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We obtain commutativity-free characterizations of those derivations  on a unital
complex Banach algebra A that map A into its radical: d4 crad(A4) if and only if
there exists a constant M >0 such that r(dx) < Mr(x) for all x e A, which in turn
is equivalent to sup{r(z~'dz)|ze€ A invertible} < oo {where r(-) is denoting the
spectral radius). The second characterization answers positively a question raised
by J. Zemanek.  © 1995 Academic Press, Inc.

1. INTRODUCTION

The general or non-commutative Singer-Wermer conjecture states that a
derivation 4 on a complex Banach algebra 4 (i.e., a linear mapping on A
satisfying the Leibniz rule d(xy) = x(dy) + (dx) y for all x, y e 4) which has
the property that all commutators x(dx) - (dx) x, x€ A belong to rad(4)
{the Jacobson radical of 4) has its image contained in rad(A). Equiv-
alently, [6, p.239], all primitive ideals of 4 are invariant under 4. It is
known to be true if d 1s bounded [3], [7] or if 4 is commutative [11],
while the classical Singer—Wermer theorem [10] gave the affirmative
answer if both hypotheses are satisfied. There is some evidence for the
validity of the conjecture in general, cf. in particular [12], the strongest
probably being that d4 =rad(A) if, in the assumption, rad(4) is replaced
by the smaller nil radical nil(4) of 4 [8]. A comprehensive account of the
state-of-the-art and of how the general Singer—Wermer conjecture relates to
other important open problems in Banach algebra theory is given in [6].
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The present paper is devoted to commutativity-free descriptions of
derivations mapping into the radical. Let us introduce some terminology.
Throughout, 4 will denote a complex Banach algebra which, without loss
of generality, we assume to be unital. A linear mapping T: 4 — 4 is called
spectrally bounded if there exists a constant M > 0 such that r(Tx) < Mr(x)
for all xe A, where r(.) stands for the spectral radius. We say that T
is spectrally infinitesimal if, in the above estimate, we can take M =0
or, equivalently, 74 < Q(A), the set of quasinilpotent elements of A.
Clearly, one has the following implications none of which can be reversed
in general

TA crad(A) =T spectrally infinitesimal = T spectrally bounded.

Let d be a derivation on 4. It is known [13], [7] that 4 spectrally
infinitesimal implies that dA4 <rad(A4). Our main result, Theorem 2.5,
establishes that d spectrally bounded already implies that d4 = rad(A4). The
proof merely uses the Jacobson density theorem and a weak version of
continuity of spectrally bounded derivations (Lemma 2.4), bypassing the
Turovskii-Shul’'man result. Building on work by Ptak from the 1970s, the
first-named author had previously been able to prove the result for inner
derivations [2], while in [4] a simpler proof of a more general result
avoiding subharmonicity properties of the spectral radius was found. That
the result holds for non-inner derivations as well is explicitly surmised in
[6] as it may be considered as an intermediate step towards the non-
commutative Singer—Wermer conjecture.

In the 1970s, the interrelations between algebraic properties of the spectral
radius and those of the Banach algebra 4, in particular commutativity,
were intensively studied by a number of authors. For example in [14], it
was proved that an element ¢ e A is central modulo rad(4), i.e., the inner
derivation d, maps into rad(4), if and only if sup{r(z 'd,z)|z inver-
tible} < oo. Zemanek [ 14, Question 1.4] raised the question whether this
property takes over to arbitrary derivations, and using essentially the same
methods as in Theorem 2.5, we will give an affirmative answer in
Theorem 2.6.

Finally, in Theorem 2.8, we will characterize spectrally bounded
generalized derivations extending the results of [4].

2. REsuULTS

We precede the proof of our main theorem by a series of lemmas.

LemMMA 2.1.  Every spectrally bounded derivation leaves each primitive
ideal invariant.
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Proof. Let P be a primitive ideal of 4 and let 4 be such that
rdx) < Mr(x) for all xe A and some M = 0. A standard application of the
iterated Leibniz rule yields that

d"(x")—n!(dx)'eP

for all xe P and neN, cf. [9, Lemma 2.1]. In the semisimple quotient
Banach algebra 4/P we therefore obtain that

r(dx + P) = r((dx)" + P)'"
(n)) "V d™(x") + PY"

(n1) =1 (dn(xm)n
(n!) """ Mr(x)  (xeP,neN)

Il

NN

whence dx + Pe Q(A/P) for each x € P. Consequently, the ideal (dP + P)/P
is contained in Q(A/P), hence in rad(4/P)={0}, and dP < P follows. ||

The following elementary observation is merely recorded for completeness.

LEMMA 2.2. Let E be a vector space and a be a linear mapping on E. If
{1, a} is linearly independent, then there is & € E such that {&, al} is linearly
independent.

The technical key result to our theorems is the following algebraic
lemma. It is interesting to note that we have to treat some of the inner
derivations separately. This is due to the following observation of Sinclair.
Following [9], we denote by E. the linear space

E.={neE|n(x)n=0 for all xe 4 such that n(x) ¢ =d_ n(x) =0},

whenever (n, E) is an irreducible representation of 4, £e€E, and d, i1s a
non-zero derivation on n(4). By [9], dim E. <2 and equality holds for
some & if and only if d,=[-, o] for some linear, not necessarily bounded
mapping b on E. Let dim E=2, so that E=FE. will occur. Then,
m(A)=M,(C) and d,=[-,b] with b¢Cl. Take £e E\{O}. If {& b} is
linearly independent, then n(x)¢=d, n(x)& =0 implies that zn(x)hE=0
whence n{x)=0. If bf =2 for some AeC, then d n(y) =0 for every
ye A with n(y)<£=0. In any case, not both conditions (1) and (2) in
Lemma 2.3 below can be fulfilied.

LEMMA 2.3. Let (n, E) be an irreducible representation of A with
dim E >3 and d, be a non-zero derivation on n(A). There exist &, ne E\{0}
and x, y€ A such that

n(x)E=d, n(x) =0 and nx)n==¢ (N
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and
ay)E=n(y)n=0 and  d.n(y)E=n. (2)
Proof. Take &e E\{0}. Suppose that, for all ye 4,
W(y)E=0=d,n(y){=0.

Then, b(n(y) &)= —d,n(y) &, ye A defines a linear mapping b on E, as
n(A) = E. Note that

d.n(x)n(y)E=d n(xy)—n(x)d,n(y) <
=(n(x) bn(y) —br(xy)) ¢
=[n(x),b] n(y) &

for all x, ye A. Hence, d, =[ -, b] is an inner derivation on n(A4). As d, #0,
b¢ Cl so that there is & € E such that {&', b&'} is linearly independent
(Lemma 2.2). Thus, by the Jacobson density theorem, there is y € A satisfy-
ing n(y) &' =0 and

d.n(y) & =n(y} bl —bn(y) ' =n(y) b #0.
Taking either ¢ or £’ we can therefore assume that there is y, e 4 with
my) =0 and  d,m(y) {#0. (3)

Our next claim is that there is x, € 4 such that n(x,) {=d, n(x,) =0
and n(x,) #0. Clearly, { € E; and since dim E: <2 [9, Lemma 3.2] while
dim E >3, there exists 7€ E\E.. Consequently, there has to be x,e4
satisfying n(x,) £ =d, n(x,) =0, but n(x,)n#0. Take x,€ 4 such that
7{x,) n(xo) n =& Then x = x, x,, satisfies (1).

We next proceed to find ye 4 satisfying (2). Using (3) there is y, € A4
such that n{y,) d,n{ y,) £ =1n. Then y, =y, y, satisfies

n(y,)E=0 and d.m(y,) E=n.

If {n, n(y,) n} is linearly independent, again the Jacobson density theorem
allows us to pick y; € A4 such that

n(yiln=n and (y,) (y,) n=0.

Putting y = y; v, we then arrive at the assertion.
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Otherwise, 7(y,) = un for some peC. By (1), the element y, =y, +x
fulfills

n(yy) £ =0, d,n(y5)¢=n and  a(y)p=pun+<E

Thus, proceeding as above with vy, in place of y,, we find y=y;)}
fulfilling (2). §

The following continuity property, sufficient for our purposes, is
immediate from Lemma 2.1 and [5].

LEMMA 2.4. Let d be a spectrally bounded derivation on A and (n, E) be
an irreducible representation (with a topology on E such that the action by
A is continuous). For each ne E, the mapping x+— n(dx)n from A to E is
CONLInUous.

THEOREM 2.5. Every spectrally bounded derivation d on a unital Banach
algebra A maps into the radical.

Proof. Suppose that dA ¢rad(A4) so that there is an irreducible
representation (7, E) of 4 with d,#0, where d, denotes the induced
derivation on n(4) (Lemma 2.1). Our aim is to produce a sequence (z,), . n
of invertible elements in 4, xe 4 and £ e E\{0} such that

d.n(z;'xz,) E=né for all neN. (4)
Suppose that (4) holds. Then, r(d,n(z; 'xz,)) = n and thus
n<r(d(z]'xz,)) < Mr(z, 'xz,) = Mr(x)

for some M>=0 and all rneN. This contradiction will show that
dA <rad(A4).

If dim E<2, there is be A such that 4 ,=[-,=(b)]. Since d,#0,
n(b) ¢ C1 wherefore there exists £e E such that {& n(b) <&} is linearly
independent (Lemma 2.2). By [ 1, Corollary 4.2.6], we can take xe 4 and
=, € A invertible with the property that

n(x)¢=0, w(x)ab)y<=¢,  w(z,)¢=¢
and
n(z,) lb) & =nn(b) .
Then,

d oz xz,) E=nlz, Y r(x)r(z,) 7(b) E —n(b) a(z, ") n(x) 7(z,) E =né

as required.
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If dim E>3, we may apply Lemma 2.3 to obtain &, ye E and x,ye A4
fulfiling (1) and (2). For each neN put z,=¢". By (2), we have
n(z,)E=¢, nlz,)n=n, and by induction, d,7(y*)&=0 for all k>2. By
Lemma 2.4 and (2) it follows that

", nk
d,.,TE(_’_'")fz Z E_’dnn(},k)g":n;].
A=0""

Using (1) we conclude that
d.on(zxz,)E=d nz Y n(x)n(z,) E+r(z7 Y d (X)) r(z,) &
+n(z, Y r(x)d,n(z,) &

=n

Ay

The proof is complete. |

Note that there exist unbounded spectrally bounded derivations, but that
the separating space of each such derivation is contained in the radical.
Non-zero inner derivations on semisimple Banach algebras provide
examples of bounded spectrally unbounded derivations.

A variant on the proof of Theorem 2.5 enables us to affirm a conjecture
by Zemanek first stated in 1977, cf. [ 14, Question 14].

THEOREM 2.6. Let d be a derivation on a unital Banach algebra A. Then
dA <rad(A4) if and only if sup{r(z~'d=)|z € 4 invertible} < oo,

Proof. Let s=sup{r(z " 'dz)|ze A invertible}. If dA4 =rad(4), then
s=0. Supposing conversely that s <oc we first show that drad(4)<
rad(4). Given aerad(4) we have (1 +a) '=1—a(l +a) 'el+rad(4)
and therefore

(1 +a) dt +a))=r({1 —a(l +a) ") da) = r(da).

By assumption, it follows that r(da)<s< oo for all aerad(4) whence
drad(4)< Q(A4). Consequently,

rHxda)=r(d(xa)— (dx)a) =rd(xa))=0 (xe A, aerad(A4))

wherefore d rad(A4) S rad(A).

Since the induced derivation d on the semisimple Banach algebra
A = A/rad(A) is continuous [5, Remark 4.3], it leaves each primitive ideal
P of A invariant [9, Theorem 2.2]. If P is a primitive ideal of A, then
P = P/rad(A4) is a primitive ideal of 4 whence dP < P implies that dP < P.
We thus conclude that d fixes each primitive ideal of 4.



DERIVATIONS MAPPING INTO THE RADICAL, I 27

Now suppose that dA4 £rad(A4). Take an irreducible representation
(n, E£) of A such that the induced derivation d, is non-zero. By the first
part of the proof of Lemma 2.3, ie. (3), which does not depend on the
dimension of E, there are y,e A4 and £ e E\{0} such that n(y,) ¢=0 and
d.n(vy) E#0. Take y, € A with n(y,) d, n(y,) £ =&, then y =y, v, satisfies

n(y)¢=0 and d,n(y)l=¢ (5)

Putting z,=¢"™ (neN) we obtain invertible elements in A4 with the
property that z(z,) £ =¢ and

nk
jd.n(y)E=nd,n(y)E=né

-~

d.n(z,) &= Z
k=0

as d,n(y*)¢&=0 for all k>2 and the same continuity argument as in
Lemma 2.4 applies. It follows that

n<rin(z,Yd,n(z,))<r(z, dz,) <5 (neN)

which is impossible. [

A linear mapping J on A4 is said to be a generalized derivation if
Hxyz)=0d(xy) z — x(y) - + xd( yz) (x, y,2€ A). (6)

In the applications such operators correspond to irreversible dynamics
while derivations generate reversible ones. Put a=4(1). Using (6) it is
easily computed that dx =dx —ax, x € A defines a derivation on A. Hence,
every generalized derivation J is of the form

o=L,+d

with ¢« =J(1) and d a derivation, and every generalized inner derivation is
givenby L,+d,=L, .+ R, (here, L, and R, denote left and right multi-
plication by a and b, respectively). A spectrally bounded generalized
derivation need not map into the radical, but if it is inner, both its con-
stituents L, and d, have to be spectrally bounded as is proved in [4].
Adapting the proof of Theorem 2.5 we finally extend this result to arbitrary
spectrally bounded generalized derivations.

LemMma 2.7.  Every spectrally bounded generalized derivation leaves each
primitive ideal invariant,

Proof. Let 6=L,+d be spectrally bounded. As above, it suffices to
show that d fixes the radical. Let M > 0 be such that r(dx) < Mr(x) for all
xe A. For each yerad(A), we have that
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r((dy)x) = r(d( yx) — ydx) = r(é( yx) — ayx — ydx)
=rd(yx)) < Mr(yx)=0

for all x € A wherefore dy erad(A). §

Remark. Of course, the arguments in the above proof can also be used
to prove Lemma 2.1; however, we preferred to give a more elementary
proof not using automatic continuity theory.

THEOREM 2.8. Let §= L, +dwith a= (1) be a generalized derivation on
a unital Bunach algebra A. The following conditions are equivalent.

(a) o is spectrally bounded.

(b} Both L, and d are spectrally bounded.

Proof. (b)=(a) By Theorem 2.5, d4 =rad(A4) wherefore
r(dx)=r(ax +dx)=r(ax) < Mr(x)

for some M >0 and all x e 4. Hence, J is spectrally bounded.

(a)=(b) By Theorem 2.5, it suffices to show that d is spectrally
bounded. For then, d4 =rad(A4) and r(ax)=r(dx) for all xe A yield that
L, is spectrally bounded with the same constant as 6.

Suppose that d4 & rad(A4) and let (7, E) be an irreducible representation
of 4 such that n(d4) # {0}. By Lemma 2.7, d induces a non-zero derivation
d, on n(A). As in the proof of Theorem 2.5 there are z,e A invertible,
xe A, and &e E\{0} such that, for all ne N, d,n(z,, 'xz,) & =né as well as
n(x) n(z,) £=0. Therefore,

o,z 'xz,) E=m(a) n(z,] 'xz,) E+d n(z, 'xz,) E=né

n n

which shows that

n<r(é,n(z ' xz,)) <r(d(z 'xz,)) < Mr(x)

n

for some M >0 and all ne N contradicting the spectral boundedness
of 6. 1
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