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Abstract

Let A be an integral domain with field of fractiors. We investigate the structure of the overrings
B C K of A that are well-centered afi in the sense that each principal idealRfs generated by an
element ofd. We consider the relation of well-centeredness to the properties of flatness, localization
and sublocalization foB over A. If B = A[b] is a simple extension ofi, we prove thatB is a
localization of A if and only if B is flat and well-centered ovet. If the integral closure oA is
a Krull domain, in particular, ifA is Noetherian, we prove that every finitely generated flat well-
centered overring ofl is a localization ofA. We present examples of (non-finitely generated) flat
well-centered overrings of a Dedekind domain that are not localizations.
0 2004 Published by Elsevier Inc.
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1. Introduction

All rings we consider here are assumed to be commutative with unikyidfa ring, we
denote by/(R) the multiplicative group of units oR. If A is an integral domain with field
of fractionsk, we refer to a subrin@ of K with A C B as anoverring of A.

Fix an integral domain A with field of fractions K and an overring B of A.

We say thaiB is well-centered on A if for eachb € B there exists a unit € B such that
ub=a € A. Thus,B is well-centered o iff each element oB is an associate iB of an
element ofA iff each principal ideal ofB is generated by an element 4f
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The overringB of A is a localization of A if B = S™1A = Ag, where S is a
multiplicatively closed subset of nonzero elementsiofThus B is a localization ofA iff
B = Ay p)na- Alocalization ofA is both flat overA and well-centered oA. Conversely,
we prove in Theorem 4.3 that a simple flat well-centered overring of an integral detmain
is a localization ofA. If the integral closure oA is the intersection of a family of valuation
domains of finite character, we prove in Theorem 4.15 that every finitely generated flat
well-centered overring ofd is a localization ofA. Thus every finitely generated flat
well-centered overring of an integral domainwhich is either Krull or Noetherian is a
localization of A (Corollary 4.16). On the other hand, we establish in Theorem 3.16 the
existence of non-finitely generated flat well-centered overrings of a Dedekind domain that
are not localizations.

The overringB of A is a sublocalization of A if B is an intersection of localizations
of A. Thus B is a sublocalization ofd if and only if there exists a familyS,},ca of
multiplicatively closed subsets of nonzero elementsicduch thatB = (), . 4 As, . Itis
well known [12,32] that a sublocalizatiok of A is an intersection of localizations df
at prime ideals. Indeeg), ., As, = {Ap: P € SpecA andP N S, = ¢ for somex € A}

(see Discussion 2.1).

A sublocalizationB of A need be neither well-centered amor flat overA. We discuss
in Section 2 the sublocalization condition in relation to the properties of flathess and well-
centeredness for an overrirRyof A. We give in Corollary 2.8 necessary and sufficient
conditions for each sublocalization overring of a Noetherian domaimbe a localization
of A.

We prove in Theorem 3.6 that every finitely generated well-centered overring of
an integrally closed domain is flat and therefore, in particular, a sublocalization. In
Example 3.24 we establish the existence of a non-Archimedean well-centered overring
of a factorial domain.

Our interest in the well-centered property of an overring of an integral dormairose
from conversations that the first author had with Jack Ohm a number of years ago. The
property arises naturally in relation to results established by Ohm in Theorem 5.1 and
Example 5.3 of [26]. M. Griffin in [16, p. 76] defines well-centeredness of a valuation
with ring B containing the domaia in a manner equivalent to the definition Bfbeing
well-centered omA given above. We thank Muhammad Zafrullah for pointing out to us
this reference to Griffin. We also thank the referee for several helpful suggestions that have
improved the paper.

2. When a sublocalization isflat or alocalization

Interesting work on the structure of flat overrings of an integral domain has been done
by Richman in [32] and Akiba in [1]. Richman observes that an overBrgf A is a flat
A-module if and only ifBy; = Ayna for every maximal (or equivalently prime) idesd
of B [32, Theorem 2]. In particular, iB is a flat overring ofA then B is a sublocalization
of A. The converse of this result, however, is not true in general. We indicate below
methods for obtaining sublocalizatioBsof A that fail to be flat over.
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Discussion 2.1. (1) If B is a flat overring ofd, then every ideal of B is extended fronA.
Indeed, for each maximal idea of B we haveBy; = Ayna, henceJBy = JAyna =
(JNAYAyna = ((J NA)B)By. ThusJ = (J N A)B. Itis not true, however, that a flat
overring B of an integral domaim need be well-centered ot (cf. Proposition 3.13 and
Example 4.6). The distinction is that principal ideals of a flat overBngeed not be the
extension of principal ideals of.

(2) If S is a multiplicatively closed subset of an integral domaiwith 0 ¢ S, then

As=(){Ap: P € SpecA andP NS =0}.

Therefore if{S) }1c4 is a family of multiplicatively closed sets of nonzero elementgiof
andB =), As,, then

B=("){Ap: P € SpecA andP N S, = ¢ for somei. € A}.
ThusB is a sublocalization ove if and only if
B= ﬂ{AP: P € SpecA andB C Ap}.

In contrast with this characterization of a sublocalization, the condition that for each
P € SpecA either PB = B or B C Ap is, in general, stronger than the sublocalization
property. Indeed, by [32, Theorem 1], this latter property is equivalent to flatheBs of
over A. Thus every flat overring is a sublocalization. Hence every flat overring of an
integrally closed domain is again integrally closed [32, Corollary, p. 797]. Also from
Richman’s characterization that is a flat overring ofA iff for each Q € SpecB, we
haveBy = Agpna [32, Theorem 2], it follows that iB is a quasilocal flat overring of,
thenB is a localization ofA.

(3) A useful observation is that if an overrilyC K of A has one of the properties of
being flat, well-centered, a localization, or a sublocalization evehen for each subring
C of B with A C C, it follows that B as an extension of is, respectively, flat, well-
centered, a localization, or a sublocalization. This is easily seen in each case.

(4) If B is a flat overring ofA and C is a subring ofB with A € C such thatB is
integral overC, thenC = B. For in this caseB is a flat integral overring of’, so by [32,
Proposition 2]C = B.

(5) The localization, well-centered and flatness properties are transitive in the sense that
if B is an overring ofA andC is an overring ofB, then one of these properties holding for
B over A and forC over B implies the property also holds far overA.

(6) The localization and flatness properties also behave well with respect to compositum
in the following sense: for an arbitrary overriggC K of A, if B is a localization or a flat
overring of A, thenC[B] is, respectively, a localization or a flat overring 6f For if
B =514, thenC[B] = S~1C, while for flatness ifQ € SpeaC[B] andP = Q N B, then
Bp = Apna impliesC[B]p = Conc.

It would be interesting to know precise conditions for a Noetherian integral domain
to admit a non-Noetherian sublocalization overring. In Corollary 2.8, we describe the
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class of Noetherian domaing for which each sublocalization ovet is a localization
of A. In particular, a Noetherian domain in this class does not admit a non-Noetherian
sublocalization overring.

We begin with more general considerations. We use IRaddenote the radical of an
ideal 7.

Discussion 2.2.If R is aring, we defing® € SpecR to be anassociated prime of an ideal
I of R if there exists: € R such thatP is a minimal prime ove(/ :ga) ={r € R: ra € I}
[4, p. 289], [21, p. 92], [5]. An integral domaiA has the representation

A= ﬂ{Ap: P is an associated prime of a principal idealgf

[5, Proposition 4]. Moreover, if each principal ideal #thas only finitely many associates
primes, then by [5, Proposition 4] féra multiplicatively closed subset af, we have

Ag = m{AP: P is an associated prime of a principal ideal aha S = ¢}.

Lemma 2.3. Let P be a prime ideal of an integral domain A. Then the following three
properties are equivalent:

(1) For eachfamily Q of primeidealsof A, if P C UQEQ Q,then P C Q forsome Q € Q.

(2) For each family Q of minimal primesover principal idealsof A, if P C UQEQ Q, then
P C Q for some Q € Q.

(3) P istheradical of a principal ideal.

Proof. (1= (2) obvious.

2= (1).LetP C UQEQ 0, whereQ@ is a set of prime ideals. Thug is contained in
the union of the set of all minimal primes over principal ideals contained in one of the
primesQ € Q. HenceP is contained in some prime iM which is contained in a prime
Qe Q.

(1) = (3). Let Q be the set of prime ideals of that do not containP. Thus
P < Upeo Q. Letc be an element irP \ (.o Q. Since P and Ac are contained in
the same prime ideals, it follows th&t= Rad Ac).

(3) = (1). Assume thatP = Rad Ac) for some element € A. Let Q be a family of
prime ideals ofA so thatP C UQEQ Q. Thusc € Q for some prime ideaD € Q, which
impliesthatP € 9. O

We generalize below the theorem for Dedekind domains stated in [11, p. 257] (see [15]).
Theorem 2.4. Let A be an integral domain with field of fractions K, and let P be a
set of prime idealsin A. Consider the sublocalization B = (). p Ap. The following are

equivalent:

(1) Bisalocalization of A.
(2) IfxeK\A,and (A:p x) S Jpep P then (A :y x) C P for some P € P.
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Moreover, if each principal ideal of A has only finitely many associated primes, then the
following condition is equivalent to the two conditions above:

(3) If Q isan associated prime of a principal ideal suchthat Q € | Jp.p P, then Q € P
for some P € P.

Proof. (1) = (2). Assume thaB = Ag for some multiplicative subsetof A. Letx € K
suchthatA :4 x) € Jpep P, thus(4 14 x)NS =0, hencex ¢ Ag = B. Thus there exists
a primeP € P such thate ¢ Ap. It follows that(A :4 x) C P.

(2= (1). Let S=A\ (Upep P). We prove thatB = A. If s € S, thens is a unit
in Ap forall P € P, hences is a unitinB. It follows thatAg € B. On the other hand let
be B\ A, thus(A:4 b) Z P forall P €P. By assumptiofA :4 b) Z |Jpcp P). that s,
(A:ab)NS #Q. It follows thatb € Ag.

Assume now that each principal ideal #thas only finitely many associated primes.

(2) = (3). Since principal ideals im have only finitely many associated primes, an
associated prime of a principal ideal is of the form R&dy x) for somex € K [17,
Proposition 3.5].

(3) = (2). Letx € K such that(A :4 x) € Jpp P. By assumption, there are only
finitely many prime ideal)1, ..., @, minimal over(A :4 x). If none of the primeg;
is contained il Jp.p P, then choose an elememnte Q; \ |Jp.p P for eachi. Thus for
some positive integer, we have([];_; 7)™ ¢ |Upp P, @ contradiction. Hence at least
one of the ideal®); is contained inJ p.p P, which implies thaf(A : 4 x) is contained in

UPGPP' U

Theorem 2.5. Let A be anintegral domain with field of fractions K. Each sublocalization
over A isalocalization of A if and only if for each x € K \ A, theideal Rad A : 4 x) isthe
radical of a principal ideal.

Moreover, if each principal ideal of A has only finitely many associated primes, then
each sublocalization of A isalocalization iff each associated prime of a principal ideal is
theradical of a principal ideal.

Proof. If each ideal of the form Radl : 4 x) is the radical of a principal ideal, then each
sublocalization ofd is a localization by Theorem 2.4.

Conversely, assume that each sublocalization 5fa localization ofA. Letx € K \ A.
By Theorem 2.4(A :4 x) is not contained in the union of the prime ideals not containing
(A:4 x). Letc be an elementiigA : 4 x) that does not belong to this union. Thus: 4 x)
andAc are contained in the same prime ideals, which implies that Ragdx) = Rad Ac).

Assume now that each principal idealohas only finitely many associated primes, and
that each sublocalization df is a localization. LetP be a prime associated with a principal
ideal of A. By Theorem 2.4 P is not contained in a union of primes not containiAg
Hence, by Lemma 2.3 is the radical of a principal ideal.

Conversely, if each principal ideal of has only finitely many associated primes and
if each associated prime of a principal ideal is the radical of a principal ideal, then each
sublocalization ofd is a localization by Theorem 2.4.00
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We apply the above results to various classes of integral domains. In Corollary 2.7 we
describe the class of Mori domains and the class of semi-Krull domains for which each
sublocalization is a localization. In Corollary 2.8 we characterize the Noetherian domains
having this property.

We recall thatd is aMori domainif A satisfies the ascending chain condition on integral
divisorial ideals [2]. In particular, a Mori domain satisfies the ascending chain condition on
principal ideals (a.c.c.p.). Examples of Mori domains include factorial and Krull domains
as well of course as Noetherian domains. An integral domnaaiis semi-Krull [23], if
A =(pAp, where P ranges over the set of height-one primesAofthis intersection
has finite character, and for each height-one primevery nonzero ideal of p contains
a power ofPAp.

A nonzero prime ideal of a Mori domain or a semi-Krull domain is an associated
prime of a principal ideal iff it is a prime divisorial ideal (see [2, Theorem 3.2] and [3,
Theorem 1.7]). Thus by Discussion 2.2 Af is a localization of a Mori domaim or a
semi-Krull domainA, thenAs = (") p.p Ap, WhereP is the set of prime divisorial ideals
P € SpecA such thatP N S = . Therefore ifB is a sublocalization oved, then B has
the formB = (" p.p Ap, WhereP is a set of prime divisorial ideals iA.

Theorem 2.4 implies:

Corollary 2.6. Let A beaMori domain or a semi-Krull domain and let P be a set of prime
idealsin A. Consider the sublocalization B = () p.p A p. Thefollowing are equivalent:

(1) Bisalocalization of A.
(2) If Qisaprimedivisorial ideal of A and Q S Jp.p P,then Q C P for some P € P.

Theorem 2.5 implies:

Corollary 2.7. Let A beaMori domain or a semi-Krull domain. Each sublocalization over
A isalocalization of A if and only if each prime divisorial ideal of A istheradical of a
principal ideal.

Corollary 2.8. Let A be a Noetherian integral domain. Each sublocalization over A is
a localization of A if and only if each associated prime of a principal ideal of A isthe
radical of aprincipal ideal. Inparticular, if A hasthese equivalent properties, then nonzero
principal ideals of A have no embedded associated primes.

A Krull domain has torsion divisor class group iff each prime divisorial ideal (that is,
prime ideal of height one) is the radical of a principal ideal. Hence Corollary 2.7 implies:

Corollary 2.9. A Krull domain A has torsion divisor class group if and if every
sublocalization over A isalocalization of A.

Corollary 2.10. Let A be a one-dimensional integral domain. If each maximal ideal of A
istheradical of a principal ideal, then every sublocalization over A isalocalization of A.
The converse holds if A has Noetherian prime spectrum.
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Proof. A commutative ring has Noetherian spectrum iff each prime ideal is the radical
of a finitely generated ideal [27]. Thus a one-dimensional integral domain has Noetherian
spectrum iff each nonzero element is contained in only finitely many maximal ideals iff
principal ideals have only finitely many associated primes. Thus Corollary 2.10 follows
from Theorem 2.5. O

Question 2.11. What (Noetherian) integral domaing have the property that every
sublocalization extension is flat?

For a one-dimensional integral domain with Noetherian spectrum we give in Theo-
rem 2.12 a complete answer to Question 2.11.

Theorem 2.12. Suppose A is a one-dimensional integral domain with Noetherian
spectrum. Then every sublocalization over A isflat over A.

Proof. Let B be a sublocalization ovet. We may assume th& C K, wherek is the field
of fractions ofA. By Discussion 2.1(2), there exists a fam{ilf}, } of prime ideals ofA such
thatB =("), Ap,. Since dimA = 1, we may assume that eaeh is a maximal ideal ofA.
Let O, = P,Ap, N B. We haveBgy, = Ap, and B =(), Bg, . SinceA has Noetherian
spectrum, the family By, } has finite character in the sense that a nonzero elemest of
is a unit in all but finitely many of thé,. To prove thatB is flat overA, we show for
each maximal ideap of B thatBp = Apna. LetP = QN A andletS= A\ P. By [18,
Lemma 1.1] we hav§~1B =, (S71Bg,). SinceBy, is a one-dimensional quasilocal
domain,S~1By, is eitherBy, if SN Q4 # @ or K otherwise. Sincet p, = By, , we see
thatQ,, is the unique prime oB lying over P,. Thusif Q # Q,, thenSN Q, is nonempty
andS~1Bg, = K. If this were true for each, thenS~1B =, S~1By, = K, but clearly
S~1Bc By, a contradiction. Henc@ = Q, for somewx and thereforelp = Bg. O

3. Propertiesof flat and well-centered overrings

Richman observes [32, Theorem 3] that a flat overring of a Noetherian domain is
Noetherian. There exist Noetherian integral domains with non-Noetherian sublocalizations
that are ideal transforms ([7] and [8, Theorem 3.2]).Blfis a non-Noetherian ideal
transform of a Noetherian domai, then B is not flat overA by the result of Richman
mentioned above. Proposition 3.1 shows tBatith these properties also fails to be well-
centered om.

Proposition 3.1. A well-centered extension of a Noetherian domain is Noetherian.

Proof. If B is well-centered om4, then every ideal ofB is the extension of an ideal
of A. Thus if A is Noetherian, then every ideal & is finitely generated an@® is also
Noetherian. O



442 W. Heinzer, M. Roitman / Journal of Algebra 272 (2004) 435-455

We observe in Theorem 3.6 that a finitely generated well-centered overring of an
integrally closed domain is a flat extension. In the proof of this result we use Proposition 3.2
which holds for arbitrary well-centered extension rings.

Proposition 3.2. Let S be a well-centered extension ring of aring R. If M is a maximal
ideal of R suchthat M'S # S, then M S isa maximal ideal of S.

Proof. We have a natural embeddiiy M — S/M S. Moreover the fact tha$ is well-
centered oveRrR implies thatS/M S is well-centered oveR/M. Since a well-centered
extension of a field is a fields/M S is a field andM S is a maximal ideal of. O

For an extension ring of a ring R, we consider the following condition that is in
general weaker than the well-centered property.

Definition 3.3. An extension ringS of a ring R is said to bealmost well-centered on R
if for eachs € S there exists a positive integerdepending or and an element € U/(S)
such thatts” € R.

The following remark concerning almost well-centered extensions is clear.

Remark 3.4. If S is an almost well-centered extension ring of a riyghen for each ideal
J of § we have Rad =RadJ N R)S.

In view of Remark 3.4, we have the following analogue of Proposition 3.2.

Proposition 3.5. Let S be an almost well-centered extension ring of aring R. If M isa
maximal ideal of R suchthat M S # S, then RadM S isa maximal ideal of S.

Theorem 3.6. If B is a finitely generated almost well-centered overring of A and if A is
integrally closed in B, then B isflat over A. In particular, every finitely generated almost
well-centered overring of an integrally closed domain A isflat over A.

Proof. Let O be a maximal ideal o8B and letP = Q N A. Then RadPB) = Q by
Proposition 3.5. The Peskine—Evans version of Zariski's Main Theorem [9,30] implies
there exists € A\ P suchthatd; = By. In particularAp = Bg. ThusB isflatoverA. O

Proposition 3.7. If B = A[u] isa simple overring of A, where u isa unit of B, andif A is
integrally closed in B, then B isalocalization of A.

Proof. Sinceu™! € B it follows thatu~! is integral overA [19, Theorem 15]. Thus
u~le AandB is alocalization ofA. O

Corollary 3.8. A simple almost well-centered overring of an integrally closed domainisa
localization.
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Proof. Let B = A[b] be a simple almost well-centered overring of an integrally closed
domainA. By Theorem 3.6B is flat overA. Since B is almost well-centered ovet,
there exist a positive integerand a unit: € U/ (B) such thaub” =a € A. ThusB is a flat
integral overring ofA[b"] = A[u]. By Discussion 2.1(4)B = A[u] andB is a localization
ofA. O

Theorem 3.6 and Corollary 3.8 may fail il is not integrally closed. We use
Proposition 3.9 to show in Example 3.10 the existence of Noetherian integral domains
that admit simple proper well-centered integral overrings. Corollary 2.8 shows that in an
integral domains having this property there are principal ideals with embedded associated
prime ideals.

Proposition 3.9. Let B be an integral domain of theform B = K + M, where K isafield
and M isa nonzero maximal ideal of B. If A isa subring of B suchthat M C A, then B is
well-centered on A.

Proof. Letb € B. Thenb =k +m,wherek € K andm € M. If k=0, thenb e A. If k #£0,
thenk isaunitofB anda :=b/k =1+ (m/k) € A. HenceB is well-centered oveA. O

Example 3.10. A simple well-centered integral (thus not flat) proper overriigf a
Noetherian integral domaia such thatB is a sublocalization oA. Moreover, each height-
one prime ofA is the radical of a principal ideal.

Let E = F(c) be a simple proper finite algebraic field extension Adie the localized
polynomial ringE[X, Y]x,y), letM = (X, Y)B, and letA = F + M. ThenA is Noetherian
andB = A[c] is a simple, proper integral extension4f HenceB is not flat as am-mo-
dule [32, Proposition 2]. Proposition 3.9 implies tiats well-centered om.

SinceB is factorial, B is the intersection of the ring8y as Q ranges over the nonzero
principal prime ideals oB. For suchQ we haveQ C M C A,thusB C Ap, S0Bg = Agp.

It follows that B is a sublocalization oveA. SinceB is a unique factorization domain,
each height-one prime @ is principal. SinceM C A, each height-one prime of is the
radical of a principal ideal. O

The following example wher& is not well-centered o illustrates restrictions on
generalizing Proposition 3.9.

Example 3.11. Integral domains of the ford = Ao + M € B = Bo + M, whereAo, Bo
are subrings ofA and B, respectively, and/ is a maximal ideal ofB such thatB is not
almost well-centered oA.

Let X be an indeterminate over the fiel@ of rational numbers and le® = Z[X] +
(X2 + 1)Q[X). ThenM := 2B = 2Z[X] + (X? + 1)Q[X] is a maximal ideal o8, and
B=Z[X]+ M. LetA=7Z+ M. The domainB fails to be almost well-centered of
since the only units oB are 1 and-1 and no power oK € B is in A. Hence no power of
X € B is an associate iB with an elementofA. O
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Discussion 3.12. Let B be an overring of an integral domai and letS = U/(B) N A.
ThenB = By is a well-centered overring of s if and only if B is a well-centered overring

of A. Moreoverl/(As) =U(Bs) N Ag, andB is a localization ofd if and only if As = B.

Thus in considering the question of whether an overéngf an integral domaim is a
localization ofA, by passing from the ring to its localizationA;;z)n4, We may assume
thatl/(B)N A =U(A). The localization question is then reduced to the question of whether
A = B. In general, ifB is a well-centered overring of which properly containg, then
U(A) CUB). Forif be B\ A andu € U(B) is such thatub € A, thenu=' ¢ A so

u e U(B)\U(A).

If A is a Dedekind domain, then every overriBgof A is a flat A-module, thus a sub-
localization overA. Moreover, we have:

Proposition 3.13. Let A be a Dedekind domain. The following conditions are equivalent:

(1) A hastorsiondivisor classgroup.

(2) Everyoverring of A isalocalization of A.

(3) Everyoverring of A iswell-centered on A.

(4) A hasno proper simple overring with the same set of units.

Proof. (1) < (2). By Corollary 2.9, (2) holds if and only if each maximal ideal4fs the
radical of a principal ideal, and this is equivalent to (1).

Itis clear that(2) = (3) and(3) = (4). Thus it remains to show:

(4) = (2). Assume that (2) does not hold. Tharhas a maximal ideaP that is not the
radical of a principal ideal. We claim th& = A[P~1] is a simple flat overring oft with
U(B) =U(A).Indeed, ifb € P71\ A, we haveB = A[b] since both of these rings are equal
to ({Ap: Q € SpecA andQ # P}. Suppose there exists an elemerd /(B) \ U(A).
Thenu is not a unitinA p, but either or u=1 is in A p. We may assume thate A p, thus
uec PAp. Thenu € A and RaditA = P, a contradiction. O

We show in Theorem 4.5 that iB is a finitely generated overring of a Dedekind
domain A, then B is a localization ofA iff B is well-centered oM iff B is almost
well-centered onA. However, for overrings of a Dedekind domain having nontorsion
class group, we present in Theorem 3.16 examples of well-centered overrings that are not
localizations and examples of almost well-centered overrings that are not well-centered.

If A is a Dedekind domain, we denote its class groupCigy); if I is a nonzero
fractional ideal ofA, we denote the ideal class &fby C4(I), and if P is a subset of
Max A, we denote the s€C4(P)| P € P} by Co(P). The complement of a subskt of
Max A is denoted byP¢. We denote the submonoid generated by a supséta monoid
by M(S), and the subgroup generated by a sulsset a group byG(S). Thus, if S is a
set of nonzero fractional ideals of a Dedekind domairniewed as a subset of the ideal
monoid of A, we haveM (C4(S)) = Ca(M(S)).

We recall that ifA is a Dedekind domain, ansl is an overring of4, then there exists a
unique set of maximal idealB in A such thatB = ({Ap: P € P}. The overringB of A
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can also be described as the compositum of the overdf@s '] such thai) € Max A\ P.
Thus for each) € Max A we haveQ B = B if and only if Q € P¢.

Proposition 3.14. Let A be a Dedekind domain with field of fractions K andlet B C K be
anoverring of A, thus

B=("){Ap: P eP)

for a unique subset P of Max A. Let J be a honzero ideal of B. Then J = I B where I is
an ideal of A belonging to M (P). Moreover, we have

(1) Jisaprincipal ideal of B < Ca(I) € G(Ca(P)).
(2) Jisanextension of a principal ideal of A < C4 (1) € —M(CA(P°)).

Proof. Part (1) follows from [6, Corollary 3]. For part (2), assume first that there exists
a principal ideallp of A such thatl B = IpB. Sincel € M(P), it follows thatlp = 113,
wherely € M(P€). ThusC4(I) = —Ca(I1) € —M(C4(PC)).

Conversely, le€4(I) € —M(CA(PF)). There exists an idedi € M (P¢) such thatl I
is a principal ideal ofA. Also J = (II1)B. O

Proposition 3.14 implies:

Corollary 3.15. Let A be a Dedekind domain with field of fractions K and let B C K be
anoverring of A, thus

B = ﬂ{Ap: P eP}
for a unique subset P of Max A. Then

(1) B isawell-centered extension of A < (CAM(P)) NG(CA(PC)) € —Ca(M(PC)).
(2) B is an almost well-centered extension of A < each element of M(C4(P)) N
G(CA(P°)) hasa positive integer multiplein — M (C4 (P°)).

Theorem 3.16.

(1) There exists a Dedekind domain A having a well-centered overring that is not a
localization.

(2) There exists a Dedekind domain A having an almost well-centered overring that is
not well-centered.

Moreover, in each case the domain A can be chosen so that it has exactly two almost
well-centered overrings that are not localizations of A, these two overrings being also the
unique almost well-centered overrings D of A suchthat U/(D) N A =U(A).
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Proof. We will use the well known result of Claborn [6] that every Abelian group is the
ideal class group of a Dedekind domain, along with the fact that for a countably generated
Abelian groupG and a honempty subsgtof G, there exists a Dedekind domainwith
class grougs such thatS = {C(P): P € MaxA} if and only if § generate€; as a monoid
[14, Theorem 5].

Let A be a Dedekind domain having ideal class group the infinite cyclic gfoefine

B= ﬂ{AQ: 0 € MaxA andC(Q) < 0}.

Since the se{C(P):. P € MaxA} generateZ as a monoid, there exist8 € Max A
with C(P) > 0. Thus B is a proper overring ofdA. For a nonzero nonunit € A, if
aA = Pfl ... Py" is the factorization of the principal idealA as a product of maximal
ideals, then G= e1C(P1) + --- + €,C(P,). ThereforeC(P;) < O for at least one of the;.

It follows that A \ U(A) = | J{Q: QO € MaxA andC(Q) < 0}. Since the maximal ideals
of B lie over the idealsD of A with C(Q) < 0, we see thaB \ U(B) = J{QOB: Q €
Max A andC(Q) < 0}, hencd/(B) N A =U(A).

By Corollary 3.15,B is almost well-centered oA: indeed, since there exists € P¢
with C4(P) > 0, each element af1(C4 (P)) has a power inr- M (C4(P€)). Moreover, if
there exists? € Max A with C(P) = 1, by Corollary 3.15B is well-centered om.

To obtain an example whe® is almost well-centered but not well-centered Hrwe
argue as follows. By [14, Theorem 8], there exists a Dedekind doraiith class group
Z such thafC(P): P € MaxA}={-1, 2, 3}. The overring

B= ﬂ{AQ: 0 € MaxA andC(Q) < 0}

is a principal ideal domain, since the primes Max A such thatP B = B generaté as a
group. Hence foQ € Max A with C(Q) = —1, we haveQ B = b B is a principal ideal that
is not generated by an elementbf

Next we show that for each Dedekind domainvith ideal class groufd as constructed
above, there are precisely two proper almost well-centered overfingé A such that
U(D)NA =U(A). These are the overring as defined above ar@d= ({Ap: C(P) > 0}.
A proof that A C C, C is almost well-centered ovet, and thatt/(C) N A = U(A) is
similar to that given above to sho# has these properties. Moreover[ifis an overring
of A such that/(D) N A =U(A), then eitherD C B or D C C. For otherwise, either
there exists @) € Max A with C(Q) = 0 such thatD D = D or there existP, Q € Max A
with C(P) =r >0,C(Q) = —s <0andPD = QD = D. In the first caseQ =aA is
principal andz € (D) N A\ U(A). In the second cask® Q" = aA is principal and again
acU(D)NA\UA).

Itremainsto showthatih C D C BorA C D C C,thenD is notalmost well-centered
overA.If AC D C B,thenthe ideal class group bfis a proper homomorphic image Bf
and hence a finite cyclic group, thus each nonzero ideBl lbés a power that is a principal
ideal. SinceD C B, there existsP € MaxA with C(P) < 0 such thatPD € MaxD. By
Proposition 3.14(2), no power @t D is an extension of a principal ideal df. Therefore
D is not well-centered om. The proof that an overring of A with A C D C C is not
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well-centered o is the same. Thug andC are the unique proper almost well-centered
overrings ofA such that every nonunit of remains a nonunit in the overring.

If A has no principal maximal ideals, th@&andC as defined in the previous paragraph
are the unique almost well-centered overringsdothat are not localizations od. For
if D is a proper well-centered overring df distinct from B and C, then there exists a
localization E of A such thatA C E € D. SinceA has no principal maximal ideals, the
ideal class group of is a proper homomorphic image @f ThereforeE has finite class
group and every overring df is a localization off. ThusD is a localization ofE andE
is a localization ofd, so D is a localization ofA. O

Proposition 3.17. Let A be a Dedekind domain such that each ideal class in the class
group C(A) of A contains a maximal ideal. If C(A) is torsionfree, then each overring of
A isanintersection of two principal ideal domainsthat are well-centered overrings of A.

Proof. Let B =()pp P be an overring ofd, whereP is a set of maximal ideals of.
SinceC(A) is torsionfree it can be linearly ordered. With respect to a fixed linear grder
on C(A), defineB™ =\ pcp andc,(py=0) AP @B~ =(\pcp andc,(py<oy AP- Then

B = Bt N B~, the empty intersection being defined as the field of fractions.dBince
each ideal class oA contains a prime ideal, Proposition 3.14 implies tBat and B~

are well-centered ovet and that each prime ideal &f™ and B~ is the extension of a
principal ideal ofA. ThusB* and B~ are principal ideal domains that are well-centered
overrings ofA with B=B*NB~. O

In Section 4 we use the following well-known general result characterizing flat
overrings, see, for example, [1, Theorem 1]. The implica{ihn= (2) in Proposition 3.18
holds without assuming thd is an overring ofA, cf. [4, Exercise 22, p. 47].

Proposition 3.18. Assume that B is an overring of an integral domain A and that S C B
issuch that B = A[S]. Then the following conditions are equivalent:

(1) Bisaflat extensionof A.
(2) For anyelement s € S wehave (A :4 s)B = B.

If B is well-centered over, then B = A[U/(B)]. Thus the following corollary of
Proposition 3.18 is immediate.

Corollary 3.19. Assumethat B is a well-centered overring of the integral domain A. Then
the following conditions are equivalent:

(1) Bisaflat extension of A.
(2) For eachunitu € Bwehave (A:4 u)B = B.

We recall that an integral domabhis said to beArchimedean if for each nonunib € B
we have )2, 0" B = (0).
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Remark 3.20. If B is a localization of an Archimedean domainsuch that the conductor
of B in A is nonzero, theB = A.

Indeed, suppos® = Ag and let 0#£ a € (A :4 B). Then for eachs € S we have
a/s" € A for all n > 1. SinceA is Archimedean, it follows that is a unit inA. Hence
B=A.

Proposition 3.21. Suppose B isan overring of a Mori integral domain A. If the conductor
of B in A isnonzero and B isflat over A, then A = B.

Proof. SinceA is Mori and (A :4 B) # 0, there exists a finite subsét of B such that
(A:a B)=(A:4 F). SinceB is flat overA, Proposition 3.18 implies tha# :y F)B = B,
hence(A:4 B)=(A:s B)B=B. ThereforeA=B. @O

Example 3.22. If A is not Mori, the conclusion of Proposition 3.21 need not hold.

Indeed, letk be a field and letR = k[X, Y] be a polynomial ring ovek. Then
B := R[1/Y] is a localization ofA := R + X B. The conductor o8 in A containsX B
and hence is nonzero. MoreovérC B sinceY e B\ A. O

The following structural result is proved by Querré in [31].

Proposition 3.23 [31]. If A isa Mori domainand B isa sublocalization over A, then B is
also Mori. In particular, a flat overring of a Mori domain is again a Mori domain.

We observe in Proposition 3.1 that a well-centered overring of a Noetherian domain is
Noetherian. Example 3.24 shows that in general the Mori property is not preserved by well-
centered overrings. Indeed, Example 3.24 establishes the existence of a polynonmial ring
over a field and a well-centered overriBgof A that is not Archimedean. In particulas,
fails to satisfy a.c.c.p. and therefore is not Mori.

Example 3.24. A well-centered overring of a factorial domain (even of a polynomial ring
over a field) is not necessarily Archimedean.

Letk be a field and let:, ¢ be two independent indeterminates okebefine
Tozk[a, c, {i: n> 1}]
cn

Proceeding inductively, define integral domaif)sfor m > 1 as follows: letV,,, = {vy,,;: t
is a nonzero nonunit ifi,,_1} be a set of independent indeterminates dyger; and define

1
Ty = mll:{vm,h — Un;t € Vm}:|'
Um,t

ThusT,, is a domain extension df,,_1 obtained by adjoining the indeterminatesVi
along with their inverses. Lt = _J,_; Vi» and definéW to be the union of the sét, ¢}
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with the set{rv,, ;: vm.r € V}. The elements o are algebraically independent over
ThusA := k[W] is a polynomial ring over the field. DefineB := Ufjf:l T,». SinceTy is

an overring ofk[a, c], we see thaB is an overring ofA. Since every element df,_1 is

an associate iff,, to an element of, it follows thatB is well-centered omt. The domain
B is not Archimedean since/c" € B for all positive integera althougha, ¢ € B andc is

not a unitinB; indeedc ¢ U(Tp) andTyp is a retract ofB under the retraction ovéh that
sendseache Vtol. O

4. Finitely generated well-centered extensions

The structure of a simple flat extensiSr= R[s] = R[X]/I of a commutative ringR is
consideredin [28,29,32-34]. Richman in [32, Proposition 3] shows thaisfan integrally
closed domain an® = A[a/b] is a simple flat overring oft, then(a, b) A is an invertible
ideal of A. We observe in Theorem 4.1 that a simple flat overBngenerated by a unit of
B is a localization ofA. It follows (Corollaries 4.2 and 4.3) that well-centered simple flat
overrings are localizations.

Theorem 4.1. Let A beanintegral domainand let B = A[u] bea simpleflat overring of A,
where u isa unit of B. There exists a positive integer m such that u=" € A for all integers
r >m. Thus B isalocalization of A.

Proof. Sinceu~! € A[u], the element:—! is integral overA, henceA[u 1] is a finitely
generatedd-module. SinceB is a flat extension ofd, we have(A :4 A[lu~1])B = B.
Hence there existo, ..., cm € (A 14 A[u™1]) with 1 =co+ c1u + - - - + ¢,u™. Thus for
each integer > m we have

u T =cou +eu T+ euTTT € AL
In particularu ", u~"~1 € A. This implies thatB = A[u” 1] is a localization ofA. O

Corollary 4.2. Let B = A[b] be a simple flat overring of an integral domain A. The
following are eguivalent.

(1) Bisalocalizationof A.

(2) B iswell-centered on A.

(3) B isalmost well-centered on A.

(4) Theelement b isassociatein B with an element of A.
(5) Some power of b isassociatein B with an element of A.

Proof. It is enough to proveé5) = (1). Assume for some positive integeithatb” = au
with a € A andu € U(B). Thenb" € A[u] implies B is a flat integral overring ofi[u].
Therefore B = A[u] [32, Proposition 2]. Hence by Theorem 4.B,is a localization
of A. O

As an immediate consequence of either Theorem 4.1 or Corollary 4.2 we have:
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Corollary 4.3. If B isa simple flat well-centered overring of an integral domain A, then B
isalocalization of A.

We present several additional corollaries of Theorem 4.1 concerning finitely generated
flat overrings.

Corollary 4.4. Let B be a finitely generated flat overring of an integral domain A and let
A’ denotetheintegral closureof A in B. If B isalocalizationof A’, then B isalocalization
of A.

Proof. SinceB is finitely generated oved, if B is a localization ofA’, then B = A'[u]
whereu—1 € A’. Itfollows thatB = A[u][A'] is an integral flat overring oA [u]. Therefore
B = A[u]. By Theorem 4.1B is a localization ofA. O

Theorem 4.5. Let A be a Prufer domain with Noetherian spectrum (for example,
a Dedekind domain), and let B be a finitely generated overring of A. The following are
equivalent.

(1) Bisalocalizationof A.
(2) B iswell-centered on A.
(3) B isalmost well-centered on A.

Proof. It is enough to prove3) = (1). Assume thatB is almost well-centered od.
By [13, Corollary 5.6],B = A[b] is a simple extension. Since every overring of a Prufer
domain is flat, we obtain by Corollary 4.2 thAtis a localization ofA. O

In Proposition 3.13, we present examples of Dedekind domAiasB such thatB is a
proper simple flat overring of andi/(A) =U(B). Example 4.6 provides a more explicit
construction of this type and also shows that the condition:thga unit in B is essential
in Theorem 4.1.

Example 4.6. An example of a simple flat overring of an integrally closed domaia
such thatA C B andi/(A) =U(B).

Let X, Y andZ be indeterminates over a fietd Set

A=k|X,Y,XZ,YZ, )
X+YZ

B=k|X,Y,Z, ——|.
X+YZz

Clearly A and B have the same field of fractiokr$X, Y, Z) andB = A[Z]. To see that
Z € B\ A, observe that thé[ Z]-algebra homomorphism defined by setting- 1/Z and

X=0mapsAtok. AlsolU(A) =UB) ={a(X+YZ)" |ack\ {0}, m €Z}. SinceA is
a localization of the integrally closed domdipX, Y, XZ, Y Z], we see thad is integrally
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closed. Finally,B is a flat extension oA by Proposition 3.18 sinc¥Z,YZ € A and the
ideal (X, Y)B = B.

Question 4.7. Under what conditions om is every finitely generated well-centered
overring of A a localization ofA?

If A is Noetherian, it follows from Corollary 4.16 that every finitely generated flat well-
centered overring ofd is a localization ofA. In a situation where Question 4.7 has a
positive answer, it follows that the finitely generated overring is actually a simple extension,
for if B is a finitely generated overring of that is a localization ofi, thenB is a simple
extension ofA.

Remark 4.8. Let B = A[u, v] be a flat overring of a domaiA, wherev € U/(B). Then
B = Alu, 1/ f (u)] for some polynomialf (X) € A[X].

Indeed,B is a localization ofA[u].

Proposition 4.9. Let B = A[u, 1/u] be a flat overring of a domain A, where u € U(B).
Then B = A[u + 1/u] . Moreover, if B iswell-centered over A, then B is a localization
of A.

Proof. Let C = A[u + 1/u]. Since B = Cl[u] = C[1/u], we obtain by Theorem 4.1
thatu™",u" € C for sufficiently largen. Henceu, 1/u € C, which impliesC = B. By
Corollary 4.2, if B is well-centered oveA, thenB is a localization ofA. O

We extend Proposition 4.9 as follows:

Proposition 4.10. Let A be an integral domain and let B = A[u, 1/ f (u)] be a flat well-
centered overring of A, where f(X) isamonic polynomial in A[X], and u, f () € U(B).
Then B isalocalization of A.

Proof. Since f is monic, B is integral overC := A[ f(u), 1/ f (u)]. ThusB is flat and
integral overC and thereforeB = C. Thus B = C is flat and well-centered oveA.
Proposition 4.9 implies tha® = A[ f(u) + 1/ f (v)] and thatB is a localization ofA. O

Question 4.11. Under what conditions on an integral domaliris every flat overring oA
well-centered oA ?

Discussion 4.12. Akiba in [1] constructs an interesting example wheris a 2-dimensional
normal excellent local domairR, is a height-one prime oA that is not the radical of a
principal ideal, and3 = (J;2; P~ is the ideal transform ot at P. ThusB =, Ag,
where the intersection ranges over all the height-one prime$ ofher thanP. Akiba
proves thatP B = B. It follows that B is flat and finitely generated ovet, but not a
localization ofA.
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We observe thaB is not almost well-centered ovdr. Indeed, assume th&tis almost
well-centered oved, and leth € B\ A. Thusub™ € A for some unitu of B andm > 1.
Henceu € U(Ap) for each height-one prim@ # P of A. SinceA is normal, we have
b™ e B\ A, thusb™ ¢ Ap. It follows thatu € PAp. Therefore: € A andv/uA = P. This
contradicts the fact that is not the radical of a principal ideal. We conclude tRat not
almost well-centered oA.

We observe thaB is not a simple extension of. Moreover, for every nonzero nonunit
b € B we haveC := A + bB C B. This follows becaus® B = B implies dimB =1 and
dim(B/bB) =0. HoweverC/bB= A/(bBN A) and dim{A/(bBN A)) = 1.

Theorem 4.13. Let B be a well-centered overring of an integral domain A. If there exist
finitely many valuation overrings Vu, ..., V, of A suchthat A=BnVvViN---NV,,then B
isalocalization of A.

Proof. For S a multiplicatively closed subset af, we have
sta=s"1Bnstvin...nsty,,

so by replacingd by its localization(/(B) N A)~1A, we may assume thaf(B) N A =
U(A). If B CV;, thenV; may be deleted in the representatiér= B N ((;_; Vi). Thus
we may assume thak ¢ V; for eachi. We prove that after these reductions we have
A = B, i.e., the sefV;} is empty. Assume not, then for each<li < n chooseb; € B
such thath; ¢ V;. By [13, Lemma 5.4], there exist positive integets. . ., e, such that
b:=Db + b2 + -+ by ¢V, thusb~1 € V; for eachi = 1,...,n. SinceB is well-
centered oven, there exists € U/ (B) such thaub € A. Sinceb ¢ V;, we haveu € V; for
alli. Therefore: € BN (M/_;, Vi) = A. It follows thatu € ANU(B) =U(A) andu~ € A.
Henceb € A, a contradiction. O

Lemma 4.14. Let B be a finitely generated flat overring of an integral domain A and let
C beanintegral overring of A. The following conditions are equivalent.

(1) Bisalocalizationof A.
(2) Bisalocalizationof C N B.

Proof. Clearly (1) = (2). Assume (2). ThetB = (B N C)[u], whereu=1 € BN C. Since
B N C is integral overA, it follows that B is flat and integral oveiA[u]. Therefore
B = Alu]. By Theorem 4.1B is a localization ofA. O

Theorem 4.15. Let A be an integral domain for which the integral closure A’ has a
representation A’ = ("o, V, where V is a family of valuation overrings of A of finite
character. If B is a finitely generated flat well-centered overring of A, then B is a
localization of A.

Proof. Since B is finitely generated oveA, we haveB C V for all but finitely many
domainsV e V. Let Vy, ..., V, be the domains i that do not contaiB. ThusA’'N B =
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BN (.1 Vi). By Theorem 4.13B is a localization ofA’ N B. By Lemma 4.14B is a
localization ofA. O

It is well known that the integral closure of a Noetherian domain is a Krull domain [25,
(33.10)]. Therefore Corollary 4.16 is an immediate consequence of Theorem 4.15.

Corollary 4.16. Let A be an integral domain for which the integral closure A’ is a Krull
domain. If B isafinitely generated flat well-centered overring of A, then B isalocalization
of A. In particular, afinitely generated flat well-centered overring of a Noetherian integral
domain A isalocalization of A.

Discussion 4.17. Let A be an integral domain with field of fraction§. SupposeB =
Alby, ..., b,]is afinitely generated overring of. Let I; = (A :4 b;) be the denominator
ideal of b; and let/ = (_; I;. The overringC := {x € K: xI" < A for some integer

n > 1} is called thel-transform of A. This construction was first introduced by Nagata
[24] in his work on the 14th problem of Hilbert. It is clear thBtC C and thatC is
the I B-transform ofB. Nagata observes [24, Lemma 3, p. 58] that there is a one-to-one
correspondence between the prime idgalsf C not containing/ and the prime ideals
P of A not containingl effected by definingD N A = P. Moreover, it then follows that
Ap = Cyp. In particular, if IB = B, thenB = C is flat over A and there is a one-to-
one correspondence between the prime idéalsf B and the prime ideal® of A not
containing/, the correspondence defined ®yN A = P. Thus if B = A[b1,...,b,] is a
flat overring ofA and P € SpecA, then the following are equivalent:

(1) PB=B.
(2) P containstheideal; = (A :4 b;) forsomej € {1,...,n}.
(3) P contains the ideal = ﬂ’}zl Ij.

Theorem 4.18. Let B be a well-centered flat overring of an integral domain A. If there
exists a finite set 7 of height-one prime ideals of A suchthat A= B N(\p.z Ap, then B
isalocalization of A.

Proof. Since P € F has height-one, fo§ a multiplicatively closed subset of either
S~1Ap =Ap or S™1Ap = K, the field of fractions of. Therefore

StA=8TBn()(sAp).
P

where the intersection is over alt € F such thatP N S = @. By replacingA by its
localization(¢/(B) N A)~1A, we may assume that(B) N A =U/(A) and thatB ¢ Ap for
eachP € F. After this reduction, we claim that = B, i.e., thatF = (. SupposeFr # @.
SinceB is flat overA, for eachP € F we haveP B = B. Let ¢ be a nonzero element in
(N per P and consider the ring/c B and its subringR = A/(cBN A). SinceP B = B and
since every minimal prime of the ring is the contraction of a prime ideal &/cB, we
havecB N A ¢ P for eachP € F. Thus there exists an element A\ | Jp . P, So that



454 W. Heinzer, M. Roitman / Journal of Algebra 272 (2004) 435-455

s/c € B. SinceB is well-centered oveA, there exists: € U(B) such thatus/c =a € A.
Thusu =ac/s € Ap forall P € F. Thereforeu € ANU(B) =U(A). Hences/c € A, but
s/c ¢ Ap, acontradiction. O

Theorem 4.19. If each nonzero principal ideal of the integral domain A has only finitely
many associated primes and each of these associated primes is of height 1, then every
finitely generated flat well-centered overring of A isalocalization of A.

Proof. Let B = A[by, ..., b,] be afinitely generated flat well-centered overring4ofTo
prove thatB is a localization ofA, we may assume that(B) N A =U/(A), and then we
have to show thatt = B.

SinceB is a sublocalization of, by [5, Proposition 4]B = (.5 Ap, WhereS is the
set of prime ideals® of height 1 of A so thatP B # B. Let F be the set of prime ideals of
height 1 inA such thatPB = B. ThenA = BN () p.r Ap. By Discussion 4.17, the s¢t
is finite. Hence by Theorem 4.18,is a localization ofA. O

Proposition 4.20. Let B be a well-centered overring of an integral domain A. If S isa
multiplicative closed subset of A suchthat A = Ag N B and such that Bs is a localization
of Ag, then B isalocalization of A.

Proof. Let b € B. There exists an element Ag NU(Bs) such thattb € Ag. We may
assume that € A, thustb € As N B = A. Sincer—1 € By, there exists € S such that
st~1 e B. SinceB is well-centered oved, there exists € /(B) such thauust 1 =a € A.
Thenu =at/s € AsN B=A andub = atb/s € As N B = A. We have shown for each
b € B there existst € ANU(B) such thaub € A. ThereforeB is a localization ofA. O

Corollary 4.21. Let B be a well-centered overring of an integral domain A, let I be a
proper ideal of A, andlet S =1+ I. If for each b € B and ¢ € I there exists an integer
n > 1lsuchthat ¢"b € A andif Bg isalocalization of Ag, then B isalocalization of A.

Proof. The corollary follows from Proposition 4.20 sinde= AsN B. O

Theorem 4.22. Every finitely generated flat well-centered overring of a one-dimensional
integral domain A isalocalization of A.

Proof. Let B= A[by, ..., b,] be a finitely generated flat well-centered overringiodnd
let] = ﬂ’;:l(A :a bj). ThenI B = B by flatness. Lef§ =14 1. Then/Ag is contained
in the Jacobson radical d@fs. Since dimAs < 1, 1Ag is contained in every nonzero prime
ideal of Ag. SincelB = B, it follows by [32, Theorem 2 or 3], thaBy is the field of
fractions ofAs. By Corollary 4.21,B is a localization ofA. O

An interesting question that remains open is whether a finitely generated flat well-
centered overring of an integral domainis always a localization ofl.
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