may assume thatU(B) ∩ A =
U(A). If B ⊆ Vi , thenVi may be deleted in the representationA = B ∩ (

⋂n
i=1 Vi). Thus

we may assume thatB � Vi for eachi. We prove that after these reductions we h
A = B, i.e., the set{Vi} is empty. Assume not, then for each 1� i � n choosebi ∈ B

such thatbi /∈ Vi . By [13, Lemma 5.4], there exist positive integerse1, . . . , en such that
b := b

e1
1 + b

e2
2 + · · · + b

en
n /∈ Vi , thusb−1 ∈ Vi for eachi = 1, . . . , n. SinceB is well-

centered overA, there existsu ∈ U(B) such thatub ∈ A. Sinceb /∈ Vi , we haveu ∈ Vi for
all i. Thereforeu ∈ B ∩ (

⋂n
i=1 Vi) = A. It follows thatu ∈ A∩U(B) = U(A) andu−1 ∈ A.

Henceb ∈ A, a contradiction. ✷
Lemma 4.14. Let B be a finitely generated flat overring of an integral domain A and let
C be an integral overring of A. The following conditions are equivalent.

(1) B is a localization of A.
(2) B is a localization of C ∩ B .

Proof. Clearly(1) ⇒ (2). Assume (2). ThenB = (B ∩ C)[u], whereu−1 ∈ B ∩ C. Since
B ∩ C is integral overA, it follows that B is flat and integral overA[u]. Therefore
B = A[u]. By Theorem 4.1,B is a localization ofA. ✷
Theorem 4.15. Let A be an integral domain for which the integral closure A′ has a
representation A′ = ⋂

V ∈V V , where V is a family of valuation overrings of A of finite
character. If B is a finitely generated flat well-centered overring of A, then B is a
localization of A.

Proof. SinceB is finitely generated overA, we haveB ⊆ V for all but finitely many
domainsV ∈ V . Let V1, . . . , Vn be the domains inV that do not containB. ThusA′ ∩ B =
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B ∩ (
⋂n

i=1 Vi). By Theorem 4.13,B is a localization ofA′ ∩ B. By Lemma 4.14,B is a
localization ofA. ✷

It is well known that the integral closure of a Noetherian domain is a Krull domain
(33.10)]. Therefore Corollary 4.16 is an immediate consequence of Theorem 4.15.

Corollary 4.16. Let A be an integral domain for which the integral closure A′ is a Krull
domain. If B is a finitely generated flat well-centered overring of A, then B is a localization
of A. In particular, a finitely generated flat well-centered overring of a Noetherian integral
domain A is a localization of A.

Discussion 4.17. Let A be an integral domain with field of fractionsK. SupposeB =
A[b1, . . . , bn] is a finitely generated overring ofA. Let Ij = (A :A bj ) be the denominato
ideal of bj and letI = ⋂n

j=1 Ij . The overringC := {x ∈ K: xIn ⊆ A for some integer
n � 1} is called theI -transform ofA. This construction was first introduced by Nag
[24] in his work on the 14th problem of Hilbert. It is clear thatB ⊆ C and thatC is
the IB-transform ofB. Nagata observes [24, Lemma 3, p. 58] that there is a one-to
correspondence between the prime idealsQ of C not containingI and the prime ideal
P of A not containingI effected by definingQ ∩ A = P . Moreover, it then follows tha
AP = CQ. In particular, if IB = B, then B = C is flat overA and there is a one-to
one correspondence between the prime idealsQ of B and the prime idealsP of A not
containingI , the correspondence defined byQ ∩ A = P . Thus if B = A[b1, . . . , bn] is a
flat overring ofA andP ∈ SpecA, then the following are equivalent:

(1) PB = B.
(2) P contains the idealIj = (A :A bj ) for somej ∈ {1, . . . , n}.
(3) P contains the idealI = ⋂n

j=1 Ij .

Theorem 4.18. Let B be a well-centered flat overring of an integral domain A. If there
exists a finite set F of height-one prime ideals of A such that A = B ∩ ⋂

P∈F AP , then B

is a localization of A.

Proof. SinceP ∈ F has height-one, forS a multiplicatively closed subset ofA either
S−1AP = AP or S−1AP = K, the field of fractions ofA. Therefore

S−1A = S−1B ∩
⋂
P

(
S−1AP

)
,

where the intersection is over allP ∈ F such thatP ∩ S = ∅. By replacingA by its
localization(U(B) ∩ A)−1A, we may assume thatU(B) ∩ A = U(A) and thatB � AP for
eachP ∈ F . After this reduction, we claim thatA = B, i.e., thatF = ∅. SupposeF �= ∅.
SinceB is flat overA, for eachP ∈ F we havePB = B. Let c be a nonzero element i⋂

P∈F P and consider the ringB/cB and its subringR = A/(cB ∩A). SincePB = B and
since every minimal prime of the ringR is the contraction of a prime ideal ofB/cB, we
havecB ∩ A � P for eachP ∈ F . Thus there exists an elements ∈ A \ ⋃

P∈F P , so that
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s/c ∈ B. SinceB is well-centered overA, there existsu ∈ U(B) such thatus/c = a ∈ A.
Thusu = ac/s ∈ AP for all P ∈ F . Thereforeu ∈ A ∩ U(B) = U(A). Hences/c ∈ A, but
s/c /∈ AP , a contradiction. ✷
Theorem 4.19. If each nonzero principal ideal of the integral domain A has only finitely
many associated primes and each of these associated primes is of height 1, then every
finitely generated flat well-centered overring of A is a localization of A.

Proof. Let B = A[b1, . . . , bn] be a finitely generated flat well-centered overring ofA. To
prove thatB is a localization ofA, we may assume thatU(B) ∩ A = U(A), and then we
have to show thatA = B.

SinceB is a sublocalization ofA, by [5, Proposition 4],B = ⋂
P∈S AP , whereS is the

set of prime idealsP of height 1 ofA so thatPB �= B. LetF be the set of prime ideals o
height 1 inA such thatPB = B. ThenA = B ∩ ⋂

P∈F AP . By Discussion 4.17, the setF
is finite. Hence by Theorem 4.18,B is a localization ofA. ✷
Proposition 4.20. Let B be a well-centered overring of an integral domain A. If S is a
multiplicative closed subset of A such that A = AS ∩ B and such that BS is a localization
of AS , then B is a localization of A.

Proof. Let b ∈ B. There exists an elementt ∈ AS ∩ U(BS) such thattb ∈ AS . We may
assume thatt ∈ A, thus tb ∈ AS ∩ B = A. Sincet−1 ∈ BS , there existss ∈ S such that
st−1 ∈ B. SinceB is well-centered overA, there existsu ∈ U(B) such thatust−1 = a ∈ A.
Thenu = at/s ∈ AS ∩ B = A andub = atb/s ∈ AS ∩ B = A. We have shown for eac
b ∈ B there existsu ∈ A ∩ U(B) such thatub ∈ A. ThereforeB is a localization ofA. ✷
Corollary 4.21. Let B be a well-centered overring of an integral domain A, let I be a
proper ideal of A, and let S = 1 + I . If for each b ∈ B and c ∈ I there exists an integer
n � 1 such that cnb ∈ A and if BS is a localization of AS , then B is a localization of A.

Proof. The corollary follows from Proposition 4.20 sinceA = AS ∩ B. ✷
Theorem 4.22. Every finitely generated flat well-centered overring of a one-dimensional
integral domain A is a localization of A.

Proof. Let B = A[b1, . . . , bn] be a finitely generated flat well-centered overring ofA and
let I = ⋂n

j=1(A :A bj ). ThenIB = B by flatness. LetS = 1 + I . ThenIAS is contained
in the Jacobson radical ofAS . Since dimAS � 1, IAS is contained in every nonzero prim
ideal of AS . SinceIB = B, it follows by [32, Theorem 2 or 3], thatBS is the field of
fractions ofAS . By Corollary 4.21,B is a localization ofA. ✷

An interesting question that remains open is whether a finitely generated flat
centered overring of an integral domainA is always a localization ofA.



W. Heinzer, M. Roitman / Journal of Algebra 272 (2004) 435–455 455

ry, in:

28.

40.
ings,

ston,

oc. 12

967)

64.
uston

75–85.
–284.
(1972)

XX,

)

.

References

[1] T. Akiba, Remarks on generalized rings of quotients, Proc. Japan Acad. 40 (1964) 801–806.
[2] V. Barucci, Mori domains, in: S. Chapman, S. Glaz (Eds.), Non-Noetherian Commutative Ring Theo

Math. Appl., Kluwer Academic, Dordrecht, 2000, pp. 57–73.
[3] V. Barucci, S. Gabelli, M. Roitman, On semi-Krull domains, J. Pure Appl. Algebra 145 (1992) 306–3
[4] N. Bourbaki, Commutative Algebra, Chapters 1–7, Springer-Verlag, New York, 1989.
[5] J. Brewer, W. Heinzer, Associated primes of principal ideals, Duke Math. J. 41 (1974) 1–7.
[6] L. Claborn, Every abelian group is a class group, Pacific J. Math. 18 (1966) 219–222.
[7] P. Eakin, W. Heinzer, Non-finiteness in finite-dimensional Krull domains, J. Algebra 14 (1970) 333–3
[8] P. Eakin, W. Heinzer, D. Katz, L.J. Ratliff, Note on ideal-transforms, Rees rings and Krull r

J. Algebra 110 (1987) 407–419.
[9] E. Evans, A generalization of Zariski’s Main Theorem, Proc. Amer. Math. Soc. 26 (1970) 45–48.

[10] R. Gilmer, Multiplicative Ideal Theory, in: Queen’s Series in Pure and Appl. Math., Vol. 90, King
Ontario, 1992.

[11] R. Gilmer, A. Grams, Finite intersections of quotient rings of a Dedekind domain, J. London Math. S
(1976) 257–261.

[12] R. Gilmer, W. Heinzer, Intersections of quotient rings of an integral domain, J. Math. Kyoto Univ. 7 (1
133–150.

[13] R. Gilmer, W. Heinzer, Finitely generated intermediate rings, J. Pure Appl. Algebra 37 (1985) 237–2
[14] R. Gilmer, W. Heinzer, W.W. Smith, On the distribution of prime ideals within the ideal class group, Ho

J. Math. 22 (1996) 51–59.
[15] R. Gilmer, J. Ohm, Integral domains with quotient overrings, Math. Ann. 153 (1964) 97–103.
[16] M. Griffin, Families of finite character and essential valuations, Trans. Amer. Math. Soc. 130 (1968)
[17] W. Heinzer, J. Ohm, Locally Noetherian commutative rings, Trans. Amer. Math. Soc. 158 (1971) 273
[18] W. Heinzer, J. Ohm, Noetherian intersections of integral domains, Trans. Amer. Math. Soc. 167

291–308.
[19] I. Kaplansky, Commutative Rings, Alyn and Bacon, Boston, 1970.
[20] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985.
[21] D. Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969) 81–128.
[22] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.
[23] E. Matlis, Some properties of commutative ring extensions, Illinois J. Math. 31 (1987) 374–418.
[24] M. Nagata, A Treatise on the 14th Problem of Hilbert, in: Mem. College Sci. Univ. Kyoto Ser. A, Vol. X

1956.
[25] M. Nagata, Local Rings, Interscience, New York, 1962.
[26] J. Ohm, Some counterexamples related to integral closure inD[[x]], Trans. Amer. Math. Soc. 122 (1966

321–333.
[27] J. Ohm, R. Pendleton, Rings with Noetherian spectrum, Duke Math. J. 35 (1968) 631–639.
[28] J. Ohm, D. Rush, The finiteness ofI whenR[X]/I is flat, Bull. Amer. Math. Soc. 77 (1971) 793–796.
[29] J. Ohm, D. Rush, The finiteness ofI whenR[X]/I is flat, Trans. Amer. Math. Soc. 171 (1972) 377–408
[30] C. Peskine, Une généralisation du «main theorem» de Zariski, Bull. Sci. Math. 90 (1966) 119–127.
[31] J. Querré, Intersections d’anneaux integres, J. Algebra 43 (1976) 55–60.
[32] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965) 794–799.
[33] W. Vasconcelos, Simple flat extensions, J. Algebra 16 (1970) 105–107.
[34] W. Vasconcelos, Simple flat extensions, II, Math. Z. 129 (1972) 157–161.
[35] O. Zariski, P. Samuel, Commutative Algebra, Vol. I, Van Nostrand, New York, 1958.


