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SUMMARY

Brassinosteroids (BRs) are essential hormones
for plant growth and development. BRs regu-
late gene expression by inducing dephosphory-
lation of two key transcription factors, BZR1
and BZR2/BES1, through a signal transduction
pathway that involves cell-surface receptors
(BRI1 and BAK1) and a GSK3 kinase (BIN2).
How BR-regulated phosphorylation controls
the activities of BZR1/BZR2 is not fully under-
stood. Here, we show that BIN2-catalyzed
phosphorylation of BZR1/BZR2 not only in-
hibits DNA binding, but also promotes binding
to the 14-3-3 proteins. Mutations of a BIN2-
phosphorylation site in BZR1 abolish 14-3-3
binding and lead to increased nuclear locali-
zation of BZR1 protein and enhanced BR
responses in transgenic plants. Further, BR de-
ficiency increases cytoplasmic localization, and
BR treatment induces rapid nuclear localization
of BZR1/BZR2. Thus, 14-3-3 binding is required
for efficient inhibition of phosphorylated BR
transcription factors, largely through cytoplas-
mic retention. This study demonstrates that
multiple mechanisms are required for BR regu-
lation of gene expression and plant growth.

INTRODUCTION

Steroids are used as hormones in both animals and

plants. Many steroid biosynthetic enzymes are conserved,

and steroids regulate many of the same physiological

and developmental processes, including gene expres-

sion, cell division/expansion, reproductive development,

and aging/senescence, in both kingdoms. However, plant
Develop
and animal steroid hormones appear to regulate gene

expression through distinct signaling mechanisms (Thum-

mel and Chory, 2002). In animals, steroid hormones bind

the nuclear receptor family of transcription factors, which

are retained in the cytoplasm by interaction with the

HSP90 complex; ligand binding disrupts such interaction

and leads to nuclear localization of the transcription

factors and altered gene expression (Thummel and Chory,

2002). In plants, brassinosteroids (BRs) bind to a cell-

surface receptor kinase BRI1, which initiates a phosphory-

lation cascade that regulates the activities of key

transcription factors by phosphorylation/dephosphoryla-

tion (Vert et al., 2005).

BRs play essential roles in plant growth and develop-

ment (Clouse and Sasse, 1998). Deficiency in BR biosyn-

thesis or signal transduction causes severe growth

defects, including dwarfism, male sterility, delayed senes-

cence and flowering, and light-grown phenotype in the

dark (Li and Chory, 1997; Li et al., 1996). BR binding to

the extracellular domain of BRI1 activates its kinase activ-

ity, induces dimerization with and activation of another

cell-surface receptor kinase (BAK1) (Li et al., 2002; Nam

and Li, 2002), and causes disassociation of BKI1, a novel

protein that represses BRI1 (Wang and Chory, 2006). BR

activation of the receptor kinases is believed to inhibit

BIN2, a glycogen synthase kinase 3 (GSK3)-like kinase

(Li and Nam, 2002), or to activate BSU1 (Mora-Garcia

et al., 2004), a phosphatase. BIN2 and BSU1 control the

phosphorylation status of two homologous transcription

factors, BZR1 and BZR2/BES1, which bind to specific

promoter sequences to mediate BR-responsive gene ex-

pression (He et al., 2005; Yin et al., 2005). Similar to b-cat-

enin in metazoans, which is inhibited by GSK3b-mediated

phosphorylation and activated by Wnt-induced dephos-

phorylation (Stadeli et al., 2006), BZR1 and BZR2/BES1

are inhibited by BIN2-mediated phosphorylation and are

activated by BR-induced dephosphorylation. Whereas in-

hibition of GSK3 by Wnt signaling leads to nuclear translo-

cation of dephosphorylated b-catenin, whether a similar
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mechanism is important for BR regulation of BZR1 and

BZR2/BES1 has been a controversial question.

BZR1 and BZR2/BES1 are key effectors of BR action.

The dominant bzr1-1D and bes1-D mutations that effec-

tively stabilize each protein suppress the phenotypes of

BR-deficient or-insensitive mutants. BZR1 and BZR2/

BES1 have been shown to directly bind to promoters of

BR-responsive genes, but with different binding site se-

quence specificities and transcriptional activities. Exten-

sive protein:DNA interaction studies have demonstrated

that BZR1 has an optimal binding site of CGTG(T/C)G

sequence, which was named the BR-response element

(BRRE). The BRRE is conserved in the promoters of BR-

repressed genes such as CPD, DWF4, ROT3, and

BR6OX (He et al., 2005). BZR1 functions as a transcrip-

tional repressor in vivo to mediate feedback inhibition of

BR biosynthetic genes. In contrast, BZR2/BES1 was

shown to interact with a bHLH-type transcription factor,

BIM1, and together they bind to the E-box (CANNTG) ele-

ments in the promoter of SAUR-AC1 and activate gene

expression (Yin et al., 2005). Such differences between

BZR1 and BZR2/BES1 are somewhat surprising given

their high sequence similarity (88% identity), but these dif-

ferences are consistent with the opposite cell elongation

phenotypes of bzr1-1D and bes1-D mutant plants grown

in the light.

How BR-regulated phosphorylation controls the activi-

ties of BZR1 and BZR2/BES1 is a key question for under-

standing BR action. Previous studies have yielded con-

flicting results about whether phosphorylation by BIN2

alters the nuclear localization of BZR1 and BZR2/BES1

(Wang et al., 2002; Yin et al., 2002; Vert and Chory,

2006; Zhao et al., 2002). BR treatment has been shown

to induce rapid dephosphorylation of BZR1-CFP and

BZR2/BES1-GFP fusion proteins, which leads to an in-

crease of the protein levels in the nuclei of hypocotyl cells

(Wang et al., 2002; Yin et al., 2002). It was also shown that

the bin2-1 mutant, which encodes a hyperactive kinase,

increased phosphorylation and reduced the accumulation

of BZR1 and BZR2/BES1 proteins (He et al., 2002; Yin

et al., 2002). These results suggested that phosphoryla-

tion of BZR1 and BZR2/BES1 reduces their protein levels

in the nucleus (He et al., 2002; Yin et al., 2002). In contrast,

it has been reported recently that BZR1-GFP and BZR2/

BES1-GFP were constitutively localized in the nuclei

(Vert and Chory, 2006; Zhao et al., 2002), while phosphor-

ylation inhibited the DNA-binding activity of BZR2/BES1 in

vitro and reduced its transcriptional activity in yeast (Vert

and Chory, 2006). These observations supported a revised

model that BIN2-catalyzed phosphorylation inhibits

BZR2/BES1 primarily by reducing its DNA-binding and

transcriptional activities rather than altering its localization

or accumulation (Vert and Chory, 2006). However, all of

these previous studies quantified the nuclear signals, but

not the cytoplasmic signals of the fusion proteins, and

thus a change of localization could not be discerned

from a change of the total protein level. Besides these dis-

crepancies, the functional importance of these possible

mechanisms has not been studied in vivo. BZR1 and
178 Developmental Cell 13, 177–189, August 2007 ª2007 Elsev
BZR2/BES1 each contain 25 putative BIN2-phosphoryla-

tion sites; how each phosphorylation site affects the func-

tion of the transcription factors remains unknown.

14-3-3 proteins are phosphopeptide-binding proteins

that are highly conserved in all eukaryotes. They partici-

pate in various signal transduction and regulatory

processes by interacting with diverse target proteins in

a sequence-specific and phosphorylation-dependent

manner (Bridges and Moorhead, 2005; Muslin et al.,

1996). The first plant 14-3-3 protein was identified as

part of a protein-DNA complex (Lu et al., 1992), indicating

a role of plant 14-3-3s in the regulation of transcription.

Additional studies showed that 14-3-3s function in regu-

lating the activities of metabolic enzymes and transcrip-

tion factors (Sehnke et al., 2002). The Arabidopsis genome

contains 15 14-3-3 genes, 12 of which are expressed

(Sehnke et al., 2002). A large number of 14-3-3-target pro-

teins have been identified in plants (Schoonheim et al.,

2007a), suggesting that plant 14-3-3s play a role in

a wide range of cellular processes. However, a direct

role of plant 14-3-3 proteins in mediating signal transduc-

tion is yet to be illustrated.

In this study, we demonstrate an essential role for 14-3-

3 proteins in BR signal transduction in Arabidopsis. We

show that 14-3-3 proteins interact specifically with BZR1

protein that has been phosphorylated by BIN2. Mutations

of a BIN2-phosphorylation site in BZR1 that abolish its

binding to 14-3-3 proteins result in constitutive BR-re-

sponse phenotypes similar to bzr1-1D. Such mutant

BZR1 proteins are constitutively localized in the nucleus,

but they are not affected in either protein accumulation

or DNA binding. Moreover, we present convincing evi-

dence that BR regulates nuclear localization of BZR1

and BZR2 proteins. Our results demonstrate an important

role of 14-3-3 proteins in regulation of the key transcription

factors by BR signal transduction.

RESULTS

BR Induces Rapid Nuclear Localization of BZR1

To clarify whether BR regulates nuclear localization of

BZR1, we analyzed the relative levels of nuclear and cyto-

plasmic signals of a BZR1-yellow fluorescent protein

(BZR1-YFP) by using spinning-disk confocal microscopy.

The results show that the ratio of nuclear to cytoplasmic

BZR1-YFP signals is reduced by brassinazole (BRZ), an

inhibitor of BR biosynthesis, but increased by brassinolide

(BL), the most active BR (Figure 1A). BL-induced nuclear

localization of BZR1-YFP was observed both when tran-

siently expressed in tobacco leaves (Figure S1, see the

Supplemental Data available with this article online) and

when stably expressed in transgenic Arabidopsis

(Figure 1A). In time course experiments, nuclear accumu-

lation of BZR1-YFP increased rapidly, within 4 min of BL

treatment, and the nuclear/cytoplasmic ratio continued

to increase for 14 min (Figure 1B; Movies S1 and S2).

Such kinetics of BR-induced BZR1 nuclear accumulation

is consistent with the kinetics of dephosphorylation

(He et al., 2002). In contrast, mock treatment did not
ier Inc.
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Figure 1. BR Induces Nuclear Localization of BZR1
(A) Effect of brassinazole (BRZ) and brassinolide (BL) on the subcellular localization of BZR1-YFP. Transgenic Arabidopsis plants expressing BZR1-

YFP were grown on MS or MS plus 2 mM BRZ medium in the dark for 4 days. Seedlings grown on BRZ medium were treated with mock or 100 nM BL

solution for 1 hr, and images of the YFP signal (top) were obtained by using confocal microscopy. The numbers in each image show the average ratios

between nuclear and cytoplasmic signal intensities and standard errors calculated from seven cells for each treatment. The white lines inside the

images show the areas used for line scan measurements that yielded plot profiles shown in the lower panels. N, nuclear signal; C, cytoplasmic signal.

Fluorescent intensity is 10003, and the scale bar is 10 mm.

(B) Kinetics of the BL-induced nuclear accumulation of BZR1-YFP. BZR1-YFP seedlings grown on 2 mM BRZ were treated with BL or mock solution

(�BL), and images were acquired at each time point to measure the nuclear/cytoplasmic ratios. Error bars are ± SEM.

(C) Unphosphorylated BZR1 is enriched in the nuclear fraction. Immunoblot of unphosphorylated and phosphorylated BZR1-CFP proteins in total and

nuclear fractions from mock- or BL-treated seedlings.

(D) Phosphorylated BZR1 is more enriched in membrane fractions than unphosphorylated BZR1. Transgenic plants expressing the BZR1-CFP protein

were treated with (+BL) or without (�BL) 1 mM BL, and the soluble, microsomal (MF), and plasma membrane (PM) fractions were analyzed by immu-

noblot.

(E) BIN2 phosphorylation inhibits the DNA-binding activity of BZR1. A gel blot of unphosphorylated and BIN2-phosphorylated MBP-BZR1 proteins

was probed with radiolabeled CPD promoter DNA. CBB, Coomassie brilliant blue-stained gel. (C–E) Unphosphorylated BZR1 (BZR1) and phosphor-

ylated BZR1 (pBZR1) proteins are marked by arrows.
significantly increase the nuclear/cytoplasmic signal ratio

of BZR1-YFP.

We further tested the effect of BR on nuclear localization

of BZR1-YFP by using subcellular fractionation experi-

ments. These experiments demonstrated that unphos-

phorylated, but not the phosphorylated, BZR1-CFP was

enriched in the nucleus. Furthermore, BL treatment re-

sulted in a significant increase of the unphosphorylated

BZR1 in the nuclear fraction (Figure 1C). Phosphorylated

BZR1-CFP protein was also more associated with

cell membranes than the unphosphorylated protein

(Figure 1D). In subcellular fractionation experiments,

both microsomal and plasma membrane fractions con-

tained similar levels of phosphorylated, but much lower

amounts of unphosphorylated, BZR1-CFP compared to

the soluble protein fraction (Figure 1D). After BR

treatment, the amount of BZR1-CFP associated with

membranes was greatly reduced as BZR1 was dephos-

phorylated. These results collectively indicate that some
Develop
phosphorylated BZR1 protein is retained in the cytoplasm,

most likely through interaction with membranes, and BR-

induced dephosphorylation of BZR1 leads to its move-

ment from cytoplasm into the nucleus.

Phosphorylation Inhibits the DNA-Binding

Activity of BZR1

A recent study showed that phosphorylation inhibits DNA

binding of BZR2/BES1 (Vert and Chory, 2006). We tested

whether phosphorylation by BIN2 inhibits the DNA-

binding activity of BZR1. A maltose-binding protein

(MBP)-BZR1 fusion protein was phosphorylated by BIN2

and separated on an SDS-PAGE gel. When the gel blot

was probed with radiolabeled DNA containing a BZR1-

binding site (BRRE) (He et al., 2005), only the unphos-

phorylated, but not the phosphorylated, MBP-BZR1

showed DNA binding, indicating that phosphorylation by

BIN2 inhibits BZR1’s DNA-binding activity (Figure 1E).
mental Cell 13, 177–189, August 2007 ª2007 Elsevier Inc. 179
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Phosphorylation of BZR1 by BIN2 Promotes

Binding to the 14-3-3 Proteins

To further understand the molecular mechanisms of BZR1

regulation, we performed a yeast two-hybrid screen for

BZR1-interacting proteins. Out of 98 positive clones iden-

tified, 80 clones encode members of the 14-3-3 protein

family. They represent 5 of the 12 isoforms in Arabidopsis

(Sehnke et al., 2002), namely, 14-3-3l, 14-3-3k, 14-3-33,

14-3-3f, and 14-3-3u. Additional yeast two-hybrid assays

indicated that 14-3-3l interacts with BZR1, bzr1-1D, and

the C termini (amino acids 90–336) of BZR1 and bzr1-

1D, but not with BRI1, BIN2, or bin2-1 (Figure 2A).

14-3-3s are known to bind specific sequences of target

proteins in a phosphorylation-dependent manner (Muslin

et al., 1996). To determine if 14-3-3 binding requires phos-

phorylation of BZR1 by BIN2, purified MBP-BZR1 fusion

protein was phosphorylated by a GST-BIN2 protein

in vitro, separated on an SDS-PAGE gel, and blotted to

a nitrocellulose membrane. Incubation of the blot with

GST-14-3-3l and anti-GST antibodies detected strong

binding to the phosphorylated MBP-BZR1 and very

weak binding to the unphosphorylated form (Figure 2B),

indicating that phosphorylation by BIN2 facilitates BZR1

binding to 14-3-3s. The interaction in yeast is likely due

to phosphorylation of BZR1 by the yeast GSK3 kinases.

In an attempt to understand the function of 14-3-3 pro-

teins, we obtained single and double knockout mutants of

14-3-3l and 14-3-3k, two closely homologous genes that

were identified most frequently in our yeast two-hybrid

screen. Neither single nor double knockout mutants

displayed phenotypes or altered BR responses (data not

shown), most likely due to redundancy of the gene family.

14-3-3 RNAi plants also did not show any noticeable dif-

ferences in phenotypes (data not shown). Apparently, an

experimental approach that specifically disrupts the

BZR1:14-3-3 interaction is required to understand how

14-3-3 binding affects BZR1 function.

14-3-3 proteins are known to mostly bind two types of

specific sequences: mode I, RXXpSXP, or mode II,

RXXXpSXP (X = any amino acid, R = arginine, pS = phos-

phoserine, and P = proline), in which the S residue needs

to be phosphorylated (Aitken, 2006; Muslin et al., 1996). A

potential mode II-type 14-3-3-binding site sequence was

identified in BZR1 at amino acids 169–175 (RISNSCP)

(Figure 2C). Mass spectrometric analysis of BIN2-

phosphorylated BZR1 protein showed that serine 173 in

the putative 14-3-3-binding site of BZR1 is phosphory-

lated by BIN2 (Figure S2). When the binding site (RISNS,

at position 169–173) was deleted (BZR1D) or serine 173

was mutated to alanine (S173A) (Figure 2C), 14-3-3 bind-

ing was greatly reduced (Figure 2D). In contrast, deletion

of isoleucine 170 (DI170) of BZR1, which changes the se-

quence from a mode II to a mode I 14-3-3-binding site

(Figure 2C), did not abolish 14-3-3 binding (Figure 2D).

These results indicate that 14-3-3 proteins bind to BZR1

through the conserved binding site that contains phos-

phorylated serine 173.

The in vivo interactions of wild-type and mutant BZR1s

with 14-3-3l were studied by using a Bi-Molecular Fluo-
180 Developmental Cell 13, 177–189, August 2007 ª2007 Else
rescence Complementation system (BiFC). BiFC is based

on the principle that a functional fluorescence complex is

observed when two proteins of interest fused to the N- and

C-terminal halves of YFP interact in vivo. Cotransformed

BZR1-cYFP and 14-3-3l-nYFP produced strong YFP

fluorescence (Figures 2E and 2G). The fluorescence signal

was reduced by BR treatment (Figures 2F and 2G),

which induces BZR1 dephosphorylation. By contrast,

cotransformation of BZR1D-cYFP with 14-3-3l-nYFP or

BZR1-cYFP with a non-fusion nYFP yielded a very low

fluorescence signal (Figure 2G). Consistent with the

BiFC data, coimmunoprecipitation experiments (Co-IP)

with transgenic Arabidopsis plants demonstrated that

wild-type BZR1 and BZR1DI170, but not DBZR1 or

BZR1S173A, interacted with 14-3-3 proteins in vivo

(Figure 2H and data not shown). These results indicate

that phosphorylated BZR1 interacts with 14-3-3 in vivo,

and that this interaction is inhibited by BR-induced

BZR1 dephosphorylation.

14-3-3 Binding Inhibits BZR1’s Activity

To understand the function of the BZR1:14-3-3 interaction

in BR signaling, we generated transgenic plants express-

ing BZR1 containing 14-3-3-binding site mutations. Inter-

estingly, transgenic plants expressing BZR1D (16/92;

17%) or BZR1S173A (14/104; 13%) showed phenotypes

similar to bzr1-1D (Figure 3), including shorter petioles,

rounder and curled leaves (Figures 3A and 3B), delayed

flowering (Figure 3C), bending of the stem at the branch

junction (Figure 3D), long hypocotyls when grown on BR

biosynthesis inhibitor BRZ in the dark (Figure 3E), and

suppression of bri1-5 (Figure 3F). In contrast, none of

the transgenic plants transformed with wild-type BZR1

(0/157) or mutant BZR1DI170 (0/118) showed any bzr1-

1D-like phenotype (Figure 3). Consistent with the morpho-

logical phenotypes, the expression of BZR1-target genes

CPD and DWF4 (He et al., 2005) is greatly reduced in

BZR1D as well as bzr1-1D plants (Figure 3G). Expression

of BZR1S173A with the native BZR1 promoter also

caused a bzr1-1D-like phenotype (Figure S3). These re-

sults indicate that 14-3-3 proteins interact with BZR1 to in-

hibit its function, and abolition of such an interaction leads

to increased BZR1 activity.

Mutations in the 14-3-3-Binding Site Do Not Affect

Accumulation, Dephosphorylation, or DNA-Binding

Activity of BZR1

The dominant gain-of-function mutation in the bzr1-1D

mutant causes accumulation of BZR1 protein, leading

to constitutive BR-response phenotypes (Wang et al.,

2002). To determine whether the phenotypes of BZR1D

and BZR1S173A plants were due to altered BZR1 protein

accumulation or phosphorylation, we performed immuno-

blot analysis. Despite causing strong phenotypes,

mutations of the 14-3-3-binding site did not increase the

accumulation or dephosphorylation of BZR1 protein

(Figure 4A). Southwestern blot analysis showed that

these mutations did not affect BZR1’s ability to bind

DNA, because phosphorylation by BIN2 abolished the
vier Inc.
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Figure 2. BIN2-Phosphorylated BZR1 Interacts with 14-3-3

Proteins
Develop
DNA-binding activity of the wild-type as well as the mutant

BZR1 proteins (Figure 4B). Therefore, the bzr1-1D-like

phenotypes displayed by BZR1D and BZR1S173A plants

are unlikely due to a difference in the accumulation or

DNA-binding activity of the BZR1 protein.

14-3-3 Binding Increases Cytoplasmic Localization

of BZR1

14-3-3 proteins have been shown to negatively regulate

nuclear localization of target proteins in both metazoans

and plants (Igarashi et al., 2001; Muslin and Xing, 2000).

Considering that BR induces nuclear localization of

BZR1, we examined whether BZR1D- and BZR1S173A-

YFP have altered subcellular localization (Figure 5).

Indeed, BZR1D- and BZR1S173A-YFP proteins showed

significantly increased nuclear localization in Arabidopsis

(A) BZR1 interacts with 14-3-3l in yeast two-hybrid assays. Each yeast

clone contains the pGAD-14-3-3l prey construct and one of the fol-

lowing genes in the pGBKT7 vector: 1, BZR1; 2, bzr1-1D; 3, BZR1C;

4, bzr1-1DC; 5, BIN2; 6, bin2-1; 7, BRI1-KD; 8, p53; 9, no gene insert.

Growth of yeast cells indicates interaction between the test protein

and 14-3-3l.

(B) 14-3-3l specifically interacts with phosphorylated BZR1.

Recombinant MBP-BZR1 protein was phosphorylated by GST-BIN2,

gel blotted, and probed with GST-14-3-3l and anti-GST antibody.

The right panel shows the Coomassie brilliant blue (CBB)-stained

gel. Asterisks mark the unphosphorylated (BZR1) and phosphorylated

(pBZR1) MBP-BZR1 bands. The dagger sign (y) marks the GST-BIN2

band.

(C) BZR1 contains a putative 14-3-3-binding site. Two known 14-3-3-

binding site sequences (Mode I and Mode II) are aligned against the

BZR1 sequence. ‘‘x’’ represents any given amino acid. Amino acids

are presented as single letters, namely: R, arginine; I, isoleucine; pS,

phosphoserine; N, asparagine; C, cysteine; P, proline. A conserved

serine residue at the �3 position that is crucial for 14-3-3 binding

was numbered and marked in bold. Various mutations created in the

14-3-3-binding sites are also shown. The hyphen (-) represents the

deletion of an amino acid residue.

(D) Effects of mutations of the 14-3-3-binding site of BZR1 on the

binding of 14-3-3l. Wild-type and mutant MBP-BZR1 proteins were

phosphorylated by GST-BIN2 and then mixed with unphosphorylated

proteins before a pull-down assay (right panel) with glutathione aga-

rose beads containing GST-14-3-3l (lanes 1–4) or GST (lane 5). Lanes

1–5: MBP-BZR1, MBP-BZR1D, MBP-BZR1S173A, MBP-BZR1DI170,

and MBP-BZR1, respectively.

(E) In vivo interaction between BZR1 and 14-3-3l detected by BiFC.

The N-terminal and C-terminal halves of YFP were fused to 14-3-3l

and BZR1, respectively, the constructs were cotransformed into

tobacco leaf cells, and fluorescence images were obtained by using

confocal microscopy. The scale bar is 10 mm.

(F) The BZR1-cYFP and the 14-3-3l-nYFP constructs were cotrans-

formed into tobacco cells with 1 mM BL. YFP fluorescence images

were obtained by using a confocal microscope. Scale bar is 10 mm.

(G) Quantification of BiFC signals. Each pair of indicated constructs

was cotransformed into tobacco cells with (+BL) or without (�BL) 1

mM BL. Fluorescence signal intensity (10003) is an average of the mea-

surements from at least seven transformed cells after background

subtraction. Error bars are ± SEM.

(H) Mutations in the 14-3-3-binding site abolish in vivo interaction of

BZR1 with 14-3-3s. Coimmunoprecipitation (Co-IP) was carried by

using an anti-GFP antibody coupled to protein A Sepharose beads

with tissue material from either BZR1-YFP or DBZR1-YFP transgenic

plants. Western blot was probed with a-GFP and a-14-3-3 antibodies.
mental Cell 13, 177–189, August 2007 ª2007 Elsevier Inc. 181
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Figure 3. 14-3-3 Binding Inhibits BZR1

Activity

(A–D) Phenotypes of BZR1D and BZR1S173A

transgenic plants compared with wild-type Co-

lumbia (WT) and bzr1-1D. Three-week-old (A)

plants and (B) leaves, 5-week-old (C) plants

and (D) bending of the stems at the branch

junction (pointed by arrows).

(E) BZR1D and BZR1S173A mutations sup-

press BR-deficiency phenotypes. Seedlings

were grown in the dark on MS medium with

or without 2 mM BRZ for 4 days. Two represen-

tative seedlings for each treatment are shown.

(F) Mutations in BZR1 that reduce 14-3-3

binding suppress the bri1-5 phenotype.

Plants shown from left to right are bri1-5,

bri1-5/BZR1-YFP, bri1-5/BZR1D-YFP, bri1-5/

BZR1S173A-YFP, and bri1-5/BZR1DI170-

YFP.

(G) BR biosynthesis genes are downregulated

in BZR1D plants. Expression levels of CPD

and DWF4 genes were measured by quantita-

tive real-time PCR. The data were normalized

first to UBC and then to Col. Error bars are ±

SEM.
and tobacco cells (Figures 5A,and 5B; Figure S4), whereas

BZR1DI170-YFP was localized in both the cytoplasm

and nucleus, similar to wild-type BZR1-YFP (Figures 5A;

Figure S4). Quantification of the nuclear/cytoplasmic

signals confirmed these microscopic observations

(Figure 5B). BRZ increased the cytoplasmic signal of

wild-type BZR1-YFP, but had little effect on BZR1D-YFP

(Figure 1A; Figure S5). When transiently coexpressed in

tobacco leaf cells, both BZR1-CFP and bzr1-1D-CFP

proteins showed identical localization patterns with that

of cotransformed BZR1-YFP, indicating that the bzr1-1D

Figure 4. Mutations in the 14-3-3-Binding Site Do Not Affect

Stability or the DNA-Binding Activity of BZR1

(A) Immunoblot of BZR1-YFP, BZR1D-YFP, and BZR1S173A-YFP (two

independent lines) proteins in the transgenic plants. BZR1-YFP was

detected with an a-GFP antibody.

(B) Mutations in the 14-3-3-binding site do not alter the DNA-binding

activity of BZR1. The gel blot of unphosphorylated and BIN2-phos-

phorylated MBP-BZR1 proteins was probed with radiolabeled CPD

promoter DNA. CBB, Coomassie brilliant blue-stained gel.
182 Developmental Cell 13, 177–189, August 2007 ª2007 Elsev
mutation, which increases the protein accumulation,

does not affect the subcellular localization of the protein

(Figure 5C). In contrast, BZR1D-CFP showed much re-

duced levels of cytoplasmic signal compared to BZR1-

YFP (Figure 5C). This difference in localization disap-

peared when cells were treated with BR, presumably

due to BR-induced nuclear localization of BZR1-YFP

(Figure 5C; Figure S1). Consistent with microscopic ob-

servations, subcellular fractionation showed that

BZR1S173A-YFP protein levels, compared to those of

BZR1DI170-YFP, are reduced in the cytosolic fraction

(Figure S6). These results demonstrate that mutation of

the 14-3-3-binding site increases the nuclear localization

of BZR1.

Previous studies have shown that 14-3-3 interactions

with the target proteins can be disrupted by 5-aminoimida-

zole-4-carboxamide-1-b-D-ribofuranoside (AICAR) (Paul

et al., 2005). We observed that AICAR treatment increased

the nuclear/cytoplasmic ratio of BZR1 and reduced the

expression of BZR1-target genes CPD and DWF4 (Figures

5D and 5E), further supporting the thought that disrupting

14-3-3 binding increases BZR1’s nuclear localization and

activates its function. Together, these results strongly

support a model in which phosphorylated BZR1 is retained

in the cytoplasm by binding to 14-3-3 proteins, and in

which BR-induced dephosphorylation abolishes 14-3-3

binding to allow nuclear localization and transcriptional

regulation of BZR1.

14-3-3 Binding Negatively Regulates

BZR2/BES1 Function

A yeast two-hybrid screen also showed interaction

between BZR2/BES1 and 14-3-3 proteins (Figure 6A). To

determine if subcellular localization of BZR2/BES1 is also
ier Inc.
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Figure 5. 14-3-3 Binding Reduces Nuclear Localization of BZR1

(A and B) Subcellular localization of BZR1-, BZR1D-, BZR1S173A-, and BZR1DI170-YFP proteins in the leaves of transgenic Arabidopsis plants.

Representative images of (A) YFP fluorescence and (B) quantification of nuclear/cytoplasmic signal ratios of three independent lines from BZR1-

YFP and BZR1D-YFP are shown. Error bars are ± SEM.

(C) BZR1D-CFP protein predominantly localizes in the nucleus. Pairs of indicated YFP and CFP fusion constructs were cotransformed into tobacco

leaves with or without 1 mM BL. Images in CFP and YFP channels were false-colored as green and red, respectively, in overlay. The Scale bar is 10 mm.

(D) AICAR treatment decreases cytoplasmic localization of BZR1. Transgenic plants expressing BZR1-YFP were treated with either mock solution or

20 mM AICAR for 1 hr, and images were obtained with a confocal microscope. The scale bar is 10 mM. Numbers in each image show the average ratios

between nuclear and cytoplasmic signal intensities and standard errors calculated from seven cells for each treatment.

(E) AICAR treatment downregulates BZR1-target gene expression. Transgenic plants expressing BZR1-YFP were treated with either mock solution or

20 mM AICAR for 3 hr, and expression of CPD and DWF4 was measured by using qRT-PCR. Error bars are ± SEM.
regulated by BR and 14-3-3 proteins, we measured the

nuclear/cytoplasmic signal ratio of BZR2/BES1-GFP in

transgenic Arabidopsis plants by using confocal micros-

copy. We observed that, similar to BZR1-YFP (Figures

1A and 1B), BZR2/BES1-GFP localization in the nucleus

was decreased by BRZ treatment and increased by BL

treatment (Figure 6B). BZR2/BES1 contains a putative

14-3-3-binding site (Figure S7), and mutation of S171A

in BZR2/BES1 (equivalent to S173A in BZR1) increased

the nuclear localization of the protein (Figure 6C;

Figure S7). These results collectively indicate that 14-3-3
Develo
proteins function in BR signal transduction by regulating

the subcellular localization and activity of both BZR1 and

BZR2/BES1.

DISCUSSION

In the present study, we illustrate a critical role of 14-3-3

proteins in BR signal transduction. Our data demonstrate

that BIN2-catalized phosphorylation inhibits the function

of the BZR1 and BZR2/BES1 proteins not only by inhibit-

ing DNA binding, but also by promoting binding to the
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14-3-3 proteins, which increases cytoplasmic retention of

BZR1 and BZR2/BES1. Together with previous studies,

we have shown that phosphorylation can inhibit BZR1

and BZR2/BES1 through at least four mechanisms: in-

creasing proteolysis, inhibiting DNA binding, promoting

14-3-3 binding, and cytoplasmic retention (Figure 7).

These multiple mechanisms of regulation are consistent

with the presence of large numbers of putative BIN2-

phosphorylation sites in BZR1 and BZR2/BES1, and

they likely act together to confer efficient and precise

regulation of key transcription factors required for normal

BR response and plant growth.

Figure 6. BR Treatment and Mutation of the 14-3-3-Binding

Site Increase Nuclear Localization of BZR2/BES1

(A) 14-3-3l interacts with BZR2 in yeast two-hybrid assays. pACT2 is

the empty prey vector as a negative control.

(B) BL treatment increases the nuclear localization of BZR2. BZR2-

GFP transgenic seedlings were grown on media containing 2 mM

BRZ or 10 nM BL in the dark for 4 days, and BZR2-GFP subcellular lo-

calization was visualized by using confocal microscopy. Numbers in

each image show the average ratios between nuclear and cytoplasmic

signal intensities and standard errors calculated from seven cells for

each treatment. Error bars are ± SEM.

(C) YFP fusion constructs of BZR1, BZR1S173A, BZR2, or BZR2S171A

were transiently expressed in tobacco leaves, and subcellular localiza-

tion of YFP was observed. The scale bar is 10 mm.
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Multiple mechanisms of regulation of key transcription

factors have been observed in signaling pathways in ani-

mals. For example, the Ci/Gli transcription factor of the

Hedgehog (Hh) pathway is controlled by multilayered reg-

ulatory mechanisms. It is believed that tissue- and devel-

opmental stage-specific expression of some of the addi-

tional regulators in vertebrates provide a mechanism for

ensuring precision in spatial and temporal control of Hh

signaling (Jiang, 2006). Similarly, multiple mechanisms of

BZR1 regulation may provide higher levels of efficiency

and precision than a single mechanism in BR signaling.

One might expect that inhibiting DNA binding should be

sufficient to turn off the transcription factors. However,

BZR1D-YFP and BZR1S173A-YFP, but not the wild-type

BZR1-YFP, cause bzr1-1D-like phenotypes in the trans-

genic plants, despite the fact that phosphorylation in-

hibits their DNA-binding activity in vitro. Apparently

Figure 7. A Model for the BR Signaling Pathway in Arabidopsis

BR signaling involves a cell-surface receptor complex (BRI1/BAK1),

a GSK3 kinase (BIN2), a phosphatase (BSU1), and two homologous

transcription factors (BZR1 and BZR2/BES1). Green and red colors

represent positive and negative functional roles in BR signaling, re-

spectively. Arrows and bars represent the actions of promotion and in-

hibition, respectively. In the absence of BR, BKI1 suppresses BRI1,

and BIN2 phosphorylates and inhibits BZR1 and BZR2/BES1 (not

shown). BR binds to the extracellular domain of BRI1 to activate its ki-

nase, which leads to disassociation of BKI1 from BRI1 and dimeriza-

tion with and activation of BAK1. Then, through an unknown mecha-

nism, the activated receptor kinases inhibit BIN2 or activate BSU1,

yielding dephosphorylated BZR1 and BZR2/BES1, which directly reg-

ulate BR-responsive gene expression. BIN2 phosphorylation nega-

tively regulates BZR1 by increasing proteasomal degradation and

BZR2/BES1 by inhibiting DNA binding. The current study shows that

BR promotes nuclear localization of BZR1 and BZR2/BES1. BIN2

phosphorylation of BZR1 not only inhibits its DNA binding, but also

promotes its binding with 14-3-3 proteins, which is required for cyto-

plasmic retention and efficient inhibition of phosphorylated BZR1

in vivo. 14-3-3 proteins also regulate subcellular localization of

BZR2/BES1. We propose that the large numbers of BIN2-phosphory-

lation sites in BZR1 and BZR2/BES1 allow BIN2 to inhibit BZR1/BZR2

through multiple mechanisms, conferring an efficient control of gene

expression and plant growth by BR signaling.
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phosphorylation per se is not sufficient, and binding to the

14-3-3 proteins is required, for efficient inhibition of BZR1

activity in vivo. This is not surprising since genome-wide

surveys of in vivo DNA binding by transcription factors

have revealed discrepancies between in vitro and in vivo

DNA-binding specificities of transcription factors (Biggin,

2001). In vivo DNA binding by transcription factors is not

only influenced by their intrinsic sequence-specific recog-

nition properties, but it is also affected by other factors,

such as chromatin structure or cooperative interactions

with other DNA-binding proteins. It is conceivable that

when not bound by 14-3-3s, phosphorylated BZR1 and

BZR2/BES1 are localized in the nucleus and can regulate

target genes by interacting with partner DNA-binding pro-

teins, such as BIM1(Yin et al., 2005).

Multiple mechanisms would also allow for fine-tuning of

BR sensitivity by other environmental or developmental

signals. For example, sugars globally affect 14-3-3 bind-

ing to target proteins (Cotelle et al., 2000), and stresses

and abscisic acid (ABA) increase expression of plant

14-3-3 proteins (Chen et al., 2006; Schoonheim et al.,

2007b), which could potentially contribute to the antago-

nistic interaction between BR and ABA (Friedrichsen

et al., 2002). Such regulation of 14-3-3s by environmental

and developmental cues might explain the previous con-

flicting observations of constitutive nuclear accumulation

of BZR1 and BZR2/BES1 (Vert and Chory, 2006; Zhao

et al., 2002). In fact, we observed a strong nuclear-

localization response in young growing tissues, but

weak response in hypocotyls of older seedlings

(Figure S8) and no obvious response in fully developed

mature leaves that have finished cell elongation

(Figure S8). Therefore, 14-3-3s provide a potential point

of crosstalk for other pathways to modulate BR response,

which is important for optimizing growth according to

physiological and environmental conditions. Neverthe-

less, the strong bzr1-1D-like phenotypes shown by the

BZR1D and BZR1S173A transgenic plants grown in both

light and dark support a ubiquitous and critical role for

14-3-3 proteins in regulating BZR1.

14-3-3 proteins increase the cytoplasmic retention of

phosphorylated BZR1. Disrupting 14-3-3 binding, either

by mutating the binding site in BZR1 or treatment with

AICAR, leads to increased nuclear localization of BZR1.

BR-induced nuclear localization correlates well with

BZR1 dephosphorylation and inhibition of 14-3-3 binding.

These results strongly support an important role of 14-3-

3s in BR regulation of subcellular localization of BZR1.

BIN2 phosphorylation promotes cytoplasmic retention of

BZR1 by promoting 14-3-3 binding, and BR-induced de-

phosphorylation increases nuclear localization of BZR1

by abolishing 14-3-3 binding.

The importance of cytoplasmic retention for inhibition of

phosphorylated BZR1 is supported by the strong bzr1-1D-

like phenotypes and altered expression of BZR1-target

genes that are associated with increased BZR1 nuclear

localization. It is possible, however, that 14-3-3 proteins

may also inhibit other aspects of BZR1 function, such as

BZR1’s transcriptional activity or its interaction with other
Develo
partner proteins. However, such additional effects on tran-

scriptional activity would be difficult to discern in the pres-

ence of altered nuclear localization. It should be noted that

the nuclear BiFC signal of the BZR1:14-3-3l interaction

suggests that 14-3-3s might inhibit the phosphorylated

BZR1 in the nucleus, although it is possible that BZR1 cy-

toplasmic retention is mediated by other members of the

14-3-3 family rather than 14-3-3l in vivo. Four additional

14-3-3 isoforms interacted with BZR1 in our yeast two-hy-

brid screens, and at least three isoforms coimmunopreci-

pitated with BZR1-YFP. In fact, 14-3-3l is predominantly

localized in the nucleus, while 14-3-3u, which interacts

with BZR1 in yeast, 14-3-3f, and 14-3-3y all show wide

distribution in the cytoplasm, at least in certain cell types

(Paul et al., 2005; Sehnke et al., 2002). Therefore, it is

unclear whether a particular 14-3-3 isoform(s) mediates

cytoplasmic retention of BZR1 and BZR2/BES1 in vivo. Al-

though cytoplasmic retention may not be the only mecha-

nism of 14-3-3 inhibition of BZR1, it certainly contributes

to the inhibition.

Similar functions of 14-3-3 proteins in regulating protein

nuclear localization have been observed in several other

systems. For example, in tobacco, 14-3-3s mediate gib-

berellin (GA) regulation of nuclear localization of transcrip-

tional activator REPRESSION OF SHOOT GROWTH

(RSG) (Ishida et al., 2004), in a manner similar to the regu-

lation of BZR1. However, it remains unclear how GA

signaling, which is mediated by a soluble receptor that

controls degradation of a nuclear component, regulates

the RSG:14-3-3 interaction (Ishida et al., 2004). In yeast,

phosphorylation of Cdc25 by Chk1 kinase and MSN2 by

TOR kinase creates binding sites in the transcription fac-

tors for 14-3-3s, which promote nuclear export of Cdc25

and MSN2, leading to DNA-damage checkpoint and inhi-

bition of carbon-source-regulated genes, respectively

(Beck and Hall, 1999; Lopez-Girona et al., 1999). Interest-

ingly, 14-3-3 family proteins have also been shown to

differentially regulate the glucocorticoid receptor (GR).

14-3-3h is known to bind to GR and function as a positive

regulator of GR by blocking its degradation (Kim et al.,

2005), whereas 14-3-3s binds to GR and function as

a negative regulator by retaining GR in the cytoplasm

(Kino et al., 2003). A more striking parallel to the BR path-

way is the regulation of heat-shock transcription 1 (HSF1)

by GSK3 phosphorylation and 14-3-3 binding in humans

(Wang et al., 2003, 2004). It remains unclear whether the

BR signaling pathway is evolutionarily related to any ani-

mal signaling pathways, such as the heat-shock pathway,

the Wnt signaling pathway, or cell-surface receptor-medi-

ated steroid signaling pathways. The use of evolutionarily

conserved signaling proteins such as GSK3 and 14-3-3s

suggests that the BR signal transduction pathway is an

ancient steroid signaling pathway.

In summary, this study illustrates a molecular mecha-

nism by which 14-3-3 proteins mediate phosphorylation-

dependent control of the BZR1 and BZR2/BES1 transcrip-

tion factors in the BR signaling pathway of Arabidopsis. A

similar mechanism of 14-3-3 regulation of the rice BZR1

homolog has also been observed (M.-Y.B. and Z.-Y.-W.,
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unpublished data), suggesting that the regulation of local-

ization and activity of BZR1 by 14-3-3s is a conserved

mechanism for steroid regulation of gene expression in

higher plants. 14-3-3 proteins may also regulate other

components of the BR signaling pathway. Recent studies

have shown that 14-3-3s copurify with BRI1 (Karlova et al.,

2006) and interact directly with BAK1’s Arabidopsis ho-

molog, SERK1 (Rienties et al., 2004), and barley homolog,

HvBAK1 (Schoonheim et al., 2007a). How 14-3-3s regu-

late the receptor kinases remains to be elucidated, and

the physiological implications of 14-3-3 regulation of BR

signaling is yet to be fully appreciated by future studies.

EXPERIMENTAL PROCEDURES

Plant Material

Arabidopsis thaliana ecotype Columbia-0, bzr1-1D, bri1-5, transgenic

Arabidopsis plants harboring either full-length YFP fusions or Bi-Mo-

lecular Fluorescence Complementation (BiFC) constructs, and Nicoti-

ana benthamiana (tobacco) plants were all grown in green houses un-

der 16 hr light-long day conditions.

Dark-Grown Phenotypic Analysis

Arabidopsis seeds were sterilized with bleach and germinated on half-

strength Murashige and Skoog (MS) medium supplemented with or

without 2 mM BRZ. Seeds were stratified for 3 days at 4�C and were

kept under white light for 6 hr before being moved into the dark.

Hypocotyl lengths from 4-day-old vertically grown seedlings were

measured by using ImageJ software, available at the NIH website

([Abramoff et al., 2004]; http://rsb.info.nih.gov/ij/).

Isolation of the Nuclear Fraction

Transgenic seedlings expressing BZR1-CFP were grown in liquid me-

dium containing half-strength MS and 1% sucrose for 9 days under

continuous light. They were treated with 100 nM BL or mock solution

for 1 hr, and samples were harvested. Nuclei protein fractions

(Figure 1C) were extracted according to a published protocol (Bae

et al., 2003).

For the data shown in Figure S6, nuclei fractions were isolated by

using the following protocol. Plant material was ground in NEB buffer

(20 mM HEPES [pH7.5], 40 mM KCl, 10 mM MgCl2, 1% Triton X-100,

1 mM EDTA, 10% glycerol) and filtered through Miracloth (Calbiochem,

San Diego, CA) to obtain the total extract. It was then centrifuged at

5000 3 g for 2 min to separate the cytosolic fraction (supernatant)

from the nuclei fraction (pellet). SDS gel loading buffer was added to

each fraction, heated at 65�C for 5 min, centrifuged at 20,000 3 g

for 5 min, and analyzed on a 4%–12% gradient SDS- PAGE gel

(Invitrogen).

Plasma Membrane Fractionation

One-week-old liquid-grown seedlings treated with either mock or 100

nM BL solution for 2 hr were processed for plasma membrane (PM)

preparation (Figure 1D). Seedlings were ground in 2 vol. Buffer H

(100 mM HEPES-KOH [pH 7.5], 330 mM sucrose, 10% [v/v] glycerol,

5 mM EDTA, 5 mM ascorbic acid, 0.6% [w/v] PVP 40, 5 mM DTT, 25

mM NaF, 2 mM imidazole, 1 mM sodium molybdate, and protease in-

hibitors) with a Powergen 700D homogenizer at 5,000 rpm for 3 min.

Homogenate was filtered through a single layer of Miracloth and was

centrifuged at 10,000 3 g for 10 min to remove cell debris and organ-

elles. The microsomal fraction was collected by centrifuging at 60,000

3 g for 30 min. An aliquot of supernatant containing the soluble protein

was snap frozen in liquid nitrogen. The microsomal pellet was resus-

pended in Buffer R (5 mM potassium phosphate [pH 7.8], 330 mM su-

crose, 3 mM KCl, 0.1 mM EDTA, 1 mM DTT, and protease inhibitors).

Similarly, an aliquot of the microsomal fraction was loaded onto a two-

phase partitioning system containing 6% polymers and 8 mM KCl, and
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partitioning was done according to Larsson et al. (1994). U3 upper

phase was diluted with 10 vol. Buffer R and was centrifuged at

200,000 3 g for 1 hr to pellet PM vesicles. After the final centrifugation,

PM vesicles were resuspended in a buffer containing 5 mM potassium

phosphate (pH 7.8), 250 mM sucrose, 3 mM KCl, 0.1 mM EDTA. All

protein samples were quantified by using the Bradford assay (Bio-

Rad, Hercules, CA), and equal amounts of proteins were loaded on

the SDS-PAGE gels for immunoblots, which were probed with a poly-

clonal anti-GFP antibody (Wang et al., 2002).

Southwestern Blot

Phosphorylation of MBP-BZR1 by GST-BIN2 was carried out in the

presence of 100 mM ATP as described previously (He et al., 2002). Un-

phosphorylated and phosphorylated MBP-BZR1 proteins were sepa-

rated on SDS-PAGE gels and blotted on nitrocellulose membrane. The

blot was incubated with a CPD probe that is chemically synthesized

(50-AAAAGGTCCTACTTTATGCAGAAACCCCCCGTGTGCCCACTCT

CCCCTTC-30) and labeled with 32P-dTTP.

Overlay Western Blot

A gel blot containing unphosphorylated and phosphorylated MBP-

BZR1 proteins was incubated with 20 mg recombinant GST-14-3-3l

protein, washed, and then probed with anti-GST antibody (Santa

Cruz Biotechnology, Santa Cruz, CA).

Mass Spectrometry

MBP-BZR1 protein phosphorylated by GST-BIN2 in vitro was sub-

jected to standard in-solution alkylation/tryptic digestion. Briefly,

10003 molar excess DTT over total proteins in 25 mM ammonium bi-

carbonate was added, and the reduction reaction was carried out for

1 hr at 37�C. Then, 5.53 molar excess iodoacetamide over DTT was

added in 25 mM ammonium bicarbonate, and the alkylation reaction

was carried out at 25�C in the dark for 1 hr. Low-molecular weight

compounds in the reaction mixture were reduced by using Amicon Ul-

tra-4 10K (Millipore, Billerica, MA), and proteins were in a buffer con-

taining 25 mM ammonium bicarbonate and 20% acetonitrile. Tryptic

digestion was carried out overnight by 1% (w/w) modified trypsin

(Promega, Madison, WI) and was stopped by adding formic acid to a

final concentration of 1% in the solution.

The digestion mixture was diluted in water to a concentration of 100

fmole/ml, and 1 ml of the aliquot was injected into an UltiMate Capillary

LC system via a FAMOS Autosampler (LC Packings, Sunnyvale, CA).

Peptides were separated on a 75 mm 3 15 cm C18 reverse-phase cap-

illary column at a flow rate of 300 nl/min while running a 3%–32% ace-

tonitrile gradient with 0.1% formic acid. The HPLC eluent was con-

nected directly to an LTQ/FT instrument (Thermo Finnigan, Bremen,

Germany). The LC-MS/MS method consisted of one survey scan in

FT mode with a resolution of 25,000, followed by three CID scans in

LTQ. The raw LC-MS/MS data were converted to ASCII peak list by

Mascot Distiller software (Matrix Science, Boston, MA), with carbami-

domethylation as a fixed modification and phosphorylation and methi-

onine oxidation as variable modifications.

In Vitro Pull-Down Assay

Unphosphorylated and phosphorylated MBP-BZR1 proteins were

mixed together and were incubated with beads containing either

GST-14-3-3l or GST alone in binding buffer (50 mM Tris-Cl [pH 7.5],

5 mM MgCl2). After incubation for 1 hr, beads were washed with bind-

ing buffer, and 14-3-3-binding proteins were eluted with elution buffer

(50 mM Tris-Cl [pH 7.5], 5 mM glutathione) and detected by using

a polyclonal anti-MBP antibody in western blot.

Transient Transformation

Agrobacterium cells containing either full-length or BiFC expression

vectors were washed and resuspended in the induction medium (10

mM MES buffer [pH 5.6], 10 mM MgCl2 and 150 mM acetosyringone)

and were infiltrated into young leaves of 4-week-old tobacco plants.

A total of 36 hours after infiltration, expression of various fluorescent
vier Inc.
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proteins was analyzed by using confocal microscopy. The data gener-

ated by using this system were also confirmed in stable transgenic

Arabidopsis plants.

Coimmunoprecipitation, IP

Plant material was ground in NEB buffer (20 mM HEPES [pH 7.5], 40

mM KCl, 1 mM EDTA, 1% Triton X-100), filtered, and centrifuged at

20,000 3 g for 10 min. Supernatant (1 ml) was incubated with anti-

GFP antibody coupled to protein A Sepharose beads for 20 min. Beads

were washed four times with wash buffer (20 mM HEPES [pH 7.5],

40 mM KCl, 0.1% Triton X-100), and bound proteins were eluted

with buffer containing 2% SDS.

Plasmids

The BiFC system was engineered based on the 172 N-terminal amino

acids (aa 1–172) of enhanced Yellow Fluorescent Protein (eYFP) and

the 85 C-terminal amino acids (aa 154–239) of enhanced Cyan Fluores-

cent Protein (eCFP), which were subcloned into pPZP312 driven by the

CaMV 35S promoter and a CaMV terminator derived from pRT100.

These two halves were named nYFP and cYFP, respectively (the

cYFP differs from cCFP by two amino acids, namely, V164A and

Y204T). All vectors were converted into gateway-compatible destina-

tion vectors by PCR cloning the Gateway cassette from Gateway Vec-

tor Conversion System (Invitrogen, Carlsbad, CA) by using the BglII

and HindIII restriction sites. Entry clones containing various interacting

proteins were recombined with the Gateway-destination vectors by

using the LR reaction kit (Invitrogen). The full-length coding sequence

of 14-3-3l was cloned directly into binary vectors by using XbaI sites

engineered into pGREEN0229 and pPZP312 vector backbones. Full-

length CFP and YFP fusions of wild-type and mutant BZR1 (containing

mutations in the 14-3-3-binding site) were made in pEarleyGate

(pEG) vectors (Earley et al., 2006) driven by the CaMV 35S promoter.

The BZR1:BZR1S173A-CFP construct was created by using a site-

directed mutagenesis kit (Stratagene, La Jolla, CA) with the wild-

type construct as template (Wang et al., 2002). The primers used for

site-directed mutagenesis PCR are listed in Supplemental Experimen-

tal Procedures. All binary vectors were introduced into Agrobacterium

strain GV3101 by electroporation and then transformed into Arabidop-

sis by using the floral dip method. Basta was used for selecting the

transgenic plants.

RNA and Protein Analysis

RNA samples were isolated from 2-week-old transgenic plants by us-

ing TRIzol reagent (Invitrogen). cDNA was synthesized from total RNA

by using M-MuLV Reverse Transcriptase (MBI Fermentas, Hanover,

MD) and oligo dT. Quantitative real-time PCR was performed by using

iQ SYBR Green reagent (Bio-Rad, Hercules, CA) to amplify BZR1-YFP,

UBC, CPD, and DWF4 gene-specific regions. Primer sequences used

for amplification are listed in Supplemental Experimental Procedures.

Transgenic lines were compared for transcript abundance and were

subsequently analyzed by western blots. BZR1-YFP protein was ex-

tracted in 23 SDS-PAGE buffer and was detected by using a polyclonal

antibody against GFP (Wang et al., 2002).

Spinning-Disk Confocal Microscopy

Fluorescence of CFP, YFP, and BiFC (YFP) was visualized by using

a spinning-disk confocal microscope (Leica Microsystems, Heer-

brugg, Germany) (Paredez et al., 2006). In brief, CFP was excited by

a HeCd laser at 442 nm, YFP was excited by an argon laser at either

488 or 514 nm, and emission filtering was achieved by using band

pass filters 480/40, 525/50, 570/65 (Chroma Technology Corp., Rock-

ingham, VT). Both glycerin (n.a. = 1.3) and oil-immersion (n.a. = 1.4)

633 objectives were used for confocal microscopy, and all images

were acquired with a 512b Roper Cascade EMCCD camera with

a gain of 3800. Two-frame averaging of image acquisition improved

the signal-to-noise ratio. All images were acquired by using Meta-

Morph software (Molecular Devices, Sunnyvale, CA). Images of

BZR1-YFP and mutant BZR1-YFPs were obtained with identical
Develop
image-acquisition settings; YFP was excited at 488 nm, and images

were obtained with a 500 ms exposure time. For quantifying the effect

of BRZ and BL on BZR1-YFP localization, images were obtained with

a 200 ms exposure time (Figure 1A). For the time course experiment

(Figure 1B), seedlings were grown on 2 mM BRZ in the dark for 4

days, then mounted on a slide in 100 nM BL, and imaged immediately

to obtain the image at time zero. The same field of view was imaged

subsequently for the duration of the time course described in

Figure 1B. A similar change in nuclear localization was observed

when seedlings already under the microscope in liquid MS medium

were profused with BL solution. Time course experiments were

repeated three times, and representative data are shown in

Figure 1B. Images of YFP fluorescence in BiFC assays were obtained

by using 488 nm excitation with a 500 ms exposure time (Figure 2).

Quantification of Fluorescent Protein Signal

All images were analyzed in ImageJ (http://rsb.info.nih.gov/ij/). To

measure the ratio between nuclear and cytoplasmic signals of

BZR1-YFP for each cell, a small area of fixed size (21 pixels) was

drawn, and measurements of integrated densities were taken from

representative areas within the nucleus, cytoplasm, and background

(central vacuole) of each cell. Three repeat measurements were per-

formed for each cell, and the average of background values was

then subtracted from the average values for the nuclear and cytoplas-

mic signals. The nuclear to cytoplasmic signal ratio was then calcu-

lated for each cell. The average nuclear/cytoplasmic signal ratio and

standard error for independent T1 transgenic lines were calculated

from measurements of at least seven cells from each plant

(Figure 4B). Line scan measurements spanning both the nucleus and

cytoplasm were also carried out, and representative plot profiles of

sample measurements are presented in Figure 1A. For quantifying

the BiFC signal, an outline was drawn around each transformed cell,

and the signal intensity (integrated density) of the whole cell was calcu-

lated after subtracting the mean background density measured from

an adjacent untransformed cell. Signal intensities from at least seven

transformed cells were then averaged (Figure 2G).

Supplemental Data

Supplemental Data include Supplemental Experimental Procedures,

eight figures, and two movies and are available at http://www.

developmentalcell.com/cgi/content/full/13/2/177/DC1/.
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