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Introduction

Fix positive integers n, £. Let W be the wreath product of &, and Z/¢Z. The cyclotomic
rational double affine Hecke algebra H is a deformation of the semi-direct product C[C?"] x W.
Its category O is a quasi-hereditary cover of the Ariki—Koike algebra, see [22]. One important
problem is to compute the dimension of the simple modules of the category O of H, or, equiva-
lently, the Jordan—Holder multiplicities of the standard modules. So far the main approach to the
representation theory of double affine Hecke algebras associated with complex reflection groups
is geometric and uses D-modules on quiver varieties. However a dimension formula for simple
modules seems out of reach yet by these techniques. It is expected that the Jordan—Ho6lder mul-
tiplicities of the standard modules are values at one of some affine parabolic Kazhdan—Lusztig
polynomial, see [22, Sec. 6.5]. We’ll call this the dimension conjecture. See Section 8 below for
details. These multiplicities are encoded in a combinatorial object called the level £ Fock space.

If £ =1 the dimension conjecture is proved. It follows from [22] and [28], or from [24]
and [29]. In this case there is another algebraic approach to the algebra H due to Suzuki. He
constructed a functor from Kazhdan—Lusztig’s category of modules over the type A1 affine Lie
algebra to the category O of H. We give a proof that this functor is an equivalence in Section A.5
below. This functor is constructed via affine coinvariants over the configuration space of P! and
the Knizhnik—Zamolodchikov connection.

In this paper we construct a similar functor for any £. The new ingredient is the space of
orbifold affine coinvariants over the configuration space of the stack [P'/(Z/¢Z)] and the cor-
responding Knizhnik—Zamolodchikov connection. A priori this space of coinvariants involves a
choice of a twisted affine Lie algebra. Choosing an inner twist of the type A1) affine Lie alge-
bra, we get a functor € from an affine parabolic category O to the category O of H. Then we
study €&, in particular its behavior on standardly filtered modules. We do not prove the dimension
conjecture. Contrarily to the case £ = 1 mentioned above, the functor € is not an equivalence
of quasi-hereditary categories in general. However, we expect the functor € to be an important
tool to prove it. In particular & should behave nicely on indecomposable projective modules, as
explained in this paper. We’ll come back to this elsewhere.

Let us now describe the structure of the paper. The first and second sections are reminders
on DAHA’s (= double affine Hecke algebras) and Suzuki’s functor. In the third one we consider
the case £ # 1. Using the orbifold Knizhnik—Zamolodchikov connection we define a functor
taking a smooth module over a twisted affine Lie algebra to a H-module and we compute the
image of parabolic Verma modules. In the fourth section we compare the space of twisted affine
coinvariants and the space of non-twisted ones when the affine Lie algebra is equipped with an
inner twist. In the sixth section we define the functor €. It goes from the affine parabolic category
O of type AW to the category O of H. We prove that & preserves the posets of standard modules
and is exact on standardly filtered modules in Section 7. We conjecture that it preserves the set
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of indecomposable projective modules. In the last section we compare € with what one expects
from the dimension conjecture.

0. Notations

0.1. First, let us gather a few basic notations on categories. The categories we’ll consider are all
C-linear, i.e., they are additive and the Hom sets are C-vector spaces. A category is Artinian if
the Hom sets are finite dimensional C-vector spaces and every object has a finite length. Write
AT for the full subcategory of an Abelian category .A consisting of the objects of finite length
and AP™ c A7¢ for the full exact subcategory of projective objects. Given a set I of objects of
the Abelian category A, we denote by A’ the exact full subcategory of I-filtered objects, i.e.,
of objects M with a finite filtration such that each successive quotient is isomorphic to an object
of I.

Write [M : S] for the Jordan—Holder multiplicity of a simple module S in an object M of finite
length.

By a quasi-hereditary category we mean a highest weight category in the sense of [3] which is
equivalent, as a highest weight category, to the category of finitely generated modules of a quasi-
hereditary (finite dimensional) C-algebra. In other words, it is an Artinian Abelian category with
a finite poset A 4 of standard modules satisfying the following axioms:

(a) we have End 4(M) = C for each M € A 4,

(b) if Hom 4 (M1, M>) # 0 and M, My € A 4 then M| < M»,

(c) if Homy (M, N) =0 for each M € A 4 then N =0,

(d) if M € A 4 there is a projective object P € A and an epimorphism P — M whose kernel is
A g-filtered with subquotients > M.

See [3, Thm. 3.6], [6, Appendix] for more details. An equivalence of highest weight categories is
an equivalence of categories which restricts to a bijection between both sets of standard modules.
We’ll abbreviate A% = A4,

We’ll write [B] for the Grothendieck group of an Abelian or an exact category 3. Let [M]
denote the class in [B] of an object M. Note that the obvious embedding A C A7¢ yields a
group isomorphism [A%] = [Af¢].

0.2. Let R be a commutative Noetherian ring with 1, and let A be an R-algebra. Write A-mod
for the module category of A, A-proj for A-modP™ and A-modf 8 for (A-mod)”/¢. Let Irr(A) be
the set of isomorphism classes of simple objects of A-mod/$. To any R-algebra homomorphism
¢ : A — B we associate the functor

¢ : B-mod — A-mod, M — ¢M,
where ? M is the twist of M by ¢.

0.3. Let M be a C-vector space and R be a commutative C-algebra. Assume that R is the
functions algebra of a C-variety R. We write

M[X]=Mr=MQR.
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Given an automorphism F of a set M, let M be the fixed points set. If F is an R-linear auto-
morphism F of My we may abbreviate M5 = (Mg)F.

1. The cyclotomic rational DAHA and the Dunkl operators

1.1. The complex reflection group G (¢, 1, n). Let D, C C* be the group consisting of the £-th
roots of unity. Fix a generator of D, once for all. We’ll denote it by ¢. Let &,, be the symmetric
group on n letters and W be the semi-direct product &, x (Dy)", where (D;)" is the Cartesian
product of n copies of D,. To avoid any confusion we may write

Wa=W, A={1,2,....n.

Let &; € (Dy)" be the element with ¢ at the i-th place and to 1 at the other ones. If a € Z we
may identify Z/aZ with the set {1, 2,...,a} in the obvious way, hoping it will not create any
confusion. Set

A={1,2,..., 0 ~Z /07,

ngpl

For each p € A and each i # j, we write si(’;.) for s; je; i

1.2. The cyclotomic rational DAHA. Fix a basis (x, y) of C2. Let x;, y; denote the elements
x, y respectively in the i-th summand of (C%)®". The group W acts on (C?)®” such that for
distinct i, j, kK we have

ei(xi) =¢ i, gi(xj) =xj, i (yi) = €yi, &i(yj) =yj,
5i () = xj, si (i) =Yy, si,j (X)) = Xk, si, i (k) = Yk-
Fixk € Cand y, € Cfor 0 # p € A. We’ll write y for the £-tuple (y,). The CRDAHA (= cyclo-

tomic rational DAHA) is the quotient Hy ,, of the smash product of CW and the tensor algebra
of (C%)®" by the relations

[yi, xi]=1 _kzzsi(,l;) - Zypgip’

J# P p#0

[y xjl=k Y elsi? ifi# j,
p
[xi, xj1=[yi, yj1=0.

This presentation is the same as in [7]. We’ll use another presentation where the parameters
are h, h, with p € A and Zp hp =0.Set H = (hy, ha, ..., he_1). The corresponding algebra
is denoted by the symbol Hy, g. It is isomorphic to the algebra Hy ,, with k = —h and y), =
=2 pea e=PPh p'- Our parameter h, is the same as the parameter H), in [11] and it is equal to
hHy,p — hH,y, p—1 With respect to the parameters hy,, », p € A, in [22].

1.3. The Dunkl operators. The subalgebras of H;, g generated by {xi,...,x,} and {y1, ..., ya}
are free commutative. We’ll write R for the first one and R* for the second one. Note that
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R = C[C"]. There is a C-linear representation of Hy, y on R such that x; — x;, w — w and
vi > y; with

yl—axl+kzle_8 3 (s - +le_8 le el —1).

J#L P p#0

The operators y; are called the Dunkl operators.

1.4. Combinatorics. Let C,, ¢ be the set of compositions of m with € parts, i.e., the set of tuples
v=(v,v,..., ) € N¢ with sum |[v] =m. Let Cy, ¢, be the subset of compositions whose parts
are all > n. Set

J={1,2,...,m}.
To each v € C;, ¢ we associate the following partition
J=haudyau--udyy, Jv,pZ{ip,ip—i-l,...,jp},
ip=1+vi+---+v,_1, Jp=ipr1—1, peA.
We may write J, = J,,  if there is no risk of confusion. Next, we write
Lo={reC"xi—riy1 €N, Vi# j1, o, ...},
Z‘;O =7Z"nN (C‘;O, Zlog=p+ Z‘;O.

The elements of (C”>0 are called the v-dominant weights. The elements of ZY S are called the
v-dominant mtegral weights. Let P, be the set of partitions of n, i.e., the set of non- increasing
sequences A of integers A1, Az, ... > 0 with sum n. We write ‘A for the transposed partition, |A|
for the weight of A, n()) for the integer Zi Ai(i — 1) and I()) for its length, i.e., for the number
of parts in A. Let P = |, P, be the set of all partitions. Let P¢ be the set of £-partitions of n. It
is the set of A-tuples A = (A,) of partitions with Zp |Ap| =n. Let Pt = L1, Pf; be the set of all

{£-partitions. Given any £-tuple v = (v),) in N* we set
Pow = {1 € Ppil0p) <yl
The transpose of an £-partition A is given by
=", A2 N).

Any {-partition A € Pf;’v may be viewed as an element in N”}O by adding zeroes on the right of
each partition A, such that /(A,) < v,. This yields a bijection

NL,=2Z%,NN"=| |Ps . (1.1)
n

Finally, for any ¢-tuple v = (vq, vy, ..., vp) we’ll write v;’, = (v°)p and v['7 = (v°*), where

v° = (v, Ve—1, ..., V1), V® = (Ve—1, Vg—2, ..., V1, Vp).
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1.5. Representations of W. For p € A there is a unique character
Xp:Dg— C*, g> P,
We set
Irr(CS,) = {X; A € Pals Ir(CW) = {X; 2 € PL}. (1.2)

If A € P, then X, is defined as in (2.1) below. If A € P,f then X, defined as follows. Any com-
position u € C, ¢ can be regarded as a partition A = A, | U---L A, ; as above. We consider the
subgroups

Su=[]®4,, G  Wy=[[Wa,, cW=Wa.
P P

Let w,, be the longest element in &,,. Write wg for w(,). Fix an £- partition A=(Ap)in PL. The

tuple 0 = (up), with , = [A,| for each p, belongs to Cy ¢. Let X;,, X p | be the representation

of Wa,. Wthh is the tensor product of the G 4 . p—module SEA and the one -dimensional (Dy)"r-

module X p ”. Then the W-module ¥, is given by

xk:F%(Xkleul ® Xy Xy P ®X“X®Mz) (1.3)
where the symbol I" denotes the induction.

1.6. The highest weight category of Hy, p. Let H;, p be the category of Hy p-modules which
are locally nilpotent over R*. The category Hy, g is quasi-hereditary by [10]. The standard mod-
ules of H), y are the induced modules

H,
N =Tytae(X), AePy.

Here X, is viewed as a W x R*-module such that y, ..., y, act trivially. Let Sy ». 1, Pin
denote the top and the projective cover of Ay s H.

The category H "y consists of the Hy y-modules which are locally nilpotent over R* and
finitely generated over R. The Grothendieck group of H}{ !gH is spanned by the set {[Sy n m]; A €
P} and by the set {[As n.u]; A € PL).

The algebra Hj, g is given the inner Z-grading such that x;, y;, w have the degrees 1, —1, 0
respectively. The sum eu = ), x;y; + eup, with

n
eup=hy Y (1-s")+> Z e (hy 4+ hy)e?,
i<j peA i=1p,p'=1

is an Euler element for the grading, i.e., an element x € Hy, g is of degree i iff we have [eu, x] =
ix.
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For each A € Pff we denote by 6, the scalar by which eug acts on X, . We have the following
formula [22, Prop. 6.2]

QAZEZM [+ -+ by 1)—hEZn(A)—n( p)) + 6o,

p=2

where 6 is a constant independent of L. The partial order > on the set of standard modules is
the unique order relation such that [10, Sec. 2.5]

Apna =M = 0,—0,¢€ Zi~o. (1.4)

1.7. From local systems to H;, g-modules. Let R,, = C[C,, ¢], where C,,  C C" is the com-
plement of the hypersurface

X1x2 - xnnn —spxj =0.

P i#j
Note that C1 ¢ = C*. For each R-module M we write
My =M QrR, ;.
In particular we have the C-algebra
B=CW xR, B, =CW xR, . (1.5)
We’ll abbreviate Hy g .0 = (Hp, 1)n,¢- The algebra Hy, g, ¢ does not depend on the choice of

the parameters #, H, up to canonical isomorphisms. See [10, Thm. 5.6] for details. We’ll need
the following basic result.

1.8. Proposition.

(a) Let My ¢ be a B, o-module with an integrable W -equivariant connection V = Zi V; dx;.
Set

B Vp p
5i =V +k22x,—8 ;% +Zx,'—8—l’x,-8i'
J#iop p#0

The assignment y; — y; yields a C-linear representation of Hy g on My, 4.

(b) Let M be a B-module with an integrable W -equivariant connection. Assume that M is
torsion free as an R-module and that the operators yi1,y2, ..., Y, on My ¢ preserve the
subset M. Then M is an Hy, g -submodule of My, 4.

Proof. Part (b) is obvious. Let us concentrate on part (a). Set V' equal to ) ; V/dx;, where

Yp
V= V+kzle_8 px ;)m
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We have

yi = V+kzle_£ =y (s - +le_£ f’x, e’ —1).

J#L P p#0

Thus it is enough to check that V’ is an integrable W -equivariant connection and to apply the
same argument as for the Dunkl operators with V/ instead of ;. The W-equivariance of V' is
obvious. If i # j a direct computation yields

r#j P p#0
Yp
R S S =
r#i P
1
=k|dy., +k
e X = |
=0. O

2. The affine category O

According to Suzuki [25] the Knizhnik—Zamolodchikov connection gives a functor from
Kazhdan—Lusztig’s category of modules over the affine Lie algebra to the category O of the
rational DAHA (for £ = 1). This functor uses affine coinvariants. In this section we briefly re-
view this construction. Since the results here are not new, we do not give proofs.

2.1. Lie algebras. Fix once for all an integer m > 0. We set g = gl,,(C) and G = GL,,(C). To
avoid any confusion we may write

Let U (g) be the enveloping algebra of g. For any g € G, & € g let g& be the adjoint action of g
on £ and let ¢ be the transpose of &. Let

bCag, tCyg, TCG

be the Borel Lie subalgebra consisting of upper triangular matrices and the maximal tori con-
sisting of the diagonal matrices. Let (¢;), (&), i € J, be the canonical bases of t*, t. There is a
unique G-invariant pairing on g such that (¢; : €;) = §; ; for each i, j € J. We have canonical
isomorphisms t = t* = c’ taking i, A to the tuples (5»[), (A;) with )v\,- = i(e,-) and A; = A(&;)
respectively. The elements of t, t* are called coweights and weights respectively. The weights in
7. are called integral weights. If the weight A is given then the symbol X denote the coweight
x= >_jes *j€j, and vice-versa. We put

p=0m,...,2, 1), oj=¢€¢ —€i+1, iel, I={1,2,....m—1}.
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Let 17 C Z’ be the set of roots, [T+ C IT the set of positive roots containing {e;; i € I} and ZIT
be the root lattice. Let e 7, k,[ € J, be the canonical basis vectors of g. For each simple root «;
we write e; = ¢; j+1, fi = ei+1,; for the corresponding root vectors in g. Write

L) =L(g.2)

for the simple g-module with highest weight A (relative to the Borel Lie subalgebra b). If A is
integral and dominant we define the &,-module

X5 = Ho(g, (V)®" ® L)), 2.1)

where Hj denotes the space of coinvariants. It vanishes unless A € P,. Compare (1.2). Let V be
the vectorial representation of G and let V* be the dual module. We can identify V with t as
C-vector spaces. Hence we may view (e;) as a basis of V*. For each v € C, ¢ and p € A, let

* *
V,CcV
be the subspace spanned by the vectors €;, j € J, p.
2.2. Affine Lie algebras. Let 7 be a formal variable. For each integer r we set
g=0®C[,17'], g, =g®/Cll, g =9®/C[i"'], b=b@g..

Let g be the central extension of g by C associated with the cocycle (¢ ® f,¢ ® g) >
(€ : ¢YRes;—o(gdf). Write 1 for the canonical central element of §. We abbreviate 8> =
g>0 @ C1 and b = b @ C1, the trivial central extensions. The element 9 = ¢, acts on g in the ob-
vious way, yleldlng a derivation of the Lie algebra g such that 9(1) = 0. We putt =Co  ta Cl1,
andg=Codg b=Coad b. For any commutative C-algebra R with 1 we set g = g ® R,
8rR =8Q R, etc. We regard gRr, 8r and g as R-Lie algebras.

The adjoint t-action on g is diagonalizable. An element of t* is called an affine weight. Let
I ct be the set of roots of g, let 1T+ C IT be the set of roots of the pro-nilpotent radical n of b,
and let [T, C IT be the set of real roots. Let 8, wg € t* be the linear forms given by

3(3) = wp(1) =1, wy(CIDY=8tHC1) =

The simple roots in I are

~

G, iel, I={0,1,....m—1}.

From now on we’ll use the canonical isomorphism t* = C”*2 = C x C™ x C such that &; —
©0,a;,0)ifi #0, wp — (0,0, 1), and 6 — (1,0, 0). When there is no risk of confusion we’ll
abbreviate o; = @;. Recall that ayp =8 — €] + €,,. Let (:) denote also the symmetric bilinear
form on t* such that

(wo:8)=1, (€:0)=(€:w0)=0, (€ :€;)=20;;.

An affine weight A such that A(9) = 0 is called a classical affine weight. Let t' C t* be the set of
classical affine weights.
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2.3. Enveloping algebras. For any commutative C-algebra R with 1 let U(gg), U(gg) be the
enveloping algebras of gg, gg over R. Given an element x € R let U(gr) — &g« be the quotient
by the two-sided ideal generated by the element 1 — ¢ where

C=K—m.

We call ¢ the level. A g -module is the same as a gg-module such that the element 1 acts as
the multiplication by c. If R = C we’ll abbreviate g, = gc «, etc.

2.4. Smooth gg-modules. A gg -module M is almost smooth if each element of M is anni-
hilated by gg >, for a large enough integer r. Let C(gg ) for the category of almost smooth
&r.«-modules. We may abbreviate

Crc =C(&R.x)-

For each integer r > 1 let Qg C &g .« be the subspace generated by the products of r elements
of gg >1. Letalso Qg o= R. Given a gr.«-module M let M (r) C M be the annihilator of Qg ,
and let M (—r) C M be the annihilator of Qg _, =#1(Qg ). Set

M(o0)=|_J M(r).

r=0

Note that M (r) is a §r >o0-submodule of M and that M(co) is a §g -submodules of M. The
gr.«-module M is called smooth if M = M (c0). All smooth modules are almost smooth. See
[18, Lem. 1.10] for details.

2.5. The Sugawara operator. Put £ = ¢ ® 1 for £ € g. Let R* C R be the set of units. From
now on we’ll always assume that ¥ € R*. For each integer b € Z the formal sum

1 (—a) (a+b) , 1 (a+b) (—a)
Ly=- Yo 2wl T Yo > e

az—bj2kle] a<—bj2k,le]

is called the Sugawara operator. It lies in a completion of gg .. For any gg ,-module M and any
integer b the Sugawara operator L, acts on M (oco) and we have

[Ly, @] = —ag@t?). (2.2)

Let 2 = Zk’ 1eJ €k,iel i be the Casimir element in U (gg). Then Lo — £2 /2« acts trivially on the
subset M (1).

2.6. Duality for gg-modules. For each gz-module M we define the §g-modules M, tM, M*,
and M¥ as follows

e “M is the gg-module equal to the twist of M by the automorphism f : g — gg such that
EN > (=)&) and 1+ —1,

e "M is the gg-module equal to the twist of M by the automorphism 1 : gg — gg such that
EN s — 1M and 1+ 1,
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e M* =Homg(M, R) with the §z-action such that (¢ ¢, m) = —(¢, €"”m) and (1p, m) =

_((pa lm)v
o MY is the set of gr.v-finite elements of M*, i.e., it is the sum of all g ,-submodules of M*

which are finitely generated as R-modules.

The functors M — "M,2 M, M*, M? commute to each other. We set $+ =1 of, DM =
(*M*)(00), and TDM = (*M*)(c0). As an R-module "DM consists of those R-linear forms
M — R which are zero on QM for some r > 1.

For each g-module M we define the g-modules M, M*, M? and the duality functor D asin
the affine case.

2.7. The (parabolic) category O of g and g. In this section we set R = C. The adjoint t-
action on g preserves the Lie subalgebra g. By a parabolic Lie subalgebra of g we’ll mean a
t-diagonalizable Lie subalgebra q C §>¢ containing a conjugate of b. Fix a Levi subalgebra

1C . Let O, ) be the category of the g -modules which are 1-semisimple and §-locally
finite. We abbreviate

O = O&) = O(&,b)

with1=t® C1. Fix a composition v € Cy, ¢. Let q, C g be the standard parabolic Lie subalgebra
with block diagonal Levi subalgebra

bU:gvl 69@9\)@

Let u, be the nilpotent radical of q,. Let q, be the parabolic Lie subalgebra of g with Levi
subalgebra b, @ C1, and let u,, be the pronilpotent radical of q,. We abbreviate

A

Ov,x = @(Qm (Alv)a 620,/( = (9(@/«, §>0)~

In the same way let O(g, q,) be the category of the g-modules which are h,-semisimple and
qy-locally finite. We abbreviate

0=0(g,b), 0, =0(g, qv), 0>0=0(g, 9).

So O is the category of all semisimple g-modules. Let g}, = wo(q,), q}, = wo(q,), and b =
wo(b).
2.8. Induction and generalized Weyl modules. Set R = C. For any q,-module M we set

M, =TI, (M),

v

the induced g-module. An h,-module M may be viewed as a q,-module such that u, acts as
zero, yielding again a g-module M,,. Similarly, for any q,-module M of level ¢ we set

My, = F‘f (M).

If M is an b,-module we define the g,-module M, , in the obvious way.
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If ¢ = 1 then we have b, = g, 4, = §>0 and we write
Mc=M,,.

If there is an integer > 0 such that Q, acts by zero on the g0 -module M, then M, is called
a generalized Weyl module. More precisely, if M is a >0 -module with a finite filtration by

£>0,c-modules such that the successive quotients are annihilated by Q and lie in O‘{g (as g-

modules) then M, belongs to the category (’5,{ %, and it is called a generalized Weyl module of
type v. Further, if M is a simple g-module in O, which is regarded as a §>¢ ,-module such that
g0 acts as zero, then M, is called a Weyl module of type v.

For each weight A € t* let L(f,,, A) be the simple h,-module with highest weight A (relative
to the Borel Lie subalgebra b N b, of f,). We have the induced g-module

M)y = L(by, 2.
The top of M(X), is L(X). Consider the classical affine weight
X =+ cop. (2.3)
We define a g, -module by setting
M)y = Ly, My

Let L(%) be the top of M (M. It is the simple g,-module with highest weight . Recall that t*
is identified with C" and that the elements of C¥ j C C™ are called v-dominant weights. If A is

v-dominant then M (1), is a generalized Weyl module of type v. More precisely, if A € (C]))o then

M), € O,, M ()A\)‘, € @U,K and they are both called parabolic Verma modules. If £ =1 we’ll
abbreviate

MG)=M@R), € O,

Although (’A)U,K is not a highest weight category, we’ll adopt the following abuse of language: an
object M is said to be standardly filtered if it is equipped with a finite filtration by submodules
such that the successive quotients are parabolic Verma modules. Let @ﬁk C (’5,{ % be the full
subcategory of the standardly filtered modules. Let A O be the set of parabolic Verma modules

in (5,,,,(.
2.9. Proposition. Assume that k ¢ Q.

(a) All modules in @V,K are smooth. A ,.-module lies in (’5,{‘5‘; iff it is a quotient of a generalized
Weyl module of type (’),J,C g,

(b) The category @I{i consists of the finitely generated smooth g, -modules M such that M (r) €
O{g for eachr > 0.

(¢) The category @Ji is Abelian, any object has a finite length, and Hom sets are finite dimen-
sional.
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(d) If M lies in @1{% then we have TDM = *M?. The functor "D takes (’j‘{é}’( to itself, and it
yields an involutive anti-auto-equivalence which fixes the simple modules.

Proof. Clearly, any module in @U,K is smooth, and M(r) lies in O, , for each M in @U,K and
each r > 0. Now, assume that M lies in (’A)Ufi There is an integer > 0 and a g>¢ ,-submodule
V C M(r) such that M is generated by V as a g,-module and V € (9{ ¢ as a g-module. Then M
is a quotient of the generalized Weyl module V.. Recall that (9{ ¢ is an Abelian category, and that
a subquotient of a g-module which lies in O{ ¢ lies again in O{ ¢, Thus V has a finite filtration

by §>0,-submodules such that the successive quotients are annihilated by Q; and lies in (9{ £,
So V, is a generalized Weyl module of type v. Next, observe that a subquotient of a g-module

which lies in @U, « lies again in @U, «- Thus a quotient of a generalized Weyl module of type C’)"f &
lies in (’A)Jﬁ This proves (a). Part (b) follows from (a) and [30, Thm. 3.5(1)].

Part (c) follows from parts (a), (b). Indeed, since @U « 1s obviously Abelian, to prove that (’A){ &
is Abelian it is enough to prove that any submodule of a g-module in Of is finitely generated.
This follows from [30, Thm. 3.5(3)]. Next, we must check that any object has a finite length and
that the Hom sets are finite dimensional. The first claim follows from [30, Thm. 3.5(3)], because
(’)f & is Artinian. The second claim is proved as in [18, Prop 1.2.29]. It follows from Frobenius
reciprocity and the following three facts: any object in (9 is a quotient of a generalized Weyl
module of type v, the Hom spaces in (91},r ¢ are finite dlmenswnal and M(r) € O,{ & for each

M € va « and each integer r > 0.
Part (d) is left to the reader, compare [18, Sec. 1,2]. O

Set (’5; « = O(8, q,). The functor { yields an involutive equivalence
@U,K — @’V B

The functor D takes @j;% .. into itself, and it yields an involutive anti-auto-equivalence of Oﬁ% o

Note that the modules V, and V} := (V*), are parabolic Verma modules in (5}0‘ « such that

D(V,) =V, Vi="TV,.

K

From now on we’ll always assume that « ¢ Qx0.

2.10. The category O of g g versus g. Set R = C. Let q be a parabolic Lie subalgebra of §. We
write ¢ = q @ Cd and 1 = 1@ Ca. Let O(g«,q) be the category of the g,-modules which are
I-semisimple, §-locally finite. We abbreviate

O =0@)=0@®.b), O =0&, @), Os0x=0&,8>0).

Let 2 = 3 + L be the generalized Casimir operator of g, as in [15, Sec. 2.5]. Given a parabolic
Lie subalgebra q C g, let

O, @)° C 0@, @)
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be the full subcategory of the modules on which 2 acts locally nilpotently. Forgetting the action
of 9 yields in equivalence of categories

O, 0’ = O, D).
A quasi-inverse takes the g-module M to the unique g-module M which is equal to M as a g-
module and such that 9 acts as the semisimplification of the operator —Lg. See [23, Prop. 8.1] for

details. We identify M and M if there is no ambiguity. For any affine weight A € t* the A-weight
space of M (which is identified with M) is

M, = {x e M; hx =r(h)x, Vh et}.
For each weight A € t* we write
)::)»—i—ca)o, X:i—i—z;\& on=—(A:20+A)/2k.

We’ll say that the affine weights A, X are v-dominant if the weight A is v-dominant. The formula
for Lo shows that the functor

A ~ ~

Oy = Oy, M— M
takes L(k) to the simple module L(}) with the (v-dominant) highest welght X and M (k)v to the
parabolic Verma module M (1), with the same highest weight. Here A is given by the formula

above.

2.11. The formal loop Lie algebra. Fix a commutative C-algebra R with 1. Given a finite set S
we fix formal variables #;, i € S, and we set

R((ts)) = EP R((1)).

ies
Each f(¢) € R((¢)) yields an element in the i-th factor of R((¢s)) denoted by
f = f ).
We set
Gr=9® R((1)), Gr,s =g ® R((15)).
As above, if R = C we simply forget the subscript R everywhere. Let QAR,S (resp. Gr) be

the central extension of Gr s (resp. Gr) by R associated with the cocycle (£ ® f,¢ ® g) —
(£:¢) ) ;Res;—o(gdf). Write 1 for the canonical central element of Gg 5. Let

U(QR,S) — QR,S,K
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be the quotient by the two-sided ideal generated by 1 — c. Now, let M;, i € S, be almost smooth
gr -modules. We’ll use the following notation: if y is an operator on M; then y;) is the operator
on

SM=®Mi

ieS
given by the action of y on the i-th factor. We’ll abbreviate
ex1,() = (ek,1) () Ly, i) = (Lp) i) (2.4
The assignment
EQ f(Di—>E® f(a) (2.5)
yields a representation of é RS on sM.
2.12. The space of affine coinvariants. Fix a point co € P! and a coordinate z on P! — {o0}.
We’ll identify P! — {oo} with C and C[C] with C[z]. Let 0 € P! be the point such that z = 0 and
C* ={z € C; z+#0}. Fix an S-tuple x = (x;; i € S) of distinct points in P'. We set z; =z — x;
if x; # oo and z; = —z ! else. So z; is a coordinate on P! centered on x;. Write
P! =P! — {x;; i € §).

Composing the expansion of rational functions on P! at x; with the assignment z; > ; we get
the inclusion

Ly : C[Py] — C((ts)).
By the residue theorem the embedding
o[P] >G5, E®fPE@uL()

lifts to a Lie algebra embedding
g[P!] — Gs. (2.6)

If M;, i € S, are almost smooth g,-modules then QS acts on M. Thus g[]P’}C] acts also on g M
through (2.6).

2.13. Definition. The space of affine coinvariants of the M;’sis (M;; i € S), = Ho(g[]P’)]C], sM).
Given a point xq in P! we set
S={0yus, &= (xo,x).

The following properties are well-known, see e.g., [18, Props. 9.15, 9.16, 9.18].
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2.14. Proposition. Assume that M; € C, for eachi € S.

(@) If M; = N is a generalized Weyl module for each i then there is a natural isomorphism
(Mi; i €S)x = Ho(g, sN).
®) If M; € OQ’Z),K for each i then (M;; i € S) is finite dimensional.

(c) If My = M (cwy) there is a natural isomorphism (M;; i € 3’),; =(M;; i €8),.
(d) The canonical vector space isomorphisms M; — "M, i € S, yield an isomorphism (M;; i €

¥

Sy = ("M;; i €8)y.

2.15. Remark. Note that M (cwp) is simple, i.e., it is equal to L(cwyp), if x € Q- by [18,
Prop. 2.12(b)].

In the rest of Section 2 we’ll assume that S = A U {n + 1} and x,,+1 = 0o. Now, we allow the
tuple (x1, ..., x,) to vary in the set C,,, where

C.cc
is the complement of the big diagonal. So we may view the x;’s as regular functions on C,, i.e.,

as elements of the algebra R, = C[C,]. Let R C R, (z) be the R,-submodule spanned by the
rational functions

77 2% withie A, a>0, b>0.
It is an R, -algebra. The assignment

X1, X2y ev ey Xpy TH> X1, X2, - o0y Xy X1

yields an R;,-algebra isomorphism R — R, ;1. The expansion at {x;; i € S} of a rational function
in R yields R, -linear maps

R— R,((t5)),  gr — GR,.s-

For almost smooth g,-modules M;, i € S, the R,-module s Mg, = (sM)R, is equipped with a
ORr,.s-action. So we get a gg-action on g MR, such that the element £ ® z¢ acts as the sum

YERE+x)Y)  + (ES (1)) - .7

i€cA
Consider the R,;-module
(M;; i € S) = Ho(gr, sMRr,)-

The following is well known, see e.g., [18, Sec. 9.13, Prop. 12.12].

2.16. Proposition. If M; € @S),K foreachi € S, then (M;; i € S) is a projective R,-module of
finite rank whose specialization at the point x € Cy, is equal to (M;; i € S).
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2.17. The space of affine coinvariants of 7' (M)g,. Now we fix a module M € C,. Let R C
R,,(z) be as above. We’ll apply the construction of affine coinvariants to the g,-modules M| =
--=M, =V} and M, 1 = M. Write

B, =C6,, xR,.
There is an obvious representation of B, on s Mg, , such that the group &,, switches the modules
My, M,, ..., M, and acts on R,,, and R,, acts by multiplication. This action centralizes the gg-

action, see formula (2.7). Thus (M;; i € S) is equipped with a representation of B,,. To unburden
notation we’ll set

T(M) = (V*)*" @ M.
The canonical inclusion V* C V¥ yields an embedding
T(M)C sM.

Equip the R,,-module 7'(M)g, = T (M) ® R,, with the representation of g[C] such that

E@ > Y En®x+(8) ., ®1, a>0. (2.8)
i#n+1

2.18. Proposition. The inclusion T (M) C sM yields an R,,-module isomorphism
Ho(g[CL. T (M)R,) =~ (V% ..., Vi, M).
If A is a dominant weight there is an isomorphism of B,,-modules

Ho(alC1, T(M(R))g ) ~ T'el (X2).

Proof. We do not give a proof here, since it is rather standard. Note that part (a) is a particular
case of formula (3.15) below (set £ = 1), and part (b) is a particular case of Proposition 3.8(b)
below (set again £ = 1). So the proof can be recovered from its twisted version given below. O

2.19. The local system of affine coinvariants of T(M)g,. Let M be as above. Recall that
S = AU {n + 1}. We define differential operators on the R,,-module ¢ Mg, by the formula

Vi=0y +L_1G, VieA.

The operators V; commute to each other and give commuting operators on the R,-module
T(M)R,, see [1, Lem. 13.3.7] for instance. The connection V = Zi V;dx; is called the KZ
connection. Let us compute it.

For each i € S we have the C-linear operator of 7' (M) given by

(@ _ ( (@)
Cri, ) = (ek,l)(i)’
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where e( ) acts on Vi“{ = V*®R, as the operator e; ; ® x{'. Next, for i, j € A the Casimir tensor
log ylelds the C-linear operator on 7' (M) given by

0ij = Y €kl ()eLkG)-
k,l

We define the R, -linear operators y; on T (M)R, by the formula
Vi= Z Vi,j T Vin+1,
J#i

1 i L@ =D
Vij =~ = Vin+l = ZZ( )a €r.l, (n+1) €k, ()"
J a>0 k.,

The following is standard, see [1, Sec. 13.3.8] for instance.

2.20. Proposition. Under the identification in Proposition 2.18 we have 0y, + y; = V;. These
operators normalize g[C] and yield an integrable &, -equivariant connection on the R,,-module
Ho(g[C], T (M)R,)-

Note that Propositions 1.8, 2.20 yield a representation of Hy, i on Ho(g[C], T(M)R,).
3. Twisted affine coinvariants

In this section £ is any integer > 0. We’ll use the orbifold Knizhnik—Zamolodchikov connec-
tion over the configuration space of the stack [P!/D,]. It yields a functor taking modules over a
twisted affine Lie algebra to Hj, y-modules. This functor is a generalization of Suzuki’s functor
for any £. As in the case £ = 1 we can easily compute the image of parabolic Verma modules.
3.1. The twisted affine Lie algebra. Equip the G-module V* with a representation of the

group Dy. Since V* is the dual of the vectorial representation of G, there is a unique element
g € G which acts on V* as the generator of Dy does. Let H C G be the centralizer of g. We set

0=a,. gp={tecmst=c"¢}, bh=go 3.1

peA
Let F be the automorphism of g given by
Fig—g 90", 1-1
The twisted affine Lie algebra is the fixed points set g7 C §. We’ll say that a " -module is of
level c if the element 1 acts as (c/£) id. Let g,f be the quotient of the enveloping algebra U (&7)
by the two-sided ideal generated by the element 1 — c/¢.

3.2. Modules over the twisted affine Lie algebra. We have the triangular decomposition

g =gl o hoC)mel =g ®8L,.
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The middle term is a reductive Lie algebra. So the categories
@5 = O(@,f), égo,x = 0@5’ ééo)’ C:f = C(gf)

are defined as in the untwisted case. The definitions above still make sense by replacing F by the
automorphism

Flig—g 907600, 1-1.
They are indicated by the upperscript F’ instead of F. Note that
~F' AF ~F' ~F
Ij(g—l(—i-Zm) =8 T(gk ) =8

In particular the functor "D yields an involutive anti-auto-equivalence of (’A)i’of f. For each gio-

module M of level ¢ let M be the induced g§F-module. The generalized Weyl g/ -modules are
defined as in the untwisted case. If M is an h,-module then it can be equipped with the unique
representation of ggo of level ¢ such that gfo acts trivially, yielding an induced g,f -module. We

denote it again by MF". For each A € t* we put
A=1+ (c/Dwo. (3.2)
Compare (2.3). Consider the gf -module
M@G)" =L, )y
Let L(A)" be the top of M (WF. Finally, consider the C-algebra automorphism
b : C[C] — C[C], f@ f(e'2),
and let F' denote also the automorphism g ® b of g[C].

3.3. The space of twisted affine coinvariants of T (M). Recall that for any vector space M we
have

T(M) = (V)®" @ M.
Consider the following endomorphisms of 7'(M)

g=g0, o =Y (") erk)-
Kl

Since V is a Dg-module, the group W acts on the vector space (V*)®” in such a way that si(’;.),
& act as a,.(”;) , & respectively. This action gives rise to a representation of W on T (M). The Lie
algebra h acts on V* in the obvious way. Given an h-module M let b act diagonally on T (M).

The representation of W on T'(M) factors to a representation of W on

X(M) = Ho(h, T(M)). (3.3)
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The diagonal h-action and the W-action on (V*)®" satisfy the double centralizer property, see
[19, Sec. 6] for instance. So X yields a map

X :Irr(U(h)) = Irr(CW),

where the symbol Irr denotes the set of isomorphism classes of finite dimensional modules. Now,
recall the algebras B, B, , in (1.5). Given w € W we’ll use the symbol w for the w-action on the

B, ¢-module Fv?,""z (T (M)) and the symbol w for the operator id ® w on
T(M)r,,=TM)®R, ¢
such that w acts on R, ¢ as in Section 1.2. We’ll identify

T(Mr=T(T(M)),  T(Mg,, =Ty (T(M)) (3.4)

in the obvious way. Next, if M is a gf -module we equip T (M)R, , with the unique R, ¢-linear
representation of the Lie algebra g[C]” such that

E@ > Y En @+ (@), @1 3.5)
i#n+1

Note that #£@ e gF because & ® z% € g[C]¥. This action preserves the subspace T (M)R.

3.4. Definition. For each g7 -module M we define the R-module of twisted affine coinvariants of
T (M) by the following formula

¢(M) = Ho(g[C1", T (M)R). (3.6)

By formula (3.5) it is quite clear that the g[C]7 -action on T (M)R centralizes the B-action.
Thus the representation of B factors to €(M), yielding a functor

¢: gl -mod — B-mod. (3.7)

3.5. The Hj,, g -action on the space of twisted affine coinvariants of 7'(M). Now, let M be an
almost smooth fg,f—module. Set § = AU {n + 1}. Let us define new operators on 7 (M)R, ,. For
each i € S we have the C-linear operator of 7' (M) given by

(a) ( (a)

e, = )(i)’

where e,(;’l) acts on Vi’;ﬂ as the operator e;; ® xl-“. See Section 2.19. Assume that
peA €A, jeS, (j,p)#G0).

If j #n+ 1 we set
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(p) (p) -
Vij =9 »/K(Xi—S pxj)’
(02 a— 1 (a—1)\ (a)
Yint1 = ZZ( 1) C k.1, (z))el,k,(nJrl)'
a>0 r

The sum converges because M is almost smooth. Note that the action of

(@)
€Lk, (n+1)

here does not involves any twist by the automorphism #, contrarily to the g[C]/-action on
T(M)R, , in (3.5). Next, if i # j we set

() (p)
Vi Z Vi =2 i
p#0
Finally we consider the C-linear operator y; on T (M IR, given by
Vi = Ox; Vi ,] V,, _z V, FESE .
Jj#i,n+1 p p#0

By (3.4) we have a representation of B, ¢ on T (M)g, ,. This representation can be extended to a
representation of Hy g, ¢ as follows.

3.6. Proposition. Let M € CL, k = —1/k and y, = —tr(gP)/x.

(@) The assignment y; — y; defines a Hy g n ¢-action on the By, g-module T (M)R,, , which nor-
malizes the g[C]F -action.

(b) The operator y; — yl.{”;l 41 vanishes on the subspace T (M) C T(M)R, ,. The representation
of Hy, g on T(M)R, , preserves the subspace T(M)r C T (M)R, ,. It factors to a represen-
tation of Hy g on €(M).

N

Note that the Hj, g, ¢-action on T(M)R, , in (a) yields a representation of Hy, g, ¢ for any
parameter h, H, since the algebra Hj, g, ¢ does not depend on the choice of 7, H. However the
formula (3.8) for the action of y; does not hold for arbitrary 4, H. Hence (b) is false for arbitrary
h, H. We’ll prove Proposition 3.6 from Section 3.9 onwards.

3.7. The image by € of the parabolic Verma modules. Conjugacy classes of elements g € G
such that g® = 1 are labeled by integral weights of level £ in the dominant alcove. More pre-
cisely, since g = 1 there is a cocharacter C* — G such that & = g~!. We may assume that this
cocharacter maps into the torus 7', so it is identified with a coweight. We may also assume that its
coordinates in the basis (¢;) are (—1)"1, (—=2)"2, ..., (—=£)"¢ for some v € C,, ¢ because et=1.
Then the Lie algebra b in (3.1) is equal to b, and we have

g:@s”idv;ﬁ.
p

From now on we’ll always assume that b, v, g are as above. Now we compute the image by € of
the parabolic Verma modules.
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3.8. Proposition.
(a) Given a v-dominant weight .. we have X(L(h,, 1)) =0if 1| ¢ Pf,v and X(L(hy, L)) =~ Xje

else. If v € Cyy ¢ n then X(Irr(U (b)) = Irr(CW).
(b) For each ng-module M the canonical inclusion M C M,f vields a B-module isomorphism

B @) — eMmrh).

Note that in (b) the symbol X (M) means the functor X in (3.3) applied to the restriction of M
to the Lie subalgebra b, C ggo and that in (a) the W-module X0 is as in (1.3).

Proof. For each u € C, ¢ the subspace

(V)™ < (v)*"

p

is preserved by the action of the parabolic subgroup W, C W in Section 1.5. Fixa W x U (h,)-
module isomorphism

V)= @ i (®vi)™)

Mecn,l p

It yields a W-module isomorphism
x(L(hy. ») ~EP ry, (@ Ho(gs,. (V5)*"" ® L(k,,))).
I p

If A, € Py, then the W, -module Ho(gy,. (V"I‘,)®“P ® L(Ap)) is the tensor product of the &, -

module X, , in (2.1) and the one-dimensional (Dg¢)*»-module XE@;L” . Else it is zero. Now fix
w=(]Ap]). Then we have

X(L(bv. 2%)) = FW%D (%,\foil)}“ ®x/\e—leilgz_ll Q- ® xkle)m‘)'
By (1.3) we have also
Xi=Ty, @M e X, 2 @ @ X xE0).
Thus we have X(L(h,, A°)) =~ X, as W-modules. Part (a) is proved. Now, let us prove (b). Set
N=ml, a=glCI", d=(2lC])", b=h.

The linear map

glCl—>8 @ g®
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yields a representation of ag on NRr. View MR as a br-module via the restriction to the Lie
subalgebra br C (&r.>0)". We have an isomorphism of ag-modules

NR =~ Fb“;‘(MR).

The assignment £ ® z” > xi”é‘(i) yields a representation of ar on (V*)ﬁ’”. Since the induction
datum (ag, bR, ai(, MR) is R-split, the tensor identity yields an isomorphism of ag-modules

T(Nr~ (V)R @& Nr > (V)R ®r TeX(Mg) ~ IeX (T (M)R).

see Section A.3. Therefore we have an isomorphism of B-modules

&(N) = Ho(ar, T(N)R) = Ho(br, T(M)R) = I'iy (X(M)). ]
3.9. Twisted affine coinvariants. In the rest of Section 3 we’ll prove Proposition 3.6. First we
recall what twisted affine coinvariants are, following [8]. The group Dy acts faithfully on P! by
multiplication, yielding a cyclic cover 7 : P! — P! /D, which is ramified at 0, co. Fix an S-tuple

of distinct points y; € P! /D¢ and pick points x; of P (y;) foreach i € S. Let £; be the number
of points in the Dy-orbit of x;. Next, fix S =AU {n + 1} and x,+1 = y,4+1 = 00. Put

PL=P' —x ' ({yi; i €9)).
Letb e Aut((C[IP’;]) be the comorphism of the action of the generator of D;. We set

i =2 —Xi, zn+1=—z71, zi,pzz—el’xi, i#n+1.

We’ll abbreviate qu,p = (z;,p)“ for each a. Note that b(z) = e 'z, b(zne1) = €241 and b(zi,p) =
712 p11. We get the following automorphism of g[P}]

F=g®b:g[P}]— g[P}].
LetG 5 be the Lie subalgebra of Gg spanned by Q[i +1yand Griyfori #n+1.Let G 5 be the central

extension of gSF by C associated with the cocycle (§® f, L ®g) — (€ : ) ;g li Res;—o(gdf).
Consider the algebra homomorphism

Wi C[R = Cs), f@ Y fa+xdm+ (=)

i#n+1

Here f(tr + x;), f(—t~!) are identified with the corresponding formal series in . If £ ® f,
{®g¢€ g[]P’;]F then we have

D tiRes;—o((£ : ¢)gdf) =0, (3.9)

ieS
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because the residue of the one-form (£ : ¢)gdf is the same at each point of the D,-orbit of x;.
Thus the linear map

P11 =6l tefmteu)

lifts to a Lie algebra embedding

F A
g[P}]" — G5 (3.10)
Now, assume that M, M, ..., M, € C, and M, | € Cf. The assignment
EQ fDi—>§® f(q) (3.11)

yields a representation of G 5 on the tensor product
sM = @ M;.
ies
So gM is also a g[]P’;]F-module via the map (3.10).
3.10. Definition. The space of the twisted affine coinvariants of the M;’s is
(M;; i €S)c = Ho(g[P}]", sM).

Now, let the point x vary in C, ¢. View the x;’s as coordinates on C, ¢. Let R C R, ¢(z) be
the R, ,-submodule spanned by

Zi s > witha>0,i€A, peA, b>0.
It is closed under multiplication. Let R’ C R be the R, ¢-subalgebra consisting of the functions
which vanish on {z = co}. As an R,, ;-module R’ is spanned by

z;Z witha>0,i €A, pe A.
There is a unique R, ¢-algebra automorphism b of R, R’ such that f(z) — f (e 1) It yields
the automorphism F = g @ b of the R,, ¢-Lie algebras gg, gr'. The construction above yields the

R, ¢-Lie algebra é,{n .S and the morphism of R, ¢-Lie algebras

@r)" = Gk, s (3.12)

which is analogous to (3.10). Assume that My, M, ..., M, € C, and M,y € C,f. The assign-
ment (3.11) yields a representation of QII; ,.5on sMg, . Thus (3.12) yields a representation of
(gr)F on sMg, ,. Taking the coinvariants with respect to the Lie algebras (g »F, @r)f
the following two R, ¢-modules:

we get

(M;; i €S), (M;; ieS).
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We’ll also use a more general version of twisted affine coinvariants obtained by inserting a
/ .
new module My € CL" at the point 0. Set

S={0jUS=AU{0,n+ 1}.

Let x = (0,x) and § = (0, y). The Lie algebra g[]P’;_]F acts on the tensor product ;M in the
obvious way. We define

3.11. Proposition.

() If My,...,M, € @;‘%K and My, € @goff the Ry, o-module (M;; i € S) is projective of
finite rank. Its fiber at the point x € Cy ¢ is equal to the C-vector space (M;; i € S),.

(b) Let £ =(0,x) € Cog1.0, My, ..., M, €Cy and My 11 € CF. Set My = M(cwo)"". The obvi-
ous inclusion L(h,,0) C My yields an isomorphism (M;; i € S); = (M;; i € S);.

Proof. The proof is quite standard, so we’ll be very brief. Part (a) is the twisted version of
Proposition 2.16. The proof that the R, ,-module (M;; i € S) is finitely generated is the same as
in the untwisted case, see e.g., [18, Prop. 9.12]. Indeed, observe first that for each i € A there is
an integer r; > 0 such that M; is generated by M; (r;) as a g-module. Similarly there is an integer
rn+1 > 0 such that M, 41 is generated by M, 41 (r;,+1) as a gF-module, where M, 41 (rp+1) is the
set of elements of M, 1 killed by any product of r,,4| elements of gio. Next, set

—1 .
fi =Z0- Sor1=—z, €A,

Then fi, f2,..., far1 € R and for each i, j € § the expansion of f; at x; is t~Vifi = j and it
belongs to Ry, ¢[¢] else. The rest of the proof is by induction, using the spaces M;(r;) and the
functions f; as in [18]. Next, the R, ,-module (M;; i € S) is projective, because it is finitely
generated and admits a connection, compare [18, Prop. 12.12]. This connection is called the
orbifold KZ connection. It is constructed in a quite general setting in [26]. We have given the
construction of the orbifold KZ connection in the second step of the proof of Proposition 3.6,
see Section 3.13 below. Finally, the third claim in (a) is also proved as in the untwisted case, see
e.g., [18, Sec. 9.13]. It is a twisted analogue of the commutation of affine coinvariants with base
change.

Part (b) is the twisted analogue of the propagation of vacua recalled in Proposition 2.14(c). It
is proved as in the untwisted case in [18, Prop. 9.18]. More precisely, the expansion at y yields a
Lie algebra embedding

11F 5F
Q[PQ] - gs s

where Q§ is a central extension of the Lie subalgebra G 5 cg 3 spanned by Q[f)i, G, i € A, and

Q[i 1] Then (M;; i € 3} 4 1s the space of coinvariants of the representation of g[IP’;]F on the
space

S'M = M(Ca)o)F/ ® sM.
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Note that the QASF -module §M is induced from the é§‘+—module C® sM, where QA;“F C Q 5 is
the central extension of the Lie subalgebra gé” cg 5 spanned by (g ® C[[t])*", Gjij. i € A, and

g[i - Therefore the claim follows from the tensor identity as in [18], and from the following
equality

gAg = ég’Jr + Q[P;]F,

which is left to the reader. Compare Proposition 4.5 below. O

3.12. Remark. The R,, ;-module of twisted affine coinvariants (M;; i € S) and the R-module
&(M) of twisted affine coinvariants of 7'(M) are related by the following R, ,-module isomor-
phism, see (3.15) below

My=---=M, =V, Myy1=MeCl = (M ieS)~&M),,.

Proof of Proposition 3.6. Recall that M € C,f .Let R" C R C R, ¢(z) be as in Section 3.9. To
avoid cumbersome notation we write

a=@p)", d=@r)", b=(gr, )"

We have a = o’ @ b, and the R,, g-modules o’, b are respectively spanned by

e £®7P(Z\ —xH) T withé €gp,a>0,p=0,....0—1,i € A,
o £Qz’ withé e gy, b >0.

The proof is long and technical. We’ll split it into several steps.

Step I: First, we prove the formula (3.15) below, which identifies T (M)g, , with a set of twisted
affine coinvariants. To do so we put

My=--=M, =V My =M.

To simplify the notation we’ll set n = 1 in this part of the proof. The case n > 1 is identical.
Therefore we have

TM)=V*"Q M, sM=VieM
and the inclusion V* C V} yields an R ¢-linear embedding
T(M)Rll C SMRLW (3.13)

Recall that Ry ¢ = (C[xlil] and that a acts on MR, , via the map (3.12). Thus, by definition of
the map ¢, the element £ ® z” € b acts as the sum
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Since the subspace V* C V} is killed by g9, we get that £ ® zP acts on the subspace T (M IR,
as the sum

b b
(xlg)(l) + (ﬁé( ))(2)'
This is precisely the b-action on T'(M)g, , given in (3.5). Therefore, the inclusion (3.13) is an

embedding of b-modules.
Now we prove that there is an isomorphism of a-modules

sMg, , >~ I'§(T(M)R,,). (3.14)

Letb=0b @ Ry ¢ (the trivial central extension) and let a be the central extension of a by Ry ¢
associated with the cocycle (§ ® f,{ ® g) > (£ : £) Res,—y, (gdf). By the residue theorem there
is an Ry ¢-Lie algebra homomorphism

i—>8h, EOf@QPERf(—1T),  1e -1,
compare (3.9). Thus, since M is a gF -module of level c, the assignment
$®f(z)f—>é®f(—t_l)

yields a representation of & on M, , of level —c. Similarly, since V} is a " -module of level c,
the assignment

ERf(D—EQ ft+x1)

yields a representation of a of level ¢ on (V})R, ,. The representation of a on sMg, , is the
restriction of the tensor product of the a-modules My, , and (V:)Ru- The Rj ¢-submodule

Vi"{l , C (VR is preserved by the b-action. So the quadruple (@, b,a, V;‘{u) is an Ry ¢-split

induction datum. See Section A.3 for details.
We claim that the representation of d on (V})g,, is isomorphic to the induced module

Fﬁa (V*Rl [). Then (3.14) follows from the tensor identity, because we have
sMR, , = Fﬁa(vikh_z) ®r,, MR, = Fﬁa(viﬁh.z @R ¢ MRl,é) = Fba(T(M)Rl,z)'
Now we prove the claim. The d-action on (V})g, , yields a map

Vi) = Vg, o E®F@)®ve (E© f0+x).

We must prove that it is invertible. Recall that

ba(VRl [) ( /) ®RI,Z VEI.Z’

(V:)RM = Fg20 (Vikh,g) = U(ng.<0) R, Vik{u'
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Further, for each a > 0 the assignment z — ¢ + x| takes z” (zt — xf)_“ to a formal series in
(Ry,0)*t™ + Ry o [e]' ™

Therefore the claim is obvious.
Note that (3.14) yields the second of the two isomorphisms below

(M;; i ES)/:T(M)RM, (Mi;ieS)=C(M)y . (3.15)
Indeed, with the notation used in this proof the definition (3.6) yields

E(M)n,e = Ho(b, T(M)g,,)-

The proof of the first isomorphism is identical because the quadruple (a, b,d, T(M)g, ,) is also
an Ry ¢-split induction datum, hence (3.14) and Section A.3 imply that

sMg, , >~ FGI(T(M)RLZ)'

Step 2: Now we define an integrable connection on the R, ¢(-modules T (M)g,, and €(M), ;.
For each i we consider the differential operator on Mg, , given by

Vi=0y, +L_1,4.

Next we set V = Zi Vi dx;. Itis an integrable connection on the R, (-module sMR, ,. By (2.2),
foreach & e gand f € R, ¢((ts)) we have
[Vi.6® f1=6Q® Oy f— 0, f). (3.16)

We claim that V normalizes the a-action given by (3.12). Hence the isomorphisms (3.15) yield an
integrable connection on the R, ¢-module T (M), , which factors to a connection on €(M); ¢.
Write V again for these connections.

Now we prove this claim. For each integers a, b with a > 0 we define the constant c by the
following formula

31 (e") /(@ — D) = bt

A direct computation yields the following relations in R, ¢((¢s))

b— b—a+1
‘x(sz Pot[/] ZZC (ePxj —xk)” at[};c] Z( e h(gpxj) “r I[I;:Lll],

k >0 b>0

Z(xk + t)[k] + (= ])ht[;ﬁ_l

where k =1,2,...,n and (k, p) # (j,0). Thus the derivation d,, — d;, annihilates ¢ (z*) and
takes iy (Z;‘;,) to 8; jelaiy (z;‘;_l). So (dy; — 0;) oty =ty 0 dy; on R. Hence (3.16) yields the
following relations
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[Vi.£ ® 1, ()] =0.
[0 @0 (& = ) )] =0 sats! e @ (27 (4 —x) 7).
The claim is proved.

Step 3: Now we claim that the connection V on T (M)g, , is W-equivariant and

P Yp p
i =V; +kZZx Y +§)x—i—81’xi8i' (3.17)

J#i P

Thus part (a) of the proposition follows from Proposition 1.8(a). Note that the Hj, z-action on
T (M), , we have just constructed normalizes the b-action given by (3.5), because the connec-
tion V normalizes the a-action on sMg, , given by (3.12) by the previous claim.

Now, let us prove the latest claim. We’ll compute the connection V on T (M)R, ,. Since V; is
a derivation, it is enough to consider its restriction to the subspace T(M) C T (M )R”_ .- Under the
quotient map sMg, , = T(M)R,, in (3.15), the obvious inclusion T (M) C sMg,, is taken to
the obvious inclusion T(M) C T(M )R, .- So it is enough to compute the action of the operator
L_1,(;) on the subspace T(M) Cs MR,,,Q-

For & € g we consider the following elements

. — b 5
oE.i)=Y ePePE®zed. g7 =t@1) s,

Note that

(o€, 1) = 5( h_ Z el (ePx; —x,-) ( pE)(b) Z(—l)bsp(spxi)b(gpé)[(sﬂ},
b,p

J.psb

where j € A, b >0, p e A and (j, p) # (i,0) in the first sum. Let v € T(M), viewed as a
subspace of s MR, ,. Then, we have

1 g’é
( )y sz _8(11)7 v+Z(—l)be’Fp(g(bH))(nH)v mod a'(sMR,_,)-
b,p

Note that £;yv =0 for each & € §.¢, i € A. We have

1 (=1 )
L,]’(,‘)UZ ;Zek,l,(i)el’ka(i)v’ i €A,

k.l
) £ 2 as0 Zk,l(_l)a_lxia_lFp(e](:[))(n-i-l)el,k,(i) ifj=n+1,
v > k(&P er ) ek i)/ (xi — e Pxj) else.

Setting & = ex; in the formula above, we get

L_L(,-)v = yiﬁv + .-+ )/l-{;Jr]U mod a/(SMRn,g)'
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In other words, the connection V on T'(M)g, , is given by

o, (P oP

1
Vi=0y +— - + ¥
' N KZZX,'—S Px] le—g —Px; Vint1
J#L P
with j € A. Now, for p # 0 the operator O’( P) acts on T(M)g,, as the operator tr(gp)gip =
—Kypgl . Thus we have

(p)

P

Vp &; F
Vi=0dy + — — ol oyl
i szl_gpx, D

J#i P

Since k = —1/« the right-hand side of (3.17) is

() ()
xz__zle_e Px; p p +le_8 px _gip)—"_yi{;+1

Jj#i P p#0
(p) P _ (P)
=0y =22 5 (55 =0 =2 vl @ = 1)+ Vi =
Jj#Ei P p#0

So (3.17) is proved. The W-equivariance of V is obvious from the formula above.

Let us prove (b). If v € T(M) then (3.8) gives y;v = yil‘;Hv. The subspace T(M)r C
T (M)g, , is preserved by the B-action in (3.4). By (3.8) it is also preserved by the operators
Y1, Y2, -+, ¥n, 1.€., the denominator in yif?) simplifies. Thus T (M)R is a Hy, g-submodule. The

representation of H, g on T (M)Rr normalizes the g[(C]F -action by part (a). Hence Hy, y acts on
c(M). O

3.13. Remarks. (a) The connection V is a particular case of the orbifold KZ connection in [26].

(b) In Section 4.4 we’ll also use a more general Hjy p-module €(M’, M), ¢ obtained by in-
serting also an almost smooth g/ "-module M’ at the point 0 € P! before taking twisted affine
coinvariants. See also Section 3.9. Then Proposition 3.8 generalizes in the following way: if
M' = (E')F" and M = EF then we have an isomorphism of B,, ;-modules

’ ~ Bne ’
(M, M)n,e ~ Iy (X(E' ® E)).

4. Untwisting the space of twisted affine coinvariants

Any twisted affine Lie algebra associated with an inner automorphism is isomorphic to a non-
twisted one. In this section we prove that, in a similar way, the space of twisted affine coinvariants
can expressed in terms of non-twisted affine coinvariants. Recall, however, that twisted affine
coinvariants yield a local system over the configuration space of the stack [P'/D;] while affine
coinvariants yield a local system over the configuration space of P!

4.1. Notation. Given a weight 7 we may shift the origin in t* and write

Ar = A+, Ar = Ay +cwo, VA€t
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We’ll choose a new origin 7 as follows
m=cy/t, y=(-1,-1,...,—-1,=-2,...,=¢),

where the integer —p has multiplicity v,. The coweight y associated with y can be viewed
as a cocharacter of the torus T'. So it yields the element y(z) € T for each z € C*. Note that
y(e) = g_l. Note also that accordingly to (3.2) we have A = A + (¢/€)wyp.

4.2. Proposition.

(a) There is an algebra isomorphism x : Q,f — 8, yielding equivalences of categories C,f — Cy,

(’A)go’,( — @V’K such that M()A»)F > M()Aw)v, L()A\,)F > L(in).

(b) There is an algebra isomorphism x : gf . 8. yielding equivalences of categories
cF - ¢, @g’w — Oy such that M(W)F +— M(fizx),, LT +— L(fix) with
w=—wy(X). '

© IfM e O then TD*M) = *('DM). If M € CF then*M = *(' M).

Proof. (a) We have

g'= P s,  gb)=|seg [7.51=bt). @.1)

a=b mod ¢

Conjugating by y(—1)~! takes g(b) ® 1 onto g(b) ® 1. Composing this map with the assign-
ment (—#)¢ — —1 yields a Lie algebra isomorphism g/ — g. It lifts to a Lie algebra isomorphism

x:gh g 116, Dy VHEWD) —s, 0 8)1/0,  (42)

see [15, Thm. 8.5]. The Lie algebra x(ggo) is spanned by 1 and the elements & @ with & € g(b)
and af + b > 0. Therefore we have

xE+z) =6+ (z—(y:§))1/L, VEeh,.

Part (b) is the same, using the conjugation by y (¢) instead of y(—¢)~!. Indeed, we get the Lie
algebra isomorphism

wgl e 11t EDs )V (EYD) 18,007 E)1/L (4.3)

Set x = ¥ OAJ{,. Note that TL()A») = L(—A)\) where, in the right-hand side, the highest weight is
relaAtive to b’. Note also that twisting by x’ takes L(W)F to the simple module L(w,(A_z))
in O], . Part (c) is obvious. O

To unburden notation, we’ll write M — * M both for the equivalence C,f — C, and its inverse,
hoping it will not create any confusion.
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4.3. Notation. Let S = AU {n + 1}. Let x;, y;, i € S, be as in Section 3.9. Recall that x,,1| =
Ynt+1 = 00. Recall n-tuples (x;; i € A), (y;; i € A) belong to C,, ¢, C,,1 respectively. View x;,
yi as coordinates on Cy_ ¢, Cy.1. Then the assignment y; — xf yields an inclusion

R, 1 CRy .

The group D, acts on P; by multiplication. We have
b
C[p)/De]=C[P,]"

Next, there is an obvious isomorphism P!/D, — P! which gives rise to an isomorphism
]P);/Dg — Pl - {xf; i € §}. So we may identify

(C[]P’;]b =Clz. z—y)'].

4.4. Twisted affine coinvariants versus untwisted ones. We want to compare twisted affine
coinvariants with untwisted ones. To do that we first generalize the construction of the functor
€ in (3.6) by inserting an almost smooth g% "-module at the point xo = 0. More precisely, given
M e CF and M’ € CI" we consider the vector space

T(M , M)=M @T(M)=M & (V)" @ M.

Equip the R, ¢-module T(M’, M )R, , with the unique R, ¢-linear representation of the Lie alge-
bra g[C*1¥ such that

n
E@2 > (E9) ) + D_x{w + (167 )
i=1
Then we set

e(' M), , = Hola[C*]" . T(M' M) ).

The g[C*]F -action on T (M’', M )R, , centralizes the B, ¢-action. We get a bifunctor

&' mod x ¥ -mod — B, ;-mod, (M'. M)~ &(M'. M), ,.

The B, (-modules €(M), ¢ and €(M’, M),, ¢ are related in the following way.

4.5. Proposition. There is a natural isomorphism of B, ¢-modules €(M), ; — Q:(M(Cw())F,,
M)n,2~

Proof. This is a consequence of Proposition 3.11(b). To unburden the notation we give a proof
for n =1 and we set R =R, ¢. The case n > 1 is the same. Set

azg[(Cx]F, b=g[C]F, u’=(z_1g[z_l])F.
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Let b = b @ C, the trivial central extension of b by C, and let @ be the central extension of a by
C associated with the cocycle (£ ® f, ¢ ® g) — (£ : ¢)Res,—o(gdf). The assignments

", Eed - aten + (1Y),

yield representations of ag on M}, and V} @ g Mg of level ¢ and —c respectively. We have an
isomorphism of dg-modules

My~ F[;a:(R).

Here by acts trivially on R. The induction datum (ag, b R, u’R, R) is R-split. Thus the tensor
identity yields an isomorphism of ag-modules

T(M', M), =Ty (T(M)R).
Thus we have

¢(M', M) ,~Ho(b,T(M)R) =C€(M)pe. O

nt —

Next, assume that M € CF and M’ € CF'. Set N = *M and N’ = *M’. The g, -modules N,
N’ are almost smooth by Proposition 4.2. They are canonically isomorphic to M, M’ respectively
as vector spaces. Let B, , act on (V*)%“lZ as in (3.4). Setting £ = 1 we get a B, j-action on
(V*)ﬁ’r’fI . The inclusion R, 1 C R, ¢ in Section 4.3 yields an embedding W x R,.1 C B, ¢, where
the ¢; S act trivially on R, 1 in the left-hand side. Thus, by induction, the algebra B,, ; acts on

(V*)i?:,l ®R,.| R, ..

Now, consider the R, ,-linear map

(V*);?:g - (V*)i?,:ll ®Rn<1 R"»Z’

V=010 R QU (DU @Y (X212 ® - ® Y (Xn) U,
)7(x,-)=(xi_l,xi_l,...,xi_l,xi_z,...,xi_e).
It is indeed a B, ¢-linear map (the &, -linearity is obvious, and to prove the W-linearity it is
enough to observe that y (&) = g’l, see Section 4.1, and that &;v = g(;)v, see Section 3.1). This
yields also a B,, ¢-linear map
x:T(M', M)

v, = T("N'.N)g | ®r,, Ru. (4.4)

4.6. Proposition. Let M € CF', M’ € C,f/, N ="M and N' = *M'. The map x gives a B, ¢-
module isomorphism E(M', M),, ¢ — (’Z(TN’, N)n,1 ®r,, Rue.
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Proof. We must prove that the B, ,-linear map » in (4.4) factors to an isomorphism of B,, ;-
modules

Ho@[C*] T (' M)y )~ Ho(@[C ] T(N M)y, ) O, R

A
The vector space g[C* ] is spanned by the elements
E®z" withé €g(b), a=—bmod/.
Here g(b) is as in (4.1). The conjugation by y (z) takes & ® z% to
yR(E @) =E @M.
Composing it with the linear map & ® 797 > & ® z(¢+?)/¢ yields a Lie algebra isomorphism
a[c*]" — g[C*]. 4.5)

We’ll regard R, as the subalgebra of R, ¢, generated by the elements y; = xi@. Under the map
(4.5) the element & ® z% € g[C*]¥ above acts on T(TN’, N)R, , as

n
' (ED) o) + > v e+ *(86) )
i=1

= ”’(E(“))((» + ina (7 @E) ) + %(ﬁgm)(w).
i=1

Here the maps x’ : 8" — g and x : gF — g are as in (4.2), (4.3). Note that

TN V)

n,0

= T(*N/, N)Rn_l ®R,; Ru.c.
Under the canonical isomorphisms
IN=*M~M, N=*M=M

the actions of the elements x'(§@), x(8&@) on TN’, N are the same as the actions of the
elements & (@), it @ on M, M respectively. Therefore, we have

§@ k() =x((®)-v), VoeT(M M)y . ©

5. Complements on the category @v, P

This section is a reminder on the structure of the category O for (untwisted) affine Lie alge-
bras. This section does not contain new results. Proposition 5.8 is proved in Appendix A. It is
standard, but we have not found any proof in the literature. Recall that we’ll always assume that
k e C*.
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5.1. Complements on the affine Weyl group. When it creates no confusion we’ll abbreviate
S = G,. Let S be the affine Weyl group of &, i.e., the semi-direct product & x ZII. For
any real affine root a let s € G be the reflection associated with «. There is a unique linear
representation of & on t* such that w € &, t € ZIT act in the following way:

w(€;) = €y(i)s w(wo) = wo, w(d) =4, T(8) =4,
t(¢) =¢; — (T :€;)6, T(wg) =T+ wo — (t:7)8/2.
We abbreviate
p = p+may.
The dot-action of & on t* is given by
weil=wl+p) —p.
Both actions factor to representations of S on the vector space t'. Recall the notation
A=A+ cop, A=A +2,8, o=—(A:2p4+A)/2k, VAett (5.1)

Wehave A =w e L iff A =w e fi.
For each A € t* we set

o) = {aeﬁ; 2004 pa)eZa:a)}.
Let t; = {1 e t*; (A4 p:8) #0}. Note that if  is as in (5.1) then it lies in t; iff k # 0. For each
A € t; we have

A

Iy ={aelle; (L +p:a)el},

a root system with the set of positive roots Jud Nt = arni (A). Let é(k) be its Weyl group.
We call &(A) the integral Weyl group associated with A.
For each A € tjj we consider also the group

é,\z{weé; weA=2A\}

It is a (finite) subgroup isomorphic to the Weyl group of the root system

A

I, ={o e s (h+p:a)=0}.

See [17, Sec. 2] for details.
Finally, let IT,, IT;", &, be the root system, the set of positive roots and the Weyl group of b,,.
Note that I7, C I1 and [T1;) = 1 N 11,
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5.2. The partial order on A 5 . We’ll say that an affine weight A € t* is v-regular (resp. v-

integral) if we have (A : «) # O (resp (A : &) € Z) for each « € IT,,. Note that if A + p is v-regular
and integral then there exists a unique element w € &, such that

Apyi=weA
is v-dominant, and we set
sn(h) = (—1)!®),
We equip the set t* with the partial order given by
AZp = )»—,ueNﬁ*‘.

Now, we define the following partial orders on the set of v-dominant affine weights.
(a) Let < be the transitive closure of the binary relation such that A f} w iff the simple g-module

L()) is a Jordan—-Holder factor of the parabolic Verma module M (w),,.
(b) Let < be the transitive and reflexive closure of the binary relation such that A 1 w iff there is

aroot o in IT;H \ IT;F such that (u + p : &) € Z=0, 54 ® i + p is v-regular, and we have

A= (Sq ® )y <[

5.3. Proposition.

(a) The partial order < refines the partial order <
(b) IfHom (M(k])u, M()\z) ) # 0 then )\1 N )\2.

Proof. Part (b) follows from (a), because if ¢ € Homg(M (A)v, M(A2),) is non-zero then
¢(M(il)v) is a submodule of M(iz)v whose top contains L():l). Hence L():l) is a Jordan—
Holder factor of M (iz)v. Now, we prove (a). We must prove that if u < A then u < A. Given a
v-dominant affine weight A € t*, the Kac—Kazhdan formula for the Shapovalov determinant of
the contravariant form on M (1), restricted to its weight w-subspace is given, up to a non-zero
scalar, by the expression

det(A)y,, = 1_[ 1_[ (2@ +pa) —nla :a>)X()~*na)v,u’

>0 e\
X = Y (=D dim Mw e 1), .,
wes,,

see [16, p. 107]. Let us consider the sets
Sy, ={aeﬁ+\17v+; an € Z-y, 2()»+,6:a)=n(a:a)}
={a eI\ TS (A +p:a)eZoo),

SY={a €S); 5401+ pis v-regular}.
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Now, suppose that L(w) is a subquotient of M (1), with A, u both v-dominant affine weights
and pu < A. Then L(u) must be a subquotient of the maximal submodule M (A)‘lj of M()),. The
Jantzen filtration yields a decreasing sequence of submodules M (A)’;, k > 0, of M(}), such that

D ch(M()S) =) sn(sa e A)ch(M((sa ®1)4),).

k>0 O{ESQ

where the symbol ch denotes the formal character, see e.g., [13, Sec. 4.1]. Thus there is a real
affine root o € SE such that L(u) is a subquotient of M ((sy ® A)4+)y. Since (s, ® X)) 1 A, an
obvious induction implies the proposition. Compare the discussion in [14, Sec. 9.4-10.6] for
instance. O

It X, @ are as in (5.1) we may write u < A for 1 < . To define the order relation we embed
Oy« in Oy and we equip the set A 5 with the order < of the highest weights of the parabolic

Verma modules.
5.4. Remark. Note that if A <o then st — A € NITT and A € & o 1.

5.5. The truncated category. Recall that u, denotes the pronilpotent radical of q,. Let
I1V C IT* be the set of roots of u,. Set z = C3 @& 3 ® C1 where 3 C b, is the central Lie subalge-
bra such that b, = [h,, h,] @ 3. Note that z C t. Let z : t* — z* be the restriction of linear forms.
We equip the set z* with the partial order such that

A

wn<a = u-znecz(NIY).
Given a finite subset B C z* we put
BA={ret; 3pe B, z(v) < B).

Let 8 @v,/( C @U,K be the Serre subcategory consisting of the modules whose A-weight space
vanishes if A ¢ B A. Note that any object of (5{ § liesin B @V,K for some B. The following is

well known.

5.6. Proposition. The category B (’j‘{ 8 is a highest weight category. The poset of standard mod-

ules is the set of parabolic Verma modules which belong to B (’A)\{i with the order relation <.

Proof. By Proposition 2.9(c) the category (5,{ % is Abelian, any object has a finite length, and

Hom sets are finite dimensional. Thus the category 5 @,{ % is Abelian and Artinian. The axioms

(a) and (c) of quasi-hereditary categories, see Section 0.1, are obvious. The axiom (b) follows
from Proposition 5.3(b). Thus it is enough to check that any parabolic Verma module M has
a projective cover in B(;),{ % whose kernel is standardly filtered with subquotients > M. This is
well known, and proved in [21, Cor. 10, Cor. 13, Thm. 4]. See also [9,23] for a more recent
exposition. O

5.7. Kazhdan-Lusztig polynomials. Set

A={rety A +p:a)<0, YaeIIG)T).
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Recall that for each A € t such that 1) #@and (A + p:68) ¢ Q- the set (é()\) eA)NA
consists exactly of one element, see [17, Lem. 2.10]. Fix A € t(”;. Let & C & be the set of

minimal length representatives in the left cosets relative to S,. Since &, is also a parabolic
subgroup of the integral Weyl group G(1), the set S(1)* is well defined. We’ll use the symbol
Pj"’uj ! for Deodhar’s parabolic Kazhdan—Lusztig polynomials of type S(1)/S;, see [4].

5.8. Proposition. Let A € 2 be such that ﬁ(k) 0. Ifw e é(k)}‘ is such that w e A is v-dominant,
then we have the following formula in [(55 ‘]

[Lwer)]= Z (=D~ L) [M (v e 1)y ).

v<w

The sum if overall v e é(k))‘ such that v e A is v-dominant. The symbol < denotes the Bruhat
order on G()).

5.9. Remark. Note that if A € 2 is such that I:I(A) # () then we have « := (A 4 p : 8) & Qx0, see
e.g., [17, Lem. 2.10].

6. Definition of the functor ¢

We can now construct our main functor €. It takes a module from the affine parabolic category
O to amodule in Hj, z. We’ll prove that the functor € preserves the posets of standard modules.
In this section we’ll make the following assumption

vecm,la K¢Q>0, h:l/K,
hp=vy/k —m/[lk, VpeA.

6.1. Notation and definition of &. Recall that by Proposition 3.6(b) we have a functor
¢: CKI.: —> Hh,H-mod.

Composing it with the functor x in Proposition 4.2(a) we get the functor
€:Cc —> Hpy-mod, M Ho(g[C1", T(*M)y). (6.1)
Recall that
T=c(-1,-1,...,—1,=2,...,=0)/¢,
where the integer — p has multiplicity v,. Set
A =A47T,  Ar=Ap+cwy,  Ar=inp+z2.8, Vriet:
If X € t* is a v-dominant weight we’ll abbreviate

Ak,v,x ZM()ALn)v» SA,U,K =L(5"ﬂ)-

Given a finite subset B C z* let & Py v« denote the projective cover of Sy ,  in B(’A)V,K.
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6.2. The functor € and the standard modules. First, let us compute the image by & of the
standard modules.

6.3. Proposition.

(a) The functor € is right exact and takes (’5,,,,( to Hp.H.

(b) We have (A i) = Do u if A € P, and 0 else.

(¢c) The functor € takes (’5,{ ¢ to H}{f”H.

Proof. FirAst, we prove (a). It is enough to check that 7(M)R is a locally nilpotent R*-module
for M € O,,.. We’ll identify M with the §"-module * M. By Proposition 3.6(b) the operator

Vi — Vii 1 Vanishes on the vector space T'(M). Fix a finite dimensional ggo-submodule EcCM.
Formula (3.8) implies that

(i = 7)) (T Edreoin) € T (e
where R¢, C Ris the subspace of the polynomials of degree < a. We have also

Vi1 (T(E)R) C T (8Z0E)g. 6.2)

Thus, since the action of gio on FE is nilpotent and E is finite dimensional, there is an integer
d > 0 such that (yl.f;H)d(T(E)R) = 0. Therefore, if b is large enough then yf(T(E)R@) =0.
The right exactness of & is obvious, because taking coinvariants is a right exact functor.

Now, we prove (b). Given a gﬁo-module M we consider the induced g -module MF. We

have an isomorphism of B-modules Q(M,iF )y=1T, ‘?} (X(M)) by Proposition 3.8(b). The y;-action
on an element v € X(M) is given by y;v = yi{';le by Proposition 3.6(b). If gfo annihilates
M then (6.2) yields y;v = 0. Thus the subalgebra B* C Hy g acts trivially on the subspace
X(M) C &(MF). This yields a B*-module isomorphism

C(MF) ~ rg (x(M)).
Now, Proposition 4.2(a) yields
C(Arv) = (M Gir)v) = €(L by, 1))
We are done, because X(L(h,, L)) = X, by Proposition 3.8(a).
Finally, we prove (c). Given M € @{ ¢ we must check that (M) has a finite length. This

follows from an easy induction on the length of M. First, if M is simple then it is a quotient of
a module A; , . Thus, since € is right exact, &(M) is a quotient of Ao, . Thus E(M) lies

in H‘hf gH. Next, there is an exact sequence

Ajyve—=>M—>N—=>0

such that the length of N is strictly less than the length of M. Since € is right exact this yields
the exact sequence

A)»o,h,H —> G(M) —> Q(N) —> O

Thus (M) has a finite length by the induction hypothesis. O

Now, we can compare the partial orders on the set of standard modules in (’5,),,( and in Hy p.
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6.4. Proposition. If A, € P} and Ay v e <Ay v then Ao 1 < Mo i H-

Proof. Recall the decomposition J = J; U Jo U --- U Jg in Section 1.4. Let y, T be the weights
given by

vi=hi+hy+--+hep, Ti=m+vy, VjeJp.
For each weights A, u we set
al, ) =(A:A+214+2p)/2k — (0 w42t + 2p) /2.
A computation yields
(kx — fin i 0+ cwo) = cza, — CZpuy + (b — i 7)
=mA—p:m)/k —cA:A+2p0)/2k +c{pu:u+2p)/ 2
=A—p:ct+mm)/k —ca(r, ).
On the other hand, we have

ka(h, ) = Z(n(’k,,) —n("up) —np) +n(up)).

p

So we get

Ouo —Oho =—LY (i +-+h, (5] = |i5]) — €au, )
14

=—LA—pn:y)—Lal, p).
‘We claim that we have
c(Ouo — 630) /= (b — iy : 7T + cap). (6.3)

It is enough to check that cky + ¢t + mm = 0. Since this tuple has the same entries on each
segment J,, it is enough to prove that its i ,-th entry is zero. The latter is

t—p
Zcxhr +cwe+vi+vr 4+ +vp_1) —cmp/l
r=1
L—p L—p
= clich, —v})+emE—p)/t=> c(kh, — v} +m/t) =0.
r=1

r=1

Now we prove the proposition using formula (6.3). Assume that p, < A;. By definition of the
partial order <, a simple induction allows us to assume that

flr = (Sq @ Ap)y < Ag, @ €llE\ITf.
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For each simple affine root «; we have (o; : w + cwp) = c¢/£ or 0. Therefore
a e II\IS = (a:7+cwo) € Z=oc/L.

This implies that

(Mg — kg - T + cwg) = (Xn — Sy oin 1T+ cwp) € Zsgc/L.
Using (6.3) this yields
Opo — 0 € Zy.
Thus, the definition of the order in (1.4) implies that
AponH < Do nH. O

6.5. Remarks. (a) We have (M) € Hj, g for any M € @K, but &(M) =0 if M is a simple
module which does not belong to @v, -

(b) The Lie algebra g is Z-graded by letting £ be of degree —a. We can consider the
category of Z-graded modules which belong to (’A)g()’ .- The algebra H; p is Z-graded as in
Section 1.6 and we can also consider the category of Z-graded modules which belong to H, q.
The functor € lifts to a functor between these categories of graded modules.

6.6. Examples. Write 1, for the £-partition whose p-th partition is (1) and all other are zero.

(@) Setk =—2,n=1,m=10,£=4,v=(2,1,6,1). We have Al;,h,H - Al;,h,H - Al?,h’H >
Argpaand Agy e > Aty e % Aty v > Aly,v,c. Thus the implication in Proposition 6.4 is
not an equivalence.

(b) A direct computation shows that the module Ag , , may not be simple (f.i., set k = —1,
m=7,L=4,andv=(1,1,4,1)).

7. The functor & is exact on standardly filtered modules

If £ =1 the functor € is an equivalence of quasi-hereditary categories. Since there is no proof
in the literature we have given one in Section A.5. For an arbitrary positive integer ¢ this is not
true anymore. However we expect € to be an important tool to prove the dimension conjecture.
We’ll prove that € is exact on standardly filtered modules. We conjecture that it preserves the set
of indecomposable projective modules. In this section we’ll assume once again that

V€ Cp,e, Kk ¢ Qxo, h=1/k,
hp=vy/k —m[lk, VpeA.

7.1. Reminder on the Kazhdan-Lusztig tensor product. A monoidal category is a tuple
(A, ®, a, 1) consisting of a category A, a functor ® : 4 x A — A, a natural isomorphism

apun: LOMYQN >LR®MQN), L,M,NEcA,
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and a unit object 1 satisfying the triangle and pentagon axioms, see e.g., [20, Sec. 2.2]. The
isomorphism a is called the associativity isomorphism. A category M is a left module category
over the monoidal category (A, ®, a, 1) iff there exists a functor ® : A x M — M together with
natural associativity and unit isomorphisms

MAIN)QRX—->MQ®(N®X), 1X—-X, XeM, M,NcA,

which satisfy appropriate pentagon and triangle axioms. In other words, a left module category
is the same as the datum of a monoidal functor A — Fun(M, M) to the monoidal category of
endofunctors of M, see [20, Prop. 2.2]. Similarly one defines the structure of a right module
category. Finally, a category M is a bimodule category over (A, ®, a, 1) iff M has both left and
right (A, ®, a, 1)-module category structures and a natural family of isomorphisms

XOM)QY >X®MRY), X,YeA MecM,

satisfying the obvious pentagon axioms, see e.g., [12, Prop. 2.10].
Now, recall that the Kazhdan—Lusztig tensor product

.. ASE A& A8
® : (920#( X OZO’K — (920’,(

equips @i‘% . With the structure of a monoidal category

((’jg‘%’,{, ®,a, M(ca)o)),

see [18, Secs. 14.6, 18.2, 31]. The space of affine coinvariants is defined as in Remark A.2.2. It
depends on the choice of a point x in the set C defined in Remark A.2.2. When no confusion is
possible we’ll abbreviate

(M;; i €S)={(M;; i €S)y.

The following is folklore. See Section A.2 for details. Note that we’ll note use Corollary 7.3 in
this paper. It is given here for the sake of completeness.

7.2. Proposition.

(a) There are right biexact bifunctors @ : @;%J( X @,{Z}'{ — (5{% and @ : @{i X @g’(’)’x — @{i
yielding the structure of a bimodule category over ((5;%’,(, ®,a, M(cwp)) on @{i

(b) For My, ..., M, € @ggo’,( and Mo, M1 € (5{% there are natural isomorphisms of finite
dimensional C-vector spaces

(Mo ® - & My, "Myys1) = (Mo, My, ..., "Miyi1)
~Homg(Mo® -~ ® My, "DM,41)".

(¢) The bifunctor & takes Ogo,x x O and OF . x (’)QO’K into OF,.
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7.3. Corollary. For M € @ﬁ%K the functor Ry : (’j‘]f‘%’( — C’j‘]f,‘%’(, N +— N ® M is exact. If the

module M is standardly filtered then Ry; preserves the subcategory @ﬁw The functors Ry,
Rpum are adjoint (left and right) to each other.

In what follows we will omit from notation the associativity and unit isomorphisms, as is
justified by the Mac Lane coherence theorem.

7.4. The KZ-functor. Fix ¢ € C* and a tuple Q = (q1,...,q¢) in (C*)¢. The Ariki-Koike
algebra A, ¢ is the C-algebra with 1 generated by T, T, . .., 7,1 modulo the defining relations

(To—q1) -+ (To —qe) = (Ti + 1)(T; —q) =0,
ToT\ToT = T1 ToT1 To, LiTipTi =Tin TiTi41, LT =T,T;.

Assume that

q =exp(2imh), qp = exp(2i7r(h1 +ho+- -+ hpy1+(p— 1)/6)), VpeA. (7.1)
Let O : Hjy. v — Hn u,o be the quotient by the Serre subcategory generated by the modules
M such that M, ¢, = 0. By [10, Secs. 5.1, 5.3] the Riemann—Hilbert correspondence yields an
equivalence of categories

KZ:Hp no— Ay o-mod.

Composing €, © and KZ yields the functor

GKZ . @v,,( — Aq’Q—mod.

7.5. Comparison of €7z with the Kazhdan-Lusztig tensor product. Recall that V is the dual
of the vectorial representation of g and that V} = D(V,). Consider the following g,-module

Vi = Boue ® (V)"
It lies in the category (’A){f ® by Proposition 7.2(a). So the C-algebra
Apve =Endg(Vi,v.)
is finite dimensional. The duality of C-vector spaces M — M* yields a functor
) :AZ?V,K-mod — Ay c-mod.
Composing the functor
TP @v,,( — AZ?VYK-mod, M + Homg(Vy y 4, M)
with § yields the functor

A

F:0yp — Ay -mod.
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7.6. Proposition. There is an algebra homomorphism ¢ : Ay o — Ay, such that Egz =

$poFo 'D.
Proof. Let Ec be the composition of Exz and the forgetful functor
A, o-mod — C-mod.
Let §c be the composition of § and the forget functor
Ay -mod — C-mod.
The proof consists of two steps: first we construct an isomorphism of functors
¥ :€co 'D— Fc,
then we define an algebra homomorphism
DAy 0= Anvk
such that v lifts to an isomorphism of functors
Ckzo 'D— ¢o3.
Now fix a module N in (’A)]{ & . Proposition 7.2(b) yields
Fc(N) =M@ + cwo)y, Vi, ... Vi, DN).
Consider the g¥-module M = * N. By Proposition 4.2 we have
M(ca)o)F/ = X(TM(JT + cwo)u).
Recall that we have
Vi=1V,.

Fix tuples x € C, ¢ and y € C,1 as in Section 4.3. Assume that x, y belong to the set C defined
in Remark A.2.2. Applying successively Proposition 2.14(d), Propositions 4.2(b) and 4.6, and
Proposition 3.11(b), we get natural isomorphisms
Fc(N) = ("M +cwo)y, Vi, ..., Vi, 'DN),
~ (M(co)" , VE, ..., VL, DM),

~(Vr, ..., Vi DM)

e
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By Proposition 3.11(a) the vector space (V}, ..., V¥ ," DM), is the fiber at the point x of the W-
equivariant locally free sheaf over C, ¢ associated with the R, ¢-module (V}, ..., V}, "DM).
Remark 3.12 yields

(Ve,....V:. "DM)=¢("DM) .
Further the R, ¢-module cbpm )n.¢ 18 equipped with a flat W-equivariant connection V which
comes, via Proposition 1.8, from the representation of H,_ 5 on €(" D M) in Proposition 3.6(b).

Let p: C‘,,’ ¢ — Cy¢ be the universal cover of the complex manifold associated with the C-
scheme Cj, ¢. By definition of the functor & we have

¢("pM)=¢("DN).

Since the vector space & ( TDN) is obtained from the A4, o-module Exz( TDN) by forgetting
the A, p-action, it is canonically identified with the vector space of holomorphic horizontal
sections of the connection V over 6‘,1 ¢- Recall that C is a contractible subset of C, ¢ containing
the point x. Fix once for all a contractible subset Cc Cn ¢ such that p restricts to an 1somorph1sm
C — C. Restricting functions on Cp.i to C and taking the fiber at x, viewed as a point of C via
the map p, yields a natural isomorphism of vector spaces

Y (N): €c(TDN) =~ (VE, ..., VETDM) ~Fc(N).

Further, the A, p-action on the functor E¢ given by Exz gives, via the isomorphism ¥, an A, o-
action on the functor §¢. This action comes from an algebra homomorphism ¢ as above, by the
following consequence of Yoneda’s lemma.

7.7. Lemma. Let M be an object of an additive category A. If a ring A acts on the functor
Hom 4 (M, —), then there is a ring homomorphism ¢ : A — End 4 (M)°P such that the action of
any element a € A on F is the composition by ¢ (a). O

7.8. Corollary. The functor € restricts to an exact functor @UA = 'H}% e
Proof. First, let us note the following basic fact whose proof is left to the reader.

7.9. Lemma. Let & : A — B be a right exact functor of quasi-hereditary categories such that
E(A Q) C AgU{0}. Let O : B — By be an exact functor such that Homg(M, N) = 0 for each
M e Ker(Q), N € BA. IfQ o € is exact on A® then € restricts to an exact functor A — B2,

There are no non-zero homomorphisms M — N for each M € Ker(Q) and N € Hﬁ 1 be-
cause a standard Hj, y-module is torsion free as an R-module. To prove that © o € is exact on
OVAK, it is enough to check it for €gz. Thus the claim follows from Proposition 7.6, because the

module V, , . is standardly filtered by Proposition 7.2(c). O

7.10. Conjecture. IfBA is large enough then we have &( B Py v.ic) = Pyo .1 foreach A € P,fyv.
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7.11. Remarks. (a) For £ > 1 the functor & may be not exact. It may also take a simple object to
a non-simple non-zero Hy, y-module. Indeed, setk = -1, m=7,£=4,v=(1,1,4,1),n=1,
as in Example 6.5(b). We have @(Alp,v,,() = Al;,h,H for each p. We have also €(Ay, ) =0
and there is an exact sequence E(Ajy, v.) = E(A1, v) = E(S1,,v) = 0. Thus E(Sy, ) =
Aje p, 1, which is not simple. Further we have Sy 5 v = A2 p, # and there is an exact sequence
0— Slj,h,H — Al?,h,H — Sl‘l’,h,H — 0. Thus the derived functor L~! & is non-zero and it takes
Satvk 1O SlZ,h,H-

(b) The morphism ¢ in Proposition 7.6 is injective. We do not know if it is invertible. To prove
this we must check that the representation of A, ¢ on Egz(M) is faithful for some module M.

Since KZ is exact and Hj,, g has enough projective objects, there is a module Pkz € Hzf(g which
represents KZ. We have A, o = KZ(Pxz) by [10, Thm. 5.15]. We claim that if BA s large
enough there is a projective module P € B@V,K such that Pgz is a direct summand of &(P).
Therefore the representation of A, o on €gz(P) is faithful. The proof is omitted because we’ll

not use this result. . . .
(c) Recall that we have [O]%] = [0}, ] and [ ] = [}}]*,]. The derived functor L*€

yields a group homomorphism [(5;{";7{] — [H;{;gH] such that [Ay y 1 [Aje p m]lif A € P,f,v and

[Axv.«c]— Oelse. Conjecture 7.10 implies that [BPM’V,K] maps to [Py, ] forall p e P,f’v. So
Brauer reciprocity implies that

[Vlo,h,H : S;LO,h,H] = [Vavue : Suvicl, (7.2)
where Vjo g, Vj,, are the costandard modules with socles Syo p g, Si,» in Hp H, (’A)M respec-
tively. This dimension formula is not the same as in the dimension conjecture. See Section § for
a comparison of the two formulas. We do not know if they are equivalent.

(d) The module &( 58 P). ,.«c) does not depend on the set B if A € P,f’v and B A is large enough

so that [i; € B A for all uw e 77,4;’”. Indeed, if BC B’ and M € B/@v,,( let M be the maximal
quotient of M which belongs to B@U,K. The functor M — M maps B/P;\,U,,( to BP;LQV,K, see
[6, Sec. A.1]. Brauer reciprocity implies that the kernel of the obvious projection B/P;L,,), =

Bp, .« is filtered by parabolic Verma modules whose highest weights belong to 5 A\ # A. The
claim follows.

8. The affine parabolic category O and the Fock space

Fix integers m, £ > 0, e > 1 and fix a composition s € C,, ¢. In this section we’ll use freely the

notation from Appendix A. In particular, we have defined there the integers AI pe—s> Va.es®

the sl,-module A%, and the basis elements |A, s, e, 5°), G(A, s, e,s°)” of A%,

8.1. The affine parabolic category O and the Fock space. The level ¢ Fock space Fock, o
associated with the multicharge s° is a ae-module of level £ which is the limit of a filtered
inductive system of vector spaces A", with r a positive integer. Each A" is equipped with a level
zero representation of sl,. See Section A.4 for details.

Now, let k¥ = —e. For each weight A € t* we’ll write A = A + (k — m)wyp. Let 7 € t* be given
by

T+p=(0s1—1,....,1,s,—1,...,8,8 —1,...,1).
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Note that r is NOT the same as in Section 6.1. Given an s-dominant weight A we abbreviate
As—e=MGr)s,  Sis—e=L(r).

Let A5 _. C O, be the Serre category generated by the modules S s ., A € Z‘;O. The

proposition below identifies the vector space [Af 8 1® C with a submodule A® of the sl,-

s, —e

submodule A™. Thus we can regard [A£ ‘.,

] ® C as a subspace of Fock, .
8.2. Proposition. There is a vector space isomorphism

[A/8,]®C— A%, [Aus—cdr

Aosoe.s?),  [Sis—el> G(A s, e.5°) .
We have V;J’MOVE’SO =[Aj5,—¢ : Su,s,—el foreach A, € Py ;.

Proof. We have A; + p = «a(A,s,s) by Remark A.4.4(a). Proposition 5.8 and Proposi-
tion A.4.3(b) yield

[Sys,—el =) _(=D!ETEIPr LA, 5 e,

A
g(M,S, e,s°)_ — Z(_l)l(vk)—l(vu)PJ;,;;(1) A, s, 8,S0>,
A

where y € 2, vy, v, € &7 such that vyey = )A»,,, v, @y = [iy and v, > vy. This proves the first
claim. The second one follows from Proposition A.4.3(c). O

8.3. Yvonne’s conjecture. Fix an integer n > 0, ¢ € C* and a tuple Q = (q1, ..., g¢) in (C¥)*.
Let A4, o be defined as in Section 7.4. The cyclotomic q-Schur algebra S, ¢ is the endomorphism
algebra of a particular projective A, o-module. It is a quasi-hereditary algebra. In particular, for
each A € P! there is a standard module A; 4 ¢ with a simple top S; 4, 0. See [5, Def. 6.13] for
details. Yvonne’s conjecture [31, Conj. 2.13, Defs. 2.5, 4.4] is the following one (note that our
hypothesis differs slightly from the ones in [31]).

8.4. Conjecture. Assume that q = exp(—2in/e), q, = expinms,/e) and sp11 — sp = n for

p # L. Then we have [A; 4,0 : Su.q,0] = Afﬂ 1y e _gJorall e PL.

8.5. The dimension conjecture. Let g, O be as in (7.1). Assume that

@+ ] @r—ap#0,  hpy==mh,  h<0, Vp#t. @&
p'#P”

We have the following [22, Thm. 6.8].

8.6. Theorem. If (7.1), (8.1) hold there is an equivalence of quasi-hereditary categories Hy, g —
Sq,Q—mod taking Ak,h,H to A)\yq,Q.
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Now, assume that (7.1), (8.1) hold and fix A, i in Pf. Theorem 8.6 yields

[An b Suna]l=[Drg,0:Su40]

Assume further that the following hold
h=—1/e, hp=spr1/e—spfe—1/L, YpF#L. 8.2)

The dimension conjecture compares also [H;{f”H] ® C with a subspace of Fock, so. We'll state
a categorical analogue of this conjecture. It simply claims that H, g should be equivalent to a
full subcategory A, 5, —, of As . if s € C ¢, Taking the Grothendieck groups we recover the
usual dimension conjecture from its categorical version by Proposition 8.2. More precisely, let
first note that (7.1), (8.1) and (8.2) imply that

q =exp(—2imn/e), qp =expimsp/e), Spr1—sSp=2n—1+e/L.
Assume also that the hypothesis in Conjecture 8.4 holds. Then we should have

[A)L,h,H : S/l.,h,H] =AS

T, "xe,—s" (8.3)

The dimension conjecture says that this equality should hold without the lower bound in (8.1)
on the parameters /1, see [22, Sec. 6.5]. If s € C;; ¢, then (A.6) and Proposition 8.2 yield the
equality

A’—i/_x,’k,e,fs =[Ase.s,—e : Spos,—el- (3.4)
Therefore, composing equalities (8.3) and (8.4) we get the following one
[Ak,h,H : S/,L,h,H] = [AN’,S,—E : S;/.",s,—e]'

Before formulating the categorical dimension conjecture note the following easy fact, see Sec-
tion A.6. Let A, 5 _. be the Serre subcategory of A, _, generated by the modules S, s _, with
A€ Pys.

8.7. Proposition. The category A, s _. is quasi-hereditary with respect to the order <. The
standard modules are the modules A 5 _, with A € Py, 5.

We conjecture the following.

8.8. Categorical dimension conjecture. [f s € Cp, ¢, and (8.2) holds there is an equivalence of
categories Ap s.—e — Hp 1 taking Ajyo s —o 10 Aj h H.

8.9. Comparison of the dimension conjecture with the functor €. Fix an integer m > 0 and a
composition v € Cp, ¢. Let A, C O, be the Serre subcategory generated by the simple mod-
ules Sy, With A € ’P,f’v (with the notation from Section 6.1). We define 4, H in the following
way

K=—e, h=1/k, hp=vy/k —ml/k, VpeA. (8.5)
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Then the functor € restricts to a functor
C: Ay = HiH- (8.6)

Note that the integer m in Conjecture 8.8 and the integer m in (8.6) are not the same. If £ = 1 we
may choose them to be equal. Then € is Suzuki’s functor and it yields the equivalence

An,s,fe - Hh,H

which is conjectured in 8.8, by Theorem A.5.1. If £ > 1 we do not know how to get a functor
An.s.—e & Hp u from € because, given h, H, the composition s and the integer m in (8.2) are
different from the composition v and the integer m in (8.5).

8.10. Remarks. (a) Note that A, , . is not a quasi-hereditary category for the order < on the
parabolic Verma modules, see Example 6.6(b).

(b) Let S’ be the degenerate analogue of S4. 0 considered in [2]. Assume that s € Cy, ¢, and
(8.2) hold. Here we allow e to be any non-zero complex number. Now, assume also that e ¢ Q.
Then, it is not difficult to prove that the category A, s, —. is equivalent to a parabolic subcategory

A, € O. This is due to the fact that if ¥ ¢ Q then the induction functor I" : O‘{ 8 (5,{ ¢ isan
equivalence of categories and also to the fact that there is a canonical isomorphism

IrM)®T'(E)=I'(M ®E)

for all M € (’);f ¢ and all finite dimensional g-module E (the proof is standard and will be given
elsewhere). It is probably not difficult to prove that, under this assumption, the categories H;, g
and S’-mod are equivalent. We expect that, in this case, the equivalence in Conjecture 8.8 is
precisely the equivalence of categories A4, ; — S’-mod in [2, Thm. C].

8.11. Example. Assume that m =7, =4,k =—-1,v=(,1,4,1),n=1and h=—-1, H =
(—9/4,3/4,3/4). Then we have v € Cy, ¢, and (8.5) holds. Now set m' =9 and e = 1, s =
(3.1,2,3). Then we have s € C, ¢, and (8.2) holds. Note that for this choice of m, £ and v the
equality (7.3) holds (a computation yields [V v 1 Sp,v il =11f Ay e <Ay v and O else).

Appendix A

A.1. Proof of Proposition 5.8. Fix A € 2, and fix w € é(k))‘ such that w e A is v-dominant.
Since w € (‘AS()»))‘ and (A +p:a)<Oforalla € ﬁ(k)ﬂ we have the following formula in [@,{g]

[Lwen)]= Z (=D P, (DM@ en)].

ve& (L)

Here the sum is over all v’s such that w > v and P, ,, is the Kazhdan—Lusztig polynomial relative
to S(A). See [17, Thm. 1.1] for details. Since w € S()*, for each u € S(1)* we have also

> DO P () =P )

)CEG)L
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by definition of the parabolic Kazhdan—Lusztig polynomial of type é(k) / S,. This yields the
following formula

[Lwer)]= Z (=D ph N[ M (o 1)) (A.1)
ue&()*

Next, observe that G, is a parabolic subgroup of é(k). Indeed, given a simple root «; which
belongs to I1,, we write

()\—i—,é:ai):<A+,5—w()»+,6):a;)—}—(wo)»:ai)—i-(ﬁ:ai).

Then the first term is an integer because w € é(k), and the second one is also an integer because
w e A is v-dominant. Thus we have

G, C&().
We must check that if the simple root ; lies in 7, then it belongs also to the basis of o,
The latter consists of the real affine roots o such that s, (IT(A) "\ {&}) C ITT()). So the claim is
obvious, because
so; T\ {ei}) CITT, s, (TT(V) C TT ().
Now, consider the set
S= {u € é()»)l; U > Sq;u, Vsq; € 6,)}.
Since A € 2, for each u € é(k))‘ we have
uei isv-dominant <= u€S.

Further, it is well known that if u, v € é(k))‘ are such that u > s, u and v > s¢, v, then

Sty S v € G, PRLL () =PRI, (A.2)

S U,V
Therefore if u, v € é(k))‘ and u e A, v e A are both v-dominant then we have
Pl () =PhN), Vo e,

So; U,V

Note also that w € S and that if u e A is v-dominant then the BGG resolution yields

(M@er)]= Y (~D!V[Mxuen)].

xe6,
Thus the contribution of the elements u € é(k)’\ in the sum (A.1) which are of the form

u=xv, xe€G,, ves,
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is equal to the sum

Y (DO PEID[M e ), ]

over all elements v € é(k))‘ such that w > v and v e X is v-dominant. Using (A.2) once again
one can easily check that the other #’s do not contribute to the right-hand side of (A.1).

A.2. Proof of Proposition 7.2 and Corollary 7.3.

A.2.1. The Kazhdan-Lusztig tensor product. First, let us recall the definition of the Kazhdan—
Lusztig tensor product. Let R be a commutative C-algebra with 1. Assume that R is a Noetherian
integral domain. Let F be its fraction field. Fix a unit k € R*, and set S = {1, 2,...,n}. We’ll
use the same notation as in Sections 2.11, 2.12. Recall that z is a local coordinate on P! centered
at 0 and that x = (x;; i € §) is a family of distinct points of P!. Consider the Lie algebra

IRx= Q[lec]R'

Fix a family z = (z;; i € §) of local coordinates on P! such that the coordinate z; is centered at
x;. We can regard z; as an isomorphism P! — P! To each rational function ferF (P1) and to
each index i we associate the power series expansion in F((z)) of the rational function f o z;.
Composing this formal series with the assignment z > ; we get a field homomorphism F (P') —
F((#;)). Their sum gives an R-algebra homomorphism R [IP’}C] — R((ts)) and an R-Lie algebra
homomorphism

I'rx = GRr,s.

Now, we set S = {0,1,...,n}. Fix a family £ = (x;; i € S‘) of distinct points of P!, Let IQR,)G
be the central extension of the Lie algebra I'g , by R associated with the cocycle (§1 ® f1,6 ®
f2) = Resy, (fadf1). Let

U(ﬁR,i) — ﬁR,i,K

be the quotient by the ideal generated by the element 1 — ¢. The expansion at the points x;, i € S,
gives an R-algebra homomorphism R[IP’}e ] — R((ts)) and an R-algebra homomorphism

ﬁR,fc,zm—K - QR,S,K- (A.3)

The expansion at the point xg yields an R-algebra homomorphism R[P}C ] — R((#)) and an R-
algebra homomorphism

ﬁR,)E,Zm—K - gR,2m—K- (A4)

See [18, Secs. 4.6, 8.2] for details. Now, for each M; € C(gr ), i € S, the tensor product

W:®M,~

ieS



1574 M. Varagnolo, E. Vasserot / Advances in Mathematics 225 (2010) 1523-1588

(over R) has an obvious structure of QAR,S,K-module. We equip W with the structure of a
I'g t.2m—r-module via the map (A.3). For each integer » > 0 let

Gr,CU(I'R)

be the R-submodule generated by the products of 7 elements in
g ® {f: f(x0) =0}.

Using (A.4) we equip the projective limit of R-modules

A~

W=1lmW,,  W,=W/Gg,W

Pt
r

with the structure of a gz ,:-module. We define
My @r My @r -+ Qg My = *T(W),  T(W)=W(-00).

To summarize, if n = 2 then for any almost smooth gz ,-modules M, M; the (smooth) gg -
module M| ®g M> is given by

~

My Qg My =T(W), TW)=W(-o0), W=1lmW/G.W, W=M QrM.

<~
r

See [18, Secs. 4.9, 8.4] for details. As above, if R = C we simply forget the subscript R every-
where.

A.2.2. Remark. The functor ® depends on the choice of the tuple of distinct points x = (x;;
i € S) and on the choice of the coordinate z; centered at x; for each i, see [18, Sec. 9]. Unless
mentioned otherwise, we’ll choose once for all the coordinates as in Section 2.12, i.e., we set
zi =z — x; if x; # 00 and z; = —z ! else. The systems of coordinates associated with the tuples
in the set

C:{xeR”; 0<x <-~~<xn}
belong to the contractible real manifold introduced in [18, Sec. 13.1]. So the space of affine

coinvariants, see Definition 2.13, is independent on the choice of x € C by [18, Sec. 13.3]. We
may abbreviate

(M;; i€eS)y=(M;; i€S)y, xeC,
if this does not create any confusion.

A.2.3. Proof of Proposition 7.2(a). If R = C and « ¢ Q> the bifunctor ® yields the Kazhdan—
Lusztig’s monoidal category [18, Sec. 31]

((’A);%J(, ®,a, M(ca)o)).
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A.2.4. Proposition. Assume that R = C and « ¢ Qxo. The functor ® takes (’ji‘%K X
(’j\{i and @{“;"( X @ggo,/( into (’j{‘i The tuple (@iﬁ,@,a,M(cwo)) is a bimodule over
(OL . ®.a, M(cwn)).

Proof. The first part is proved in [30, Thm. 1.6], and the second one is claimed there. Since the

construction of the associativity isomorphism is the same as in [18, Sec. 18.2] we’ll not give more
details there. Note that the axioms of a bimodule over a category imply that there is a canonical

isomorphism from M (cwg) ® — to the identity functor of @Ji It is given by the following chain
of isomorphisms, for each modules M, M>
Homg (M1, M2) = (M, DM>)*
= (M (cwp), My, DM,)*
= (M (cwo) ® My, DMa)"
= Homg(M(ca)o) Q My, My).
The second isomorphism is as in Proposition 2.14(c), the other ones are as in Proposition A.2.6

below. A similar construction yields an isomorphism from — ® M (cwp) to the identity func-
tor. O

A.2.5. Proof of Proposition 7.2(b). Let us prove the following proposition.

A.2.6. Proposition.
(@) Let My,...,M, € (’A);% . and Mo, M1 € @{5,’( We have natural isomorphisms of vector
spaces

(Mo® M\ ® -+ & My, "My 41)=Homg(Mo @ My & -+ @ My," DMy11)"

=(M0,M1,..., TMn_|_1>.

(b) If M; = (N;), is a generalized Weyl module for each i € S then we have a natural isomor-
phism of vector spaces (M1, M, ..., M,) = Ho(g, N1 @ N, @ - - - ® Np).

Proof. First, observe that the module My ® M| ® --- ® M, lies in the category (’A){ ¢ by Propo-
sition A.2.4(a). Thus to prove the first equality in (a) it is enough to check that for each modules
M, N in (’)5, ¢ we have a natural isomorphism of (finite dimensional) vector spaces

(M.” N)* =Homg(M, "DN). (A5)

The right-hand side of (A.5) consists of the families of linear forms

() €[ [EPM © N*
A
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which vanish on the set
{Em)@n+m® (t&n); VE€g, meM, neN}.

‘We claim that the obvious inclusion
[P @ Ny c[[(Mr & Nw*
roM A

factors to a natural isomorphism
Homg (M, "DN) — Homg(M ® *N, C).
The definition of the set of affine coinvariants yields
(M, TN)= Ho(g M ® *N).
Therefore there is a natural isomorphism
Homg(M ® *N,C) =(M, 'N)".
Now we check our claim. The injectivity is clear. To prove surjectivity, fix
(fap) €Homg(M ® N, C),  fiu € (M) ® Ny)*,
and fix a finite subset S C t* such that N is generated by the subspace @ue s Ny Fix also A
and x € M. For each p the weight space N, is spanned by elements of the form y = £z with

Z€N,,y €eSand § € U(g,) of weight u — . For all u except a finite number the weight space
M+, vanishes, hence

fon@x®y)=—fiu(E)x®2z)=0.

So f.,, = 0 for all u except a finite number. This proves the claim.

The vector space (Mo, My, ..., TMnH) is finite dimensional, because the modules My, M|,
..., "M, 41 are quotient of generalized Weyl modules. Therefore, the same argument as in
[18, Sec. 13.4] yields the second isomorphism in (a).

Now we concentrate on (b). The inclusions N; C M;, i € S, yield an inclusion )
®);es M. Taking the coinvariants we get a natural map

ies Ni C

Ho(g, N1®@ N2 ® -+~ ® Ny) — (M1, M2, ..., Mp)
which is invertible by [18, Prop. 9.15]. O
A.2.7. Proof of Proposition 7.2(c).

s . HA AA AL o AD o HA
A.2.8. Proposition. If« ¢ Q> the functor @ takes O3, x O, and Oy, x O3, into Oy
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Proof. Fix a module M in @éo . and a module M; in @UAJ(. The module M; ® M> belongs to

the category @{ % by Proposition A.2.4. Fix a finite set B such that M, and M| ® M, belong to
the subcategory & @ﬁK. To unburden notation we’ll write B = & (5,{% Recall that B is a highest

weight category with a weak duality functor "D. To prove the claim it is enough to check that
we have

Exty(M; ® M2, 'TDM) =0, VM € Ag.

See [4, Prop. A.2.2(iii)]. Fix amodule P € BP™ which maps onto M. Since P, M both lie in B2,
the kernel K of the surjective map P — M lies also in B2 [4, Prop. A.2.2(v)]. Since "DP is
injective we have also

Exty (M) ® Ma, "DP) =0.
So the long exact sequence of the Ext-group and Proposition A.2.6(a) yield
dimExtg (M) ® Mp, "DM) = dim(M,, My, ' P) — dim(M, My, TK) — dim{M,, M,, " M).
The right-hand side is zero by Lemma A.2.10 below. 0O

A.2.9. Definition. If M € @{ﬁ we write (M : A) for the coefficient of [M] along the element
(M (i)v] of the basis of the free Abelian group [@iff(] consisting of the standard modules. If
M e (’);f 8 we write (M : ) for the coefficient of the element [M] along the element [M (1), ] of
the basis of the free Abelian group [(’){g ] consisting of the standard modules.

A.2.10. Lemma. Letk ¢ Q0. For Mj, M; € @ﬁk and M € @éo . We have

dim(M;, M, TMz)= Z (My k) (Mp : 22)(M = ) (M (A1), @ L(w) : A2),
Al,A2, 1

m vV
where ( runs over Z>0 and Aq, Ay run over Z>0.

Proof. First assume that M = M (1), M| = M)y and My = M (%.5),. Note that "M, is again
a generalized Weyl module. Thus Proposition A.2.6(b) yields

(M1, M, "Ma) = Ho(g, M)y ® L(w) ® M(22),)
= Homg (M (A1), ® L(w), "DM(12),)".
Since the module M (A1), ® L(w) lies in (’)UA, the Hom space above has dimension
(M(1)y ® L(1) : A2)

by [4, Prop. A.2.2(ii)]. The proof is the same if M, M, M, are generalized Weyl modules. The
general case follows as in [18, Lem. 28.1]. O
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A.2.11. Proof of Corollary 7.3. The duality functor D equip ((’)g’(’) o ®, a) with the structure of

a rigid monoidal category, see [18]. This means that there are natural morphisms in (’)ﬁ% p
im:M(cawy) > M Q DM, em: DM Q M — M(cw)
such that the following hold

(a) forany M, M, O;% . the map Homg (M, DM>) — Homy (M| ® M2, M (cay)) such that

f ey, o (f ®1) is an isomorphism,
(b) the compositions below are equal to the identity

. iu®1 . . 1®epy .
M=M(cwy)) M — MIDMRIM —— M Q M(cwy) =M,

. 1&®iy . . en®l .
DM =DM Q M(cwy) — DM QM ® DM —— M(cwy)®DM = DM.
Therefore, for any M1, M> € @{ & and any M e @ﬁ% . the composed map
Homg (M, M> ® M) —> Homyz(M; ® DM, M> ® M @ DM)
—> Homg (M1 ® DM, My ® M(cwo)) = Homy(M; ® DM, M»)
is an isomorphism whose inverse map is the composition of the chain of maps
Homy (M ® DM, M>) —> Homg(M; @ DM ® M, M2 ® M)
— HOIng(Ml ® M(cwp), Mr ® M) = HOIng(Ml, My Q@ M).
Thus the functors — ® M, — ® DM are adjoint (left and right) to each other. Since every right
(resp. left) adjoint is right (resp. left) exact this implies that the functor — ® M is exact for each
module M in (’)g‘%, .- The same holds for the functor M ® —.
A.3. Reminder on induction. Let R be a commutative ring with 1. An R-split induction datum
is a quadruple (a, b, ¢, F) where a is an R-Lie algebra which is free as an R-module, b, ¢ are
supplementary R-Lie subalgebras of a and F is a b-module. The corresponding induced module
is

Iy (F)=U(a) ®up F.

For each a-module E the assignment a @ e ® f +— > aje ® ap ® f, where > a; ® aj is the
coproduct of a, yields an a-module isomorphism

Fba(E ®r F) > E ®g I'y (F).
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This isomorphism is called the tensor identity. There is also a c-module isomorphism
[18, Sec. IL.A]

F*(F)=U(c)®g F — I[{(F).

A.4. Reminder on the Fock space. This section is a reminder from [27]. Fix X an integer e > 1 and
a tuple s € Z°. First, we recall the definition of the Fock space Fockyo e 2 5[ -module of level ¢
equipped with three remarkable bases. As a vector space, it is the limit of a filtering inductive sys-
tem of vector spaces AX with k > 0. Each AF is equipped with a level zero representation of 5[
We give the definition of A* in the second section. Next, we introduce a particular submodule
AY C A™ for each integer m > 0 and each composition v € Cp, ¢. We do not give the construction
of the inductive system above, we’ll not use it. However, in the particular case where v =5 we
define explicitly the linear map

A’ — Fockge .
This section does not contain new results. Most proofs can be found in [27] and will be omitted.

A.4.1. The Fock space and its canonical bases. Let ¢4, fo, a € Z/eZ, be the Chevalley gener-
ators of the affine Lie algebra sl,. For each s € Z! the vector space

Fockgo o = @ °, )

rePt

is equipped with a level £ representation of 3\[8 and with two canonical bases
(g(/\,s", e)i; A€ Pe).

We define matrices V* = (V ) and AT = (A ) such that

A L,S°,e

ZAK pasie |,u,s°, e), AT = (Vi)_l.

A, u,s°,e

We have the following formula [27, Thm. 5.15]

A+ (A.6)

VA, —se T V)»,u.,s",e‘

A.4.2. The ;[e-modules A™, A”. We define a representation of s?[e on the vector space U =
D,z Cuq by the following formulas: for b € Z/eZ and a € Z we set
ep(Ugy1) =ugy, fo(wg) =uy41 ifb#0, aeb,
eo(Ua+1) = Ugte—cts Jo(ua) =ugt1-cree ifacez,

ep(ug) = fo(ug) =0 else.



1580 M. Varagnolo, E. Vasserot / Advances in Mathematics 225 (2010) 1523-1588

It yields a representation of ?[e on the m-th exterior power A™ = A" U for each m > 0. Write
lot) =ttay Allgy A+ ANltg,, Ya=(ai,az,...,an) €ZZ,

The vectors |a) with a € Z” ) form a basis of A™. Let (G(@)™), (G(a)™) denote the canonical
bases of A™ introduced in [27]. R

Now, fix a composition v € C,, ¢. We’ll define a sl.-submodule A” C A™. First, for each
integer a let

Pa €A, Can/eZ’ Ta, Pa €z,
be defined by
a=cqg+e(ps—1)+elry, o =cq + ery.

This yields the bijection

7t~ || Zz8x ). o (@), (A7)
vecm,@
where o = (a1, a, ..., am), @ = (Pay)» - - - » Payyy) and w € G is minimal with
— Vy %) V1
(Paways - -+ Pawon) = (€., 22, 1),

For example take e =2, £ =3, m =7, a = (3,1,0, -2, —4, —6, —7). Then we get v =
(2,2,3)and @ = (0, -2, -3,1,0, 1, 0).

Let A” C A™ be the subspace spanned by the basis elements |o) such that @ maps to
Z% 5 x {v°} under (A.7). One can prove that it is a 5[ -submodule. Let us described explicitly
this module. Fix a tuple s = (sp) € Z*. We'll define three bases of A" whose elements are la-
beled by Z . The sl,-module A" does not depend on s. The tuple s enters only in the labelling
of the bases elements Let J, = J, p be as in Section 1.4. Given a m-tuple A € Z>0 let

a(h,v,5)€ZY,
be the m-tuple whose j-thentryis A; +i, — j + s, for j € J,, and let
a(r,v,5)eZ,
be the unique m-tuple such that (A.7) maps a (A, v, s) to (x(X, v, s), v°).
For example take e =2, £ =3, m =7, v=(2,2,3), A =(2,0,1,-3,1,—-2,—4) and
s = (1,1,4). Then we get a(A,v,s) = (3,0,2,-3,5,1,-2) and (A, v,s) = (13,11,4,1,0,

-9, —10).
We define the following elements of A™

ce)=|ar,v,s)), Q(A,v,s°,e)i:g(g(k,v,s))i.

For each A, u € Z™ and each b € Z we write k—b>u if there exist j € J such that A; =b, u; =
b+ 1,and A; = p; ifi # j.
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A .4.3. Proposition.

(a) The elements |A,v,s°,e), G(A,v,s°, e)i and G(A, v, s°, e)” are basis vectors of AV when
A runs over ZV}O' The representation of sl, in A" is given by

el ol

eu(|,u, v,s°,e>)= =Z‘,u, v,s°,e>, acl/el,

b1

b
summing over all integer b and all A, y such that b € a and (A, v, s) = o (U, v, s).
(b) For each tuple 1 € Z‘;O we have

Q(M,v s° e Z( o= l(vu)vakfl

e).

o —

The sum is over all tuples ) such that vy ey = a(k/,rs) —pandv,ey =a(u,v,s) —
withy €, vy, v, € &7 and Uy = V.

(¢c) If v =5 there is a unique linear map A® — Fockgo , such that |A,s,s°, e) — |A°,5°, e),
I, s,5°, ey > 0and G(A,s,s°, )T > G(\°, s°, e)ifor)» € N;O and u € ZS>0 \NS>0

A.4.4. Remarks. (a) If v =5 then we have
a(r,s,s)—p=xiy,

where 7 is as in Section 8.1.

(b) Proposition A.4.3(b) is [27, Thm. 3.25-3.26]. The tuple o (X, s, s) which is used in Propo-
sition A.4.3(c) differs from the combinatorial definition in [27]. Let us explain this and let us
explain how to deduce the lemma from [27]. For any £-partition A and any tuple s € Z¢ we write

a(h,s) ={cs,Api+1,p): i>0, pe A}, ¢, j.p)=sp+j—i.

Set A={a(r,s); L€ Pt ose Zf}. In the particular case where ¢ = 1 we write A, «, A for A,
a, A. Consider the bijection

A—> A a-a={(¢a pa); a€al.

Let o — o denote the inverse map.

Next, fix an integer m > 0 and a composition s € Cy, ¢. For each A € Pt there is a unique
X € P such that (A, m) = (A, s). This yields a map Pt — P, x> A

Now let A € PY. The set a(A°, s°) is well defined, it belongs to A. For each integer k > 0
let (A, k, s°) be the tuple consisting of the k largest entries of «(A°, s°) arranged in decreasing

order. This tuple belongs to Zk

Assume further that A is 1ndeed a tuple in N4 >0 which is viewed as an £-partition as in Sec-
tion 1.5. Then a direct computation yields m > I (1). Using this inequality, another computation
yields

g(k, m, s°) =a(A,s,s).

So Proposition A.4.3(c) follows from [27, Sec. 4.4].
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For example take
e=2, =3, m =6, A= (1,1, @21, (D), s=1(2,3,D.

We can identify A with the tuple (1,1,2,1,0,1) € N . Since A = (9,4, 32, 12) we have
m =6 =1[(A). We have also (1, s,s) =(3,2,5,3,1,2). Thusa(k s,s)=(15,11,9,6,3,2) by
definition of (A.7). The tuple (A, s, s) coincides with the first six entries of «(1°, s°) arranged
in decreasing order.

A.5. The functor & for £ = 1. In this section we’ll set £ = 1, v = (m) and n < m. Recall that we
have identified the set of partitions of n with a set of integral dominant weights in (1.1). Write

AA,ZO,K = A)\,,U,K’ S}\.,ZO,K = S)\,,U,K
for each dominant weight A. See Section 6.1 for details. Let
An 206 C OO0

be the Serre subcategory generated by the modules Sj >0, with A € P,. It is a quasi-hereditary
category with respect to the order <, see e.g., Proposition 8.7. Since £ =1 the algebra Hj, g is
the rational DAHA of GL,, (C) with the parameter 2 and A, ¢ is the Hecke algebra of GL, (C)
with the parameter g. Set ¢ = exp(2ih). Note that

€: 00— Hiu

is Suzuki’s functor. The aim of this section is to prove the following theorem.

A.5.1. Theorem. Assume that k ¢ Qx>0, h =1/« and n < m. Assume also that (q + D(g>+q+
1) # 0. The functor € restricts to an equivalence of quasi-hereditary categories A, >0« — Hn 1
which takes Ay >0, to Ay p g for each X € Py.

To prove Theorem A.5.1 we need some material. Let A be a finite dimensional C-algebra
with 1. Let (A, A4, F), (B, Ap, G) be C-linear 1-faithful covers of A. See [22, Def. 4.37] for
the terminology. Hence

F:A— A-mod’s, G:B— A-mod”®
are functors which restrict to equivalences of exact categories
A% = (A-mod)" A4 BA — (A-mod)“ (4B
by [22, Prop. 4.41(2)]. The following lemma follows easily from [22].
A.5.2. Lemma. Assume there is a functor ¢ : A — B such that F = G o ¢ and ¢ (A 4) =
Then ¢ yields an equivalence of exact categories A® — B™. In particular ¢ is fully faithful on

AP and it takes a projective generator of A to a projective generator of B.

We’ll also use the following lemma.
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A.5.3.Lemma. Let ¢ : A — B be a functor of Artinian Abelian categories and P be a projective
generator of A. Set Q = ¢ (P). Assume that

(a) the module Q is a projective generator of B,
(b) the functor ¢ is fully faithful on AP™,

(c) the category A has finite projective dimension,
(d) the functor ¢ is right exact.

Then ¢ is an equivalence of categories.

Proof. Note that (a), (b) imply that the categories A, B are equivalent. We must prove that the
functor ¢ is an equivalence. Set

A = (End 4 P)°P, B = (Endg Q)P.
The functor
Homg(Q, —) : B — B-mod/¢
is an equivalence by (a). Thus it is enough to check that the functor
G =Homp(Q, ¢(-)) : A — B-mod/¢
is an equivalence. Note that ¢ yields a ring homomorphism A — B. So we have the functor
F=B®j Homy(P,—): A— B-mod’¢,
and the morphism of functors
@:F—>G, r®frro(f).
The ring homomorphism ¢ : A — B is invertible by part (b). The functor
Hom 4 (P, —) : A — A-mod/¢
is an equivalence. Thus F is also an equivalence. Therefore it is enough to prove that @ is an
isomorphism of functors.
First, assume that M = P. Then F(M) = G(M) = B and @ (M) is the identity of B. Next, let
M be a projective object of .A. Then the morphism in B-mod/#
PM): F(M) — G(M)
is invertible. Indeed, we may assume that M is indecomposable. Then M is a direct summand
of P.So @(M) is the identity of the B-module B¢ (a) for some idempotent a € A. Finally, let

M be any object of A. By (c) the projective dimension of M is e < co. Fix an exact sequence

O—-M,—- M - M—0
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with M € AP™ and M, € A of projective dimension < e. Consider the diagram
FM;) - FWM) — FM) — 0
\ \ \
GM)) - GWM) — GWM) — 0.

Here the vertical maps are @ (M3), @ (M) and @ (M). The functor G is right exact by (d). Thus
both rows are exact. We may assume that @ (M), @ (M) are both invertible by induction on e.
Thus @ (M) is also invertible by the five lemma. We are done. O

A.5.4. Proof of Theorem A.5.1. First, observe that €(A; >0.) = Ay, u for each A € P, by
Proposition 6.2(a). Thus it is enough to check that € is an equivalence of categories .A,{ éo =

H,{?H. Set
A=AL, . B=H%. A=A, ¢=C
The hypotheses (c), (d) in Lemma A.5.3 are obviously true. By [22, Thm. 5.3] the functor
G=KZoQ:B— A-mod/?
is a 1-faithful cover. We claim that the functor
F=Go¢: A— A-mod/®

is also a 1-faithful cover. Therefore ¢ satisfies also the hypotheses (a), (b) in Lemma A.5.3, by
Lemma A.5.2. Hence ¢ is an equivalence of categories. Now we prove the claim. Write

Vizox =V, Auso.=Endg(Vy>0.0).
Proposition 7.6 gives an algebra homomorphism
A= Ape0 (A8)
such that
F =Homg(Vy . >0, —),

up to a twist by some duality functor that we omit to simplify. Let U, (g) be the quantized en-
veloping algebra of g with the parameter g and let V, be its vectorial representation. Under

the Kazhdan—Lusztig tensor equivalence [18, Thm. IV.38.1] the category (’A)g% . 18 equivalent to
the category of finite dimensional U, (g)-modules. Therefore the ring homomorphism (A.8) is
invertible, because it is taken to the isomorphism

A— Enqu(g) (ngn)
given by the Schur—Weyl duality. Thus the functor F is taken to the Schur functor

M — Hoqu(g) (V??n, M)
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It is well known that the Schur functor is a 1-faithful cover, see [22, Rem. 6.7] and the reference
there for instance. Hence F is also a 1-faithful cover.

A.5.5. Remark. The idea to use the Kazhdan—Lusztig equivalence to prove Theorem A.5.1 is
not new. However we have not found any proof of Theorem A.5.1 in the literature.

A.6. Proof of Proposition 8.7. By [3, Thm 3.5(a)] it is enough to prove the following.
A.6.1. Proposition. If u+m A+, A€ Py and p € 7, then ju € Py .

Proof. Recall that A < u iff there are 1, wo, ..., ur € Z;O such that

A= <flp <3 <-<flr=[
and such that fi; 41 = w;sq,; e fi; for some o; € ﬁre \ I and some w; € &;. Now, assume that
w+rmdr+m,AePys,and n e Z“'>0. By an easy induction we may assume that

f+7=wsye(h+7), A+ p+7m:a)ely, aeﬁj\ﬂs,weGS.

€

So we have || = n, and we must prove that 1, wo, ..., Uy, are > 0. There is a unique map
" — CZ, A A

such that A1, A2, . .., Ay are the entries of A +7 +p and Aj 1,y = A —k forall j € Z. Under this
map the dot action of the affine reflection s, is taken to the linear operator which switches the
(a + km)-th and the (b 4+ km)-th entries of any sequence for each k € Z and some fixed integers
a # b. We have )_»j >0 ; for all j € Z. We must check that the same holds for the entries of fi.

Recall the partition J =|_| Js,p with Jg , =[ip, jp]. Since u € Z;O it is enough to prove
that we have

peA

iy =05, @,=0,, ..., j,=0j.
The £-tuples (i), (jp) can be regarded as sequences of integers such that
Ipre=1ip+m, Jpre=jp+m, Vpel.
For all p € Z we set also Jg p1¢ = Js,p +m. Now fix p, g such that
acJsp, beJsq.

It is enough to prove that ft, > (_)jp and that i j, > (_)jq. Assume that b > a. Then g > p because

o ¢ IT;. Since A, > A, we have 0j, — (_)jq € Z. Since k ¢ R>( we have (_)jq > (_)jp. Note that

(i i€Jspt= {)_\iQ i € Js,p}\{)_‘a}u {)_\'b}v
{fiis i € Js gt ={his i € Jg g} \ {hp} U fkal.

Therefore we have
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fij, =inflfi; i € Js p} > inf({A;; i € J5,p} U{dp}) >inf(0;,,0;,} >0;,,

fj, =inf{ii; i € Jy g} > inf({Ai; i € Jy g} Uiha)) > inflhis i € Jy ) >0, O
Index of notation

0.1: [Al [M], A%, A 4, AP, ASS,
0.2: *M,
0.3: M[X], Mg, MF, M{,

1.1: Dy, S,,, W, A, Wy, A, €, €, Si,j Si(f;-)’

12 Xi, Vi, Hk’y, Hh,H’

1.3: R, R*7 yia

14 Covts Contons I Ty = Ty ps s Jips Cls 2540 22, P n(), (AL PE PEPE L, 0, N,
Ve, ve,

1.5: xp, Ir(CS,), Irr(CW), X5, Ay p, Spy Wy, wy, T,

1.6: Hp.h., H,{ng, AjnHs SinHs Pon,H, eu, eug, Oy, =,

17 Rn,e’ Cn,E’ Mn,l» B9 Bl‘l,lv Hh,H,n,Z,

2.1: 9.G, g&, bt T, €, & Ao dis ho his pooi I I, T ep . e, fin LV, X5, V., V5

.
2.2: g,8>0, b, g, f), g, f), §>0, 1,0,t, gg, 8r, ﬁ, ﬁ+, ﬁre, 8, wo, i, a;, (1),
23 c=k—m, 8r.i,
2.4: Cryr QRuc» M(r), M(00),
2.5: £ Ly, 2,
2.6: "M, M, M*, M?, D, "D,
2.7: (Al’ i’ @Ks v, by, (A]u, uy, @U,Ks (520,/(, 0, 0,, O}Os CIL, (A]:;, f)/,
2.8: My, My e, M, L(by, 2), M(W)y, MGy, b= A+ can, ML), O,
2.10: @ O, Oy, My, 1, 25,
2.11: R((ts)), f®)ii1> Gr» Gr.S» GR.S» GRS Vii)» M5
2.12: zi, % PLotg, (Mi; i € 8),, 8, %, Cou Ry, (M i €8),
2.17: B, T(M),
2.19: V,‘, Vi, J/,',j,
3.1: g,9p. 0, F, gF’ QKF,
3.2: OF, 0%, ..cl, F', M()T, b,
3.3: 07, X (M), €M),
3.9: Plzi . GE.GE (Mis i €S), (Mj: i €5,
4.1: An,iﬂ,n, v,
44: T(M', M), &M, M), ¢,
51: G, weir [, SO, T, 6, 7y, 6y, 5,
5.2: Aq, sn(A), X, K,
55: I1",2,3. 54,80,
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5.7: L,

5.8: Pli'l;l,

6.1: €, XTL’? AA,\),K’ SA,V,K, BP)\,,\),K7
7.1: (0L . &.a. M(cay)).
74: Ay 0.KZ, O, €z,

7.6: Vn,V,Ka An,v,m 5,

8.1: As e,

8.3: Sy,0, Asg.05 Siq,05
8.5: An,s,fe,

8.9: Anvis

A2: ®,C,

A3 I,

AE A A 3D,

A4: Fockg o, G(A,s°, €)F, |1, 5%, ), Vi Ags®,e

A, pu,8°,e°
A5 Ay 30,05 Sn, 2000 An, >0,
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