
A Formal Semantics for a Quality of Service

Contract Language

Christiano Braga 1

Universidad Complutense de Madrid (UCM)
Madrid, Spain

Fabricio Chalub 2

Instituto de Computação
Universidade Federal Fluminense (UFF)

Niterói, Brazil

Alexandre Sztajnberg 3

Instituto de Matemática e Estat́ıstica
Pós–Graduação em Eletrônica

Universidade do Estado do Rio de Janeiro (UERJ)
Rio de Janeiro, Brazil

Abstract

Current interests in the context of system development include non-functional aspects of an application and
the quality of the service (QoS) it provides. In video on demand applications, for instance, properties such
as delay, bandwidth and CPU utilization are monitored in order to identify if they are within acceptable
limits. In our approach, non-functional requirements are described by contracts. A contract specifies
acceptable variations on the availability of these properties and how service replacement can be negotiated
to keep the QoS of the application within the acceptable limits. In this paper we give an operational
semantics for QoS contracts and report its implementation in a prototype tool that allows us to execute and
analyze QoS contracts. The QoS Tool, our prototype, transforms QoS contract descriptions into modular
structural operational semantics (MSOS) specifications. MSOS specifications are executable and analyzable
in the Maude MSOS Tool, which uses efficient rewriting to execute, search and model checking MSOS
specifications. We exemplify how the QoS Tool can be used by analyzing a video on demand application
against real data.

Keywords: software architecture description languages, QoS contracts, Maude, MSOS

1 Email: cbraga@fdi.ucm.es
2 Email: fchalub@ic.uff.br
3 Email: alexszt@ime.uerj.br, Phone/Fax: +55 21 2587-7391

Electronic Notes in Theoretical Computer Science 203 (2009) 103–120
www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.03.029
1571-0661/© 2009 Elsevier B.V. Open access under CC BY-NC-ND license.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82432066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
maito:cbraga@fdi.ucm.es
mailto:fchalub@ic.uff.br
mailto:alexszt@ime.uerj.br
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

An increasing demand can be currently observed for non-functional aspects descrip-

tions and its impositions a posteriori during application execution (e.g. [13]). This

demand is driven by the application designer, who needs to specify operational and

quality requirements, and by the user, who knows which are the acceptable quality

parameters for the application execution.

The use of a specification language to describe such requirements is a way to

gather these two visions. If this language is formal, it may be used to execute

applications with such requirements. Moreover, if this language has a mathematical

meaning, one can actually reason about them before deploying the application.

In this paper we give a formal semantics for QoS contracts [10] in the CBa-

bel software architecture description language, our specification language of choice.

Using QoS contracts one may specify quality parameters for application execu-

tion in the form of interval values for QoS properties. Also, besides static re-

quirements such as property interval values, the dynamics of service change can

be described to manage the requirements, a characteristic that distinguishes CBa-

bel QoS contracts from other approaches to QoS management [9]. The seman-

tics for QoS contracts is given in operational semantics, allowing reasoning about

QoS contract descriptions. Moreover, this semantics is executable and analyzable

in the Maude MSOS Tool (MMT) [2,3] using state search and model checking.

We have automated the translation process from QoS contracts to specifications

in the modular SOS definition formalism (MSDF), the specification language ac-

cepted by MMT. The QoS Tool is a prototype implementation of a QoS contract

analysis Tool composed by this transformation function together with MMT. Its

implementation, examples and analysis discussed in this paper are available at

http://maude-msos-tool.sf.net/qostool.

Thus, we contribute to the effort of QoS management using an approach with

a high level of abstraction and the support of a formal-based tool to analyze QoS

contracts. To report this contribution, we have organized this paper as follows.

In Section 2 we exemplify the QoS contract language by means of the video on

demand (VoD) application example. Section 3 presents the abstract operational

semantics for the QoS contract language. Section 4 describes the implementation of

the semantics given in Section 3 in the Maude MSOS Tool. In Section 5 we describe

our analysis of the VoD example given in Section 2 using real data. We conclude

this paper in Section 6 with our final remarks.

2 QoS Contracts and the VoD Example

In our approach we consider QoS of distributed systems as a set of non-functional

requirements. Non-functional requirements are constraints that a system must ful-

fill, which are related to properties that should be monitored. Properties are defined

by (intervals of) values that rule “how properly” the functions of a system should

execute. (The word property here should not be understood as a logical formula,

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120104

http://maude-msos-tool.sf.net/qostool

but “as the name of a value that should be monitored”.) After monitoring the

properties, depending on the obtained values, a service should be chosen. Services

are essentially interfaces representing the actual functionality of the system, imple-

mented by software components in a given software architecture. The process of

choosing a service is called negotiation.

In the context of video streaming on demand (VoD) through the net, for example,

if there is not enough bandwidth to use a high-quality standard for video streaming

then a lower quality standard could be (temporarily) used. In this example, the

QoS property is bandwidth. The QoS requirements are the intervals of values of

the QoS property. The functionality is to cast video, and the configurations for

the different acceptable video streaming standards are captured as services. After

monitoring the bandwidth, a service must be negotiated and either a high-quality

video cast or a low-quality one is chosen.

QoS contracts were originally proposed in [7] essentially as record types in a

programming language. Each record index is a QoS property that may be bound

to an element from a collection of values, manipulated by services. That is, they

represented, essentially, static information. One of the authors [10,11] extended

QoS contracts with the notion of negotiation among services and represented their

notion of QoS contract in their software architecture description language named

CBabel.

The VoD example could be represented with the following QoS contract. Our

description begins with QoS categories that define the QoS properties to be moni-

tored and their associated types. For the VoD example we define two such categories.

The category ‘Processing’ declares the properties ‘utilization’, representing the

process load of a host, ‘clockFrequency’ represents the processor speed of the host

and ‘memReq’ captures the amount of memory required by the application. The QoS

category ‘Transport’ declares two QoS properties: ‘delay’ captures the acceptable

interaction time between two peers through the network and ‘bandwidth’ represents

the acceptable rate for data transport through the network.

QoSCategory Processing { QoSCategory Transport {
utilization: numeric; delay: numeric;
clockFrequency: numeric; bandwidth: numeric;
memReq: numeric; };

};

QoS constraints are defined by profiles, which describe the acceptable intervals

of values for the possible QoS properties of interest. For the VoD example we define

two different profiles for each QoS category. The profiles ‘cpu 01’ and ‘network 01’,

representing local processing properties and network resources proprieties, respec-

tively describe a high-quality standard, and ‘cpu 02’ and ‘network 02’ represent a

low-quality standard.

profile { profile {
Processing.clockFrequency >= 700; Processing.clockFrequency >= 266;
Processing.utilization <= 50; Processing.utilization <= 70;

} cpu_01; } cpu_02;

profile { profile {
Transport.delay <= 50; Transport.delay <= 200;

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120 105

Transport.bandwidth >= 3/2; Transport.bandwidth >= 56/1000;
} network_01; } network_02;

A contract declares a set of services and a negotiation clause among the services

in order to keep up with the established QoS requirements. The VoD example has

two services, one for each casting standard. Each service may enact topological

operations over the software architecture such as to instantiate a component with

a given profile and link the instantiated component with the rest of the software

architecture. (For the purposes of this paper, however, only the profiles associated

with a service are relevant. The actual connection with the software architecture is

not considered.) Thus, for the VoD example the service ‘MPEG video’ is associated

to profiles ‘cpu 01’ and ‘network 01’ and service ‘H 261 video’ to profiles ‘cpu 02’

and ‘network 02’.

contract {
service { service {
instantiate player with cpu_01; instantiate player with cpu_02;
link player to server link player to server

by UDP_socket with network_01; by UDP_socket with network_02;
} MPEG_video; } H_261_video;
//...

The informal semantics for the ‘negotiation’ clause is as follows. Each time

the system monitors QoS properties, it tries to apply a negotiation rule, following

the declaration order. If the rule is positive, that is, the service on the left-hand

side of the rule is not negated, the rule is applied by replacing the current service

with the one on the right-hand side of the rule if the service on the left-hand side

of the rule is the current service and the service on the right-hand side of the rule

is valid. A service is said to be valid when the conjunction of the interval values

on the profiles associated with the given service holds for the current monitored

data. If the rule is negative, that is, the service on the left-hand side of the rule is

negated, the negotiation rule is applied only if the service on the left-hand side is

the current service and it is not valid and the one on the right-hand side is valid.

The negotiation clause for the VoD contract is quite simple. It simply tries to

keep up with ‘MPEG video’ as much as possible. If ‘MPEG video’ is not valid, the sys-

tem tries to change the current service to ‘H 261 video’. Whenever ‘H 261 video’

is the current service, either if it is valid or not the system tries to change to

‘MPEG video’.

//...
negotiation {
not MPEG_video -> H_261_video;
H_261_video -> MPEG_video;

}
} vod;

Informally, the state-transition semantics for contracts is the following one. Each

state has its current monitored data and current service. A guard formula γ is a

condition for the associated transition to occur. For the VoD example the state-

transition system is shown in the diagram below, where the predicate mpegvideo,

for instance, means that the profiles (that is, their intervals) bound to the service

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120106

MPEG video are valid for the current monitored values. The states and transitions

are as follows: state 1 has ‘MPEG video’ as the current service, in state 2 the current

service is ‘H 261 video’ and in state 3 the current service is the special service

‘no-service’, which means that no other service can be set as the current one.

The transition guards are defined by the following predicates: γ0 = mpegvideo, γ1

= ¬mpegvideo ∧ h261video , γ2 = h261video ∧ ¬mpegvideo, γ3 = mpegvideo, and γ4

= γ5 = ¬h261video ∧ ¬mpegvideo.

�������	1

γ0

�� γ1

��

γ5

��

�
�

�

�������	2

γ2

��

γ3

��

γ4

��

�
�

��������	3

In Section 3 we give an abstract semantics for QoS contracts and QoS applica-

tions that capture the intuition given above.

3 An Abstract Semantics for QoS Contracts

A QoS category is a set Id × T , where Id is a set of identifiers representing QoS

properties and T is the set of basic data types in the QoS contract language.

A QoS contract specification is a tuple C = ((S,<), P, I,R), where S is a set of

identifiers representing service names with < a partial order among the elements of S

representing the order of declaration of the negotiation rules; P is a set of predicates

parameterized by a given set D of data representing the profiles; I ⊆ S ×P is a set

with pairs of identifiers and predicates representing, for each service, the associated

profiles; and R ⊆ S × S∗ is the transition rule set given by the transition rule

schemes defined below.

Let us present a few auxiliary definitions first. The set N+ ⊆ R represent

the positive negotiation rules, that is whose lhs is not negated. The set N− ⊆ R

represent the negative negotiation rules whose lhs is negated. A service is said to be

valid if the predicates associated with it in I hold within the given monitored data.

A service s′ is one-step positively reachable from a service s or simply positively

reachable from s if it appears as an element in the sequence s′ of services related

to s in N+. A service s′ is one-step negatively reachable from a service s or simply

negatively reachable from s if it appears as an element in the sequence s′ of services

related to s in N−. A service s′ is one-step reachable from a service s or simply

reachable from s if it appears as an element in the sequence s′ of services related

to s in N+ ∪ N−. The expression I(s), where s is a service identifier, yields the

predicate associated with s in I.

We assume a normalized transition rule set, that is, given a service S there may

exist only one rule (S, Si) ∈ N+, and only one rule (S, Sj) ∈ N−. The rules in

R are given by the following terminating transition rule schemes. There are two

cases to maintain a service. A service s may remain as the current service if it is

a valid service with the current monitored data and none of the services positively

reachable from s are valid. This case is specified by the following transition rule

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120 107

scheme,

(∀1≤i≤n si,¬I(si)(d)) ∧ I(s)(d)

(d, s) →N s .

where d ∈ D∗, ρ ∈ N+, S = π1(ρ), Si ∈ π2(ρ), where π1 and π2, are the first and

second projections of a pair, respectively. Also, for each service si that is reachable

from any given service, but no service is reachable from si, si may remain the current

service if it is valid. This case is specified by the following transition rule scheme,

I(s)(d)

(d, s) →N s .

where ∀s ∈ {si | ρ1 ∈ R, si = π1(ρ1), sj ∈ π2(ρ1), � ∃ρ2 ∈ R | sj = π1(ρ2)}.

To change a service one must consider the cases of positive and negative nego-

tiation rules. The current service may be changed to any service si related to it in

N+ if si is valid and all services prior to si in the sequence of services bound to the

current service in N+ are invalid. This case is specified by the following transition

rule scheme,

(∀1≤j<i sj,¬I(sj)(d)) ∧ I(si)(d)

(d, s) →N si .

where ρ ∈ N+, s = π1(ρ), si ∈ π2(ρ). If the current service is not valid, then the

same intuition of the positive case applies, but of course for set N−. This case is

specified by the following transition rule scheme,

¬I(s)(d) ∧ (∀1≤j<i sj,¬I(sj)(d)) ∧ I(si)(d)

(d, s) →N si .

where ρ ∈ N−, s = π1(ρ), si, sj ∈ π2(ρ).

There are two rules that specify the impossibility of setting any of the services in

S as the current service, denoted by �. The first case is when none of the services

reachable from the given service are valid. This case is specified by the following

transition rule scheme,

¬I(s)(d) ∧ ∀1≤i≤k¬I(s′i)(d)

(d, s) →N � .

where ρ1 ∈ N+, ρ2 ∈ N−, s = π1(ρ1) = π1(ρ2), k = | π2(ρ1) ∪ π2(ρ2) | ,

si ∈ (π2(ρ1) ∪ π2(ρ2)).

The second case is when the current service is invalid and there is no rule to

change the service. This case is specified by the following transition rule scheme,

¬I(s)(d)

(d, s) →N � .

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120108

where ∀s ∈ {si | ρ1 ∈ R, si = π1(ρ1), sj ∈ π2(ρ1), � ∃ρ2 ∈ R | sj = π1(ρ2)}.

The transition rules in R induce a transition relation for a contract →N⊆ (D∗×

{S∪�}×((D∗×S)∪{⊥})), representing the negotiation process, between sequences

of data, the set of services, and the set of services extended with the special service

�.

A QoS application is specified by A = (C,M,T) where C is a contract; M is a set

of transition rules, structured according to D, representing the monitor specification,

inducing a transition relation →M⊆ D∗×D∗ between sequences of data representing

the monitoring process; and T is a set of transition rules representing how the

application evolves as whole, given by the following two rules,

d →M d′ ∧ (d′, s) →N s′

(d, s) → (d′, s′) ,

if s′ �= �(1)

(d,�) → ⊥ .

(2)

where d, d′ ∈ D∗ and s, s′ ∈ S. The first rule specifies how the system evolves (to

(d′, s′)), with the given monitored data and current service ((d, s)) by first enacting

the monitoring process (d →M d′) (that is, inspecting the QoS properties) and then

negotiating a new service (s′) given the new monitored data (d′) and current service

(s′). The second rule specifies that the system goes to a deadlock state (⊥) if the

service “no-service” (�) is produced by the negotiation process.

Note that the specification of the monitor M is outside the contract specification.

In Section 5 we further discuss this issue.

4 Implementing QoS Contracts in MMT

The Maude MSOS Tool (MMT) [3] is an executable environment for Modular SOS

(MSOS), a modular variant of structural operational semantics. It is implemented

as a formal tool in the precise sense of [4], as a realization of a semantics preserving

mapping between Modular SOS and rewriting logic [12]. The modular SOS defi-

nition formalism (MSDF) [2] is the specification language supported by MMT. It

allows MSOS specifications to be written in a quite succinct syntax. MSOS has

SOS as a special case. Since MSOS modularity capability is not explored in this

work, MSDF should be understood here as a concrete syntax for SOS.

The QoS Tool is essentially a transformation function from the concrete syn-

tax for QoS Contracts into MSDF specifications following the abstract semantics

given in Section 3. One can load MSDF specifications produced by the QoS Tool

into MMT to execute and analyze the QoS contracts. In this section we exem-

plify the application of the transformation function showing excerpts of the MSDF

specifications generated from the VoD example. Space constraints prevent us from

describing the complete generated specification which can be found in the tool’s

web site at http://maude-msos-tool.sf.net/qostool.

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120 109

http://maude-msos-tool.sf.net/qostool

The MSDF specifications generated by the transformation function extend the

MSDF ‘SYSTEM’ module that includes the specifications for the abstract sets ‘Profile’,

‘Data’ and ‘Service’, and specifies the set ‘System’ together with MSDF transition

rules for Transition Rules 1 and 2 from Section 3. (The specifications for ‘Profile’,

‘Data’ and ‘Service’ are omitted.)

msos System is
System . System ::= deadlock | system Data ServiceId .

(monitor Data) --> Data’, ((negotiate Data’ ServiceId) --> ServiceId’)
[system] -- ---

(system Data ServiceId) : System --> system Data’ ServiceId’ .

[deadlock] (system Data no-service) : System --> deadlock .
sosm

A QoS category is transformed into an MSDF module, where each QoS property

in a category is transformed into a function of type ‘Data’ parameterized by the set

associated with the QoS property type. At the moment only ‘numeric’ and ‘enum’

basic types are being handled as QoS property types. The ‘numeric’ type is mapped

to MSDF ‘Rat’ built in data type for rational numbers. An enumeration is mapped

to an MSDF set named after the concatenation of the QoS category name with

the QoS property name. Each constant in an enumeration gives rise to a constant

function typed as the generated set. For instance, the QoS Category ‘VideoMedia’

gives rise to the MSDF module ‘QoSCategory/VideoMedia’. (The specification for

‘QoSCategory/VideoMedia’ is omitted.)

Essentially, a QoS profile is represented as a conjunction of the predicates asso-

ciated with each QoS profile property. The transformation affects both the gram-

mar and transition rules of the generated MSDF specification. A QoS profile is

transformed into a MSDF module that first imports the QoS category modules ref-

erenced by the profile, declares a set S, named after the QoS profile name, includes

the booleans in S, and declares a function, named after the QoS profile, typed as

the set generated from the QoS profile and parameterized by the set ‘Data’. Each

QoS property in a profile gives rise to a function of type S, named after the con-

catenation of the profile name with the QoS property, which is parameterized by

‘Data’. (Note that a given QoS property may have different intervals of values in

different profiles.) The transformer replaces numbers in the names of the profiles by

characters coded by that number. (This is an idiosyncrasy of MSDF: types may not

have numbers, because variables are automatically declared after the type names

concatenated with numbers or quotes.) The transformation that affects the syn-

tax of the generated MSDF module for the profile ‘cpu 01’ is given by the MSDF

module ‘Profile/cpuAB’ below.

profile { msos Profile/cpuAB is
Processing.clockFrequency = 700; see QoScategory/Processing .
Processing.utilization <= 50; Cpuab .

} cpu_01; Profile ::= Cpuab .
Cpuab ::= Boolean | cpuab Data |

cpuab-clockFrequency Data |
cpuab-utilization Data .

--- ...
sosm

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120110

Each QoS property in a profile gives rise to transition rules specifying when the

boolean expression related to the QoS property is true or false w.r.t. the current

monitored ‘Data’. (The example transition rule for the case when the predicate

does not hold is omitted.)

Rat == 700
-- ---
cpuab-clockFrequency (Data clockFrequency: Rat) : Cpuab --> tt .

Transition rules are also generated for the predicate representing the QoS profile

as a conjunction of the predicates representing each QoS constraint in the profile.

(Again we omit the transition rules for the cases when the predicate does not hold.)

((cpuab-clockFrequency Data) --> tt), ((cpuab-utilization Data) --> tt)
-- --
(cpuab Data) : Cpuab --> tt .

Each QoS contract is transformed into an MSDF module. The contract trans-

formation is two-fold: i) the service declaration part is transformed into set dec-

larations, function symbols in the grammar, and transition rules specifying when

a predicate representing a service is true or false w.r.t. the current ‘Data’; ii) the

negotiation clause is transformed into transition rules that specify when the current

service may be changed, remain the same or when none of the services can be set

as the current one. In this last case, a special service named ‘no-service’ becomes

the current one.

The transformation for the declaration of services is quite similar to the one for

profiles, that is, essentially, declaring a predicate that holds when the conjunction of

the predicates for the profiles associated with the given service hold. (The generated

specification is omitted.)

The transformation for the negotiation clause has two steps: i) normalization

of the negotiation rules, and ii) generation of rules to change the current service,

to keep the current service, and the ‘no-service’ case, following the semantics in

Section 3.

The normalization happens as follows. Given two rules with the same service on

the left-hand side they should be merged. If the two right-hand sides are disjoint,

the two rules are replaced by a rule with the service S on the left-hand side and

right-hand side given by appending to the tail of the right-hand of the second rule

the right-hand side of the first rule. Otherwise the order of the first rule should

prevail. Our example does not need normalization but it should be easy to see how

this is done in general.

The current service can only be changed by another if it is valid, that is, if the

profiles of the latter are valid with the current monitored data values. (Or “if the

latter service is valid”, for short.) If the change of service is specified by a list

of possible services in the right-hand side of the negotiation rule, for a particular

service in the list to be set as the current one all its previous services must be

invalid. A negotiation rule may also specify that a change may only occur if the

current service is invalid. The rules to change services for the VoD example are

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120 111

specified below.

negotiation {
not MPEG video -> H 261 video;
H 261 video -> MPEG video;

}

((mpegvideo Data) --> ff), ((hcgbvideo Data) --> tt)
-- ---
(negotiate Data mpegvideo) : ServiceId --> hcgbvideo .

((mpegvideo Data) --> tt)
-- ---
(negotiate Data hcgbvideo) : ServiceId --> mpegvideo .

The current service may remain the current one if it is valid and none of the

services the system may change to, in one step, from the current service, are valid.

Rules of the form not Si → Si1 || . . . ||Sim are not considered since they do not

influence on the maintenance of Si. Rules to maintain a service in the VoD example

are given by the rules below.

((mpegvideo Data) --> tt)
-- ---
(negotiate Data mpegvideo) : ServiceId --> mpegvideo .

((hcgbvideo Data) --> tt), ((mpegvideo Data) --> ff)
-- ---
(negotiate Data hcgbvideo) : ServiceId --> hcgbvideo .

As defined in Section 3, the special service ‘no-service’ should become the

current one in two situations. First, neither the current service is valid nor any of

its one-step reachable services. The second situation is if there is no negotiation rule

for the current service and it is invalid. The generated rules to handle ‘no-service’

for the VoD example are as follows.

((hcgbvideo Data) --> ff), ((mpegvideo Data) --> ff)
-- --
(negotiate Data hcgbvideo) : ServiceId --> no-service .

((mpegvideo Data) --> ff), ((hcgbvideo Data) --> ff)
-- --
(negotiate Data mpegvideo) : ServiceId --> no-service .

5 An Empirical Approach for QoS Contract Analysis

The semantics specified in Section 3 and implemented in Section 4 can be used to

analyze QoS contracts. The QoS Tool generates MSDF specifications that can be

analyzed using MMT with different techniques such as state-space search. (Rewrit-

ing modulo axioms and model checking are also possible, though not described in

this paper.) These analyses can assist:

• the designer, allowing the simulation of an execution of the contract to verify if

the state machine is behaving as expected. A contract with profiles with many

different properties can easily lead to inconsistencies. By simulating the execution

of the contract the designer can make fine grained adjustments on the contract

itself and on the profiles, and verify QoS properties of the system during design-

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120112

time;

• the deployer, that can verify if the provided resources are meeting the contract

requirements. For instance, it can be verified (i) if the service with the higher

priority is running most of the time and in case a switching to a lower priority

service occurs, (ii) if the system can switch back again to the preferred one, or

(iii) if the correct price is calculated;

• the user, that can gather information about the resources, usually provided by

commercial providers, as a form to attest that the Service Level Agreement (SLA)

is being meet. He may verify how and when the different services described in

the contract were running, and if the correct price is being charged.

The general technique used to verify QoS contracts is based on the representation

of a contract as a transition system. Therefore, “questions” that the deployer might

want to make are represented by invariants, which are captured by predicates and

verified using search commands. The search command provides an algorithm to

verify invariants on finite transition systems. The “questions” are written as “search

not I”, where I is the invariant expressed by a predicate. The “search” execution

will stop with either (i) solutions to the search, where I is invalid (a counter-example

to the invariant), or (ii) after trasversing all the (finite) state-transition system, a

solution is not found, indicating the invariant is valid.

In the case of infinite state systems the technique provides a semi-decidable

procedure, that is, if there are invariant violations, they will be found. The search

command is implemented with breadth-first traversal technique. Thus, if there is a

solution to the “question” written in the search command it will always be found.

(Otherwise the search will never end because the system is infinite.) Details on

the invariant checking technique can be found in [5], chapter 12 (“Model checking

invariants through search”).

We might need to verify if the service with the higher priority (declared as the

first rule in the negotiation clause) will ever be deployed. The “question” would be

written as a formula “search not S”, where S is an equation returning “true” if the

current service is the one of higher priority.

In the next section we discuss how these techniques were applied to the VoD

example and how they can be systematically used in other contexts.

5.1 An experiment on QoS contract verification

Consider the QoS contract for the VoD application (Section 2). We apply the

invariant checking technique to the VoD application to exemplify how the QoS Tool

can used to analyze QoS contracts. The complete runs are not shown due to space

constraints. All the files used in the experiment can be downloaded from the tool’s

web site at http://maude-msos-tool.sf.net/qostool.

Given the semantics specified in Section 3, the QoS contract designer must

supply, together with the QoS contract, a model of the monitoring process. This

process is captured in our abstract semantics as the transition relation →M and is

implemented in the QoS Tool as an MSDF module with transition rules that induce

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120 113

http://maude-msos-tool.sf.net/qostool

→M . However, to the best of our knowledge, there are no general models to repre-

sent properties such as the QoS properties that the VoD application handles. (The

workload model being developed in [6], for instance, could be considered in future

work.). We opted for an empirical approach to analyze the VoD application using

real data collected form actual systems to simulate typical situations (Section 5.2

describes how this data was obtained).

With the QoS Contract and the monitoring module one can perform verifications

using the search tools. Typical questions are:

• Is service S ever established? (i.e., there exists a state where S is the current

service?);

• Is the special service ‘no-service’ reached? (i.e., did the system reach a “dead-

lock” state, there is a state where the “no-service” is the current service?);

• If service S is the current service, will the service S′ be deployed next?;

• Given a finite state transition, show the state transition system;

• Given a finite state transition system, list all states where the current service is

S.

Analyzing the answers, and based on the expected dynamic behavior described

in the contract, the designer can reason about the contract and identify potential

problems. For instance:

• If a service described in the QoS contract is never established.

• If the preferred service (the one with higher priority in a given situation) is con-

stantly being replaced by another service.

• If an unexpected or undesired sequence of service switching can occur.

5.2 Obtaining data for the monitoring model

We obtained data for the monitoring model using the following scenario. A ma-

chine at Universidade Federal Fluminense (UFF) was configured as a Media Server.

Another machine running the client Display was configured at Universidade do Es-

tado do Rio de Janeiro (UERJ). (Respectively 1.2 and 2.8 GHz, with 256 and 1.5

GB RAM.) These machines were connected trough a 24 Mbps ATM-based Internet

link. A notebook running as a network background load injector was also con-

figured at the UERJ. We used a 100 Mbps hub to connect the two machines at

UERJ to the router. The idea was to make possible the injection of background

load in the network with no additional impact to the observed nodes (i.e., in a

shared media). Otherwise, using a switch, which does not emulate a shared media

as a hub does, but multiple point-to-point channels, it would be necessary to inject

a background flow specifically addressed to the client Display machine under test,

generating side-effects, such as OS and buffer overheads, other than only networking

overheads. Figure 1 presents the overall scenario.

In a second step we setup practical experiments to confirm some parameters

regarding the properties to be measured [8,15]. For instance, H.261 codec is designed

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120114

UFF

Media Server

UERJ

Display

Background

injector

Router HUB

Fig. 1. Experiment scenario.

to be used “comfortably” on 128 Kbps links and MPEG usually demands a 1.6 Mbps

link to be transported with low loss rate. The ITU G.114 states that a 150 ms one-

way (mouth-to-ear) delay is acceptable for high voice quality. Also, [15] presents

a study on human perception on media synchronization, where parameters such as

delay and jitter are indexed by human comfort on viewing multimedia presentations.

These measurements facilitated setting the profile parameters for the VoD contracts.

The experiment consisted in transmitting pre-recorded audio and video flows from

the Media Server to the client Display and monitoring the properties of interest

(CPU utilization, bandwidth availability, communication delay).

We then monitored the CPU utilization of the client node and the bandwidth

availability of the router connecting UFF to UERJ, using IBM’s Netview SNMP 4

tool. We used a five minutes monitoring interval in a twenty four hours window,

a monitoring pattern empirically useful to network management activities. Delay

measurements were performed at the same time using a software agent, based on

the Abing tool from Stanford [14], which performs active measures. Also, we used

the default mechanisms, provided by those tools, regarding value accumulation and

average calculation. In some points of time of this monitoring we injected the back-

ground load in the network and launched some processes in the client Display to

provoke interference in resource use, thus simulating typical work load in this sce-

nario, allowing us to evaluate how the contract would handle these events. (Details

on the experiment are reported in [1].)

In the sequence, the monitored data was automatically transformed into transi-

tion rules (without premises) in a MSDF module, where, for each transition, each

side has a configuration of type ‘Data’ representing the values of the QoS properties

required by VoD at a given moment in time. For instance, the values for the two

first timestamps, that is, the first and second sets of data values that the monitoring

process produced, are transformed into the following transition rule,

[monitor-0] (monitor (timeStamp: 1 clockFrequency: 1200 utilization: 20
delay: 22 bandwidth: 19 Data)) : Data -->

(timeStamp: 2 clockFrequency: 1200 utilization: 21
delay: 22 bandwidth: 19 Data) .

4 SNMP - Simple Network Management Protocol is a standard application-level protocol for the internet
protocol suite.

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120 115

where an element of set ‘Data’ is a record with ‘timeStamp’, ‘clockFrquency’,

‘utilization’, ‘delay’, and ‘bandwidth’ indices, typed according to the translation

of the QoS categories explained in Section 4.

5.3 Verifications

At this point we had the necessary elements to begin the verification. The MSDF

module that specifies the monitor rules, together with the MSDF modules produced

from the VoD contract by the QoS Tool were loaded into MMT. Then, we have

searched the state space for states where different properties hold such as all the

timestamps where ‘mpegvideo’ is the current service,

(search < (system inicial mpegvideo) ::: ’System, {null} > =>+
< (system D:Data mpegvideo) ::: ’System, {null} > .)

or if ‘no-sevice’ is reachable after n steps, among other properties.

(search < (system inicial mpegvideo) ::: ’System, {null} > =>+
< (system D:Data no-service) ::: ’System, {null} > .)

While running this search we have identified a situation where ‘no-sevice’ was

reached, at timestamp 51, out of 306 possible timestamps, reflecting a context where

the client machine was running an anti-virus program together with the VoD client

Display. The semantics of the ‘no-sevice’ state indicates that, according to the

contract, there are no options to continue running the application with the required

quality. In this case, as soon as the CPU utilization raised, none of the services

could be maintained, and the application stopped.

This simple analysis of the search result has shown that the contract was too

rigid. Our solution was to write a more “flexible” contract with an additional stand-

by service, A service that can be reached if none of the services are valid and form

which the system may move to any of the possible services. This was specified by

declaring the service bound to a profile which is always true and by changing the

negotiation clause on the contract to allow the system to retry the ‘MPEG video’ or

the ‘H 261 video’ while the stand-by service is running. The extensions and changes

introduced in the new contract w.r.t the previous one is given by the following

declarations.

service { negotiation {
instantiate not MPEG_video -> (H_261_video || standBy);

player with p_true; not H_261_video -> standBy;
} standBy; H_261_video -> MPEG_video;

standBy -> (MPEG_video || H_261_video);
}

With this new version of the contract, all the possible states became reachable.
Solution 1
C:Conf --> < system alwTrue: 1 bandwidth: 19 clockFrequency: 1200 delay: 22

timeStamp: 2 utilization: 21 mpegvideo ::: ’System,{null}>

[...]

Solution 305
C:Conf --> < system alwTrue: 1 bandwidth: 19 clockFrequency: 1200 delay: 20

timeStamp: 306 utilization: 10 mpegvideo ::: ’System,{null}>

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120116

No more solutions.

Figure 2 shows how the QoS properties values and the current service evolved

in time. The curves were derived from a search for all reachable states starting

from the one with timestamp equal to 1. In points A and B on the CPU utilization

curve (where numbers represent a percentage of the total capacity of the CPU being

used), virus and malware scanners began to run at the client node. At timestamp

80, approximately, the measured delay values begin to increase. At timestamp 131

the client’s machine clock is switched to 25%. At timestamp 181 the 24 Mbps link

is close to saturation.

0

20

40

60

80

100

120

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0
1

1
1
1

1
2
1

1
3
1

1
4
1

1
5
1

1
6
1

1
7
1

1
8
1

1
9
1

2
0
1

2
1
1

2
2
1

2
3
1

2
4
1

2
5
1

2
6
1

2
7
1

2
8
1

2
9
1

3
0
1

0

200

400

600

800

1000

1200

MPEG

H.261

standBy

A

B

utilization

delay

bandwidth

clockFrequency

service

Fig. 2. Evolution of VoD’s properties values over time

Intuitively one can try to interpret how the values from each individual curve

can affect the application’s non-functional requirements, but this is typically a mul-

tivariable function and it is not trivial to calculate how the set of measures together

affect the service switching on the contract without the help of a tool.

For instance, further analyzing the search results we additionally identified some

state sequences where the ‘MPEG video’ and ‘H 261 video’ services were switched

back and forth very quickly (between one or two measurement steps). These switch-

ing bursts occurred near points A and B where it can be seen utilization pikes (and

the switching between services). These could be interpreted as real trends of high

CPU utilization if they occurred during long periods of time (e.g. 15 minutes) or

could be interpreted as transient oscillation if they occurred in short periods of time

(e.g. 5 seconds). Considering the VoD application, the first case should lead to a

service switch in our approach, but the second one should not. The following excerpt

of the execution trace shows the “service switching problem”, that is, the services

change too many times within a short period of time. (Of course, the concept of

“changing too often in a period of time” is application dependent.)

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120 117

timeStamp: 50 mpegvideo
timeStamp: 51 standby
timeStamp: 52 standby
timeStamp: 53 hcgbvideo
timeStamp: 54 mpegvideo
timeStamp: 55 hcgbvideo
timeStamp: 56 mpegvideo
timeStamp: 57 mpegvideo
timeStamp: 58 standby

Based on the “trend interpretation”, described above, we can apply data fil-

ters, such as moving average or polynomial regression to smooth the transients

and pikes. Depending on the application’s characteristics it can also be adopted

a coarse grained sample period, and an appropriate filter when deploying the ap-

plications. This helps to avoid instability when running the application in a real

environment [1].

0

10

20

30

40

50

60

70

80

90

100

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

2
6

1

2
7

1

2
8

1

2
9

1

3
0

1

0

200

400

600

800

1000

1200

utilization

delay

bandwidth

clockFrequency

service

MPEG

H.261

standBy

Fig. 3. Evolution of VoD’s properties values over time using a moving average of 10 periods

For this experiment, we have chosen the moving average data filter. Figure 3

presents the same measurements as in Figure 2, but with a moving average of

10 periods. The values were calculated over the whole value set. These values

were converted again in a new monitor and another verification run was performed.

With the new results it could be verified in the behavior of the contract was more

satisfactory (more stable). (See an excerpt of the execution trace below.)

timeStamp: 50 mpegvideo
timeStamp: 51 mpegvideo
timeStamp: 52 mpegvideo
timeStamp: 53 mpegvideo
timeStamp: 54 hcgbvideo
timeStamp: 55 hcgbvideo
timeStamp: 56 hcgbvideo
timeStamp: 57 hcgbvideo
timeStamp: 58 hcgbvideo

The switching between ‘mpeg’ and ‘hvideo’ services now occurs according to

more consistent resource-variation trends and there is no need to go to the ‘standby’

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120118

service. The designer could repeat the verifications with other moving average

period to evaluate the best filter to be applied while monitoring the application

during run-time.

With the assistance of the QoS tool we detected two different problems in a

simple application with simple QoS contract, otherwise not easily detectable. We

tested and corrected the QoS contract prior to deploying it in a real situation.

Also, QoS tool also helped us refining the model of the run-time monitor, which

has to be actually deployed in the real system, turning it more stable and yet

allowing resources constraints to be identified. These experiments also pointed us

some directions to improve the verification methodology and some features on the

tool. For instance, several search propositions can be automatically derived from

the contract description. This would give the designer straight-forward information

to plan more refined searches.

A prototype of the VoD application was actually developed using CBabel, QoS

contracts and the CR-RIO infrastructure [1] and practical tests were performed.

The same approach could be used on other software development and management

scenarios where the concept of QoS contracts can be adopted.

6 Final Remarks

Approaches for QoS management are in general quite close to network related is-

sues [13,8]. The approaches that are based on a specification language focus more on

describing the acceptable data intervals and component interfaces and not so much

on the dynamics of service negotiation. The Contract Description Language [9] is

a counter-example. However, to the best of our knowledge, none are based on a

formal semantics.

Our current analysis approach is based on concrete configurations for monitored

data. We are currently exploring a representation for QoS services using a theorem

prover so that negotiations can be analyzed in general. At the moment, our proto-

type requires from one to work directly with MSDF syntax. An interface to allow

the use of syntax for QoS contracts is part of our future work.

Acknowledgement

The authors would like acknowledge the support from RNP and the Anubis Project

(CTINFO/CNPq). Braga would like to acknowledge support from the Ramón y

Cajal program of the Ministerio de Educación y Ciencia de España. Sztajnberg

would like to acknowledge support from Faperj (APQ1 E26/171.130/05).

References

[1] L. Cardoso, A. Sztajnberg, and O. Loques. Self-adaptive applications using adl contracts. In A. Keller
and J.-P. Martin-Flatin, editors, Proceedings of The Second IEEE International Workshop on Self-
Managed Networks, SelfMan 2006, volume 3996 of LNCS, pages 87–101. Springer, 2006.

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120 119

[2] F. Chalub. An implementation of modular structural operational semantics in maude. Master’s thesis,
Universidade Federal Fluminense, 2005.

[3] F. Chalub and C. Braga. Maude MSOS Tool. In C. Talcott and G. Denker, editors, Proceedings of the
Sixth International Workshop on Rewriting Logic and its Applications, WRLA 2006, Electronic Notes
in Theoretical Computer Science, pages 3–17. Elsevier, 2006.

[4] M. Clavel, F. Durán, S. Eker, J. Meseguer, and M.-O. Sther. Maude as a formal meta-tool. In J. Wing,
J. Woodcock, and J. Davies, editors, Proceedings of the World Congress on Formal Methods in the
Development of Computing Systems, FM’99, Volume II, volume 1709 of Lecture Notes in Computer
Science, pages 1684–1703. Springer, 1999.

[5] M. Clavel, F. Durn, S. Eker, P. Lincoln, N. Mart-Oliet, J. Meseguer, and C. Talcott All About Maude:
A High-Performance Logical Framework. Springer, To appear (2007).

[6] D. Feitelson. Workload characterization and modeling book.
http://www.cs.huji.ac.il/∼feit/wlmod/.

[7] S. Frolund and J. Koistinen. QML: A language for quality of service specification. Technical Report
HPL-9810, Hewlett Packard, 1998.

[8] C. Hattingh and T. Szigeti. End-to-End QoS Network Design: Quality of Service in LANs, WANs,
and VPNs. Cisco Press, 2004.

[9] J. Jin and K. Nahrstedt. QoS specification languages for distributed multimedia applications: a survey
and taxonomy. IEEE Multimedia, 11(3):74–87, July-September 2004.

[10] O. Loques, R. Curty, S. Ansaloni, and A. Sztajnberg. A contract-based approach to describe and deploy
non-functional adaptations in software architectures. Journal of the Brazilian Computer Society, 10(1),
July 2004.

[11] O. Loques and A. Sztajnberg. Customizing component-based architectures by contract. In Proceedings
of the Second International Conference on Component Deployment, volume 3083 of LNCS, pages
18–34. Springer, 2004.

[12] J. Meseguer. Conditional rewriting as a unified model of concurrency. Theoretical Computer Science,
96(1):73155, April 1992.

[13] D. Miras. Network QoS needs of advanced internet applications – A survey. Internet2 QoS Working
Group, 2002. http://qos.internet2.edu/wg/apps/fellowship/Docs/Internet2AppsQoS Needs.pdf

[14] J. Navratil, and R. Cottrell A Practical Approach to Available Bandwidth Estimation, Passive /
Active Measurement Workshop, pp.1-11, La Jolla, CA, April, 2003.

[15] R. Steinmetz, Human Perception of Jitter and Media Synchronization IEEE J. Selected Areas on
Communication, Vol. 14, No. 1, pp.61-72, January, 1996.

[16] R. Steinmetz, and K. Nahrstedt Multimedia: Computing, Communications and Applications Upper
Saddle River, N.J.: Prentice Hall, 1995.

C. Braga et al. / Electronic Notes in Theoretical Computer Science 203 (2009) 103–120120

http://www.cs.huji.ac.il/~feit/wlmod/
http://qos.internet2.edu/wg/apps/fellowship/Docs/Internet2AppsQoSNeeds.pdf
http://qos.internet2.edu/wg/apps/fellowship/Docs/Internet2AppsQoSNeeds.pdf

	Introduction
	QoS Contracts and the VoD Example
	An Abstract Semantics for QoS Contracts
	Implementing QoS Contracts in MMT
	An Empirical Approach for QoS Contract Analysis
	An experiment on QoS contract verification
	Obtaining data for the monitoring model
	Verifications

	Final Remarks
	References

