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Recent studies have demonstrated that gene set analysis, which tests disease association with genetic variants
in a group of functionally related genes, is a promising approach for analyzing and interpreting genome-wide
association studies (GWAS) data. These approaches aim to increase power by combining association signals
from multiple genes in the same gene set. In addition, gene set analysis can also shed more light on the
biological processes underlying complex diseases. However, current approaches for gene set analysis are still
in an early stage of development in that analysis results are often prone to sources of bias, including gene set
size and gene length, linkage disequilibrium patterns and the presence of overlapping genes. In this paper, we
provide an in-depth review of the gene set analysis procedures, along with parameter choices and the
particular methodology challenges at each stage. In addition to providing a survey of recently developed tools,
we also classify the analysis methods into larger categories and discuss their strengths and limitations. In the
last section, we outline several important areas for improving the analytical strategies in gene set analysis.
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1. Introduction

Recently, genome-wide association studies (GWAS), which typi-
cally test disease associations with half to a few million single
nucleotide polymorphisms (SNPs) across the human genome in
hundreds to thousands of samples, have successfully identified many
genetic variants contributing to the susceptibilities of complex
diseases. However, the variants identified so far, individually or in
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combination, account for only a small proportion of the inherited
component of disease risk [1]. A possible explanation is that due to the
large number of genetic polymorphisms examined in GWAS and the
massive amount of tests conducted, real but weak associations are
likely to be missed after multiple comparison adjustment (e.g.,
corrected by half a million tests in a typical GWAS).

To help prioritize association signals from GWAS and to better
understand thebiological themesunderlying complexdiseases, gene set
analysis has become increasingly popular. Instead of conducting
analysis for single SNPs or single genes, gene set analysis tests disease
association with genetic variants in a group of functionally related
genes, such as those belonging to the same biological pathway. One
possible cause of complex diseases is the changes in activities of
biological pathways:where there are a number ofmutations in different
genes, each contributes a modest amount to disease predisposition and
work together to cause disruptions in normal biological processes.

Current approaches for gene set analysis are still in an early stage of
development. When different analysis methods are used, the resulting
significant gene sets often vary substantially, even when the same
dataset is used [2,3]. One possible reasonmight be the lack of statistical
power in the tests, which are often borrowed from gene set analysis for
microarray gene expression data. For many diseases, compared to the
amount of differentiation in gene expression levels, effect sizes for SNPs
that contribute to disease risk or are in linkage disequilibrium (LD)with
the causal variants are typically much smaller. In a recent simulation
study [4], we found for gene sets consisting of markers weakly
associated with disease (nominal P-valueb0.05), all three gene set
analysismethods examined –Gene Set Enrichment Analysis (GSEA) [5],
Fisher's exact test, and SNP Ratio Test [6] – lacked statistical power for
detecting disease associated gene sets. Several recent studies also
indicated that gene set analysis results are often prone to sources of bias
including gene set size, LD patterns and overlapping genes [3,5,7,8].
Before gene set based approaches are used to draw significant
conclusions, the limitations in these methods must be addressed first.

In this review, we discuss the detailed procedures for gene set
analysis, along with parameter choices and the particular methodo-
logical challenges at each stage. In addition to providing a survey of
recently developed tools, we also classify the analysis methods into
larger categories and discuss their strengths and limitations. As many
new methods are expected to be developed quickly due to the strong
demand of initial and secondary (or advanced) analysis of numerous
GWAS datasets, our goal is not to provide a comprehensive list of gene
set analysis methods. Instead, we aim to provide readers with some of
our insights so that they can assess and then use the most appropriate
methods for their specific needs. In the last section, we outline several
important areas for improving the analytical strategies in gene set
analysis. Other recent reviews on gene set analysis of GWAS areWang
et al. (2010) [9] and Cantor et al. (2010) [7].

2. Methodological issues

Fig. 1 outlines the critical steps for assessing statistical significance
of disease associations with gene sets: 1) Preprocess data and define
the gene sets to be tested, 2) formulate a hypothesis, 3) construct
corresponding statistical tests, and 4) assess the statistical significance
of the study results. We next discuss each of these steps in order.

2.1. From SNPs to genes

When defining gene boundaries, different criteria (e.g., 500 kb [5],
200 kb [10], 20 kb [11], and 5 kb [12] in both upstreamanddownstream
of the gene coding regions) have been proposed in the literature.
Considering LD and gene regulation pattern, investigators often define a
gene region to include both the genic region (core part) and the
boundary regions (upstream and downstream of the gene). More
sophisticated approaches, such as including SNPs that are in LDwith the
gene, have also been developed [13,14]. These strategies aim to cover
SNPmarkers that play regulatory roles in gene expression and/or link to
causal variants within the same LD block. However, these approaches
also include more irrelevant SNPs. Thus, they may not only dilute
potential signal strength for a gene set but also increase computational
burden dramatically, especially for gene sets with a large number of
genes. One potentially promising strategy is to take advantage of the
information from gene expression studies. Veyrieras et al. [15]
estimated that the majority of genetic variants influencing gene
expression are located within 20 kb of the genes. Recently, to identify
T2D associated pathways, Zhong et al. [16] assessed the impact of the
SNPs on gene expressions in liver and adipose tissues and summarized
each gene by the SNP significantly associated with the gene's transcript
abundance. For general reference, Gamazon et al. [17] developed the
SCAN database, which provides information on mapping genetic
variants associated with gene expression based on the samples in the
HapMap project [18,19]. More comprehensive databases will be
developed in the future, for example, those for expression quantitative
trait loci (eQTL, regions of the genome that impact gene expression)
measured in disease relevant tissues. We expect that utilizing the
information fromgene expression studieswill improve the power of the
gene set analysis approach for GWAS.

2.2. From genes to gene sets

TheKyoto Encyclopedia of Genes andGenomes (KEGG) [20] andGene
Ontology (GO) [21] are frequently used gene set annotation databases.
When GO terms are used, gene sets categorized into biological process
categories have often been selected for gene set analysis, since the other
two categories (molecular function and cellular components) are not
similar to the typical biological pathways such as those from KEGG. The
MSigDB database [22] includes comprehensive gene sets from both the
KEGG and GO databases, as well as from other sources such as
chromosome and cytogenetic band regions, gene sets collected from
expert knowledge in literature, cis-regulatory motifs, and co-expressed
cancer-associated genes. In addition, other sources such as the PANTHER
Classification System [23] and REACTOME [24] also provide publicly
available gene set information. Note that GO terms are organized in a
hierarchical structure, and substantial overlap of component genes is
expected between parent and child nodes. The MSigDB collection has
partially solved this problem by removing the gene sets that have the
same member genes with their parent nodes or their sibling nodes.

Redundancy among gene sets has often been observed because, by
their nature, gene sets such as pathways are biological systems inwhich a
genemay function inmultiple ways and thusmay appearmultiple times
in functional gene sets. Although at the systems biology level this reflects
the crosstalk between gene sets and the complexity of biological systems,
it causes an overlap of member genes and redundant information among
gene sets, thus making the results of gene set analysis more difficult to
interpret.

Another issue is that gene set annotation is still incomplete. So far,
only about 5000 human genes have been annotated to the KEGG
pathways,whicharemost frequently used in the literature. Thus, in gene
set analysis of GWAS, all non-annotated genes will be automatically
filtered out. A potential improvement is to use protein–protein
interaction (PPI) data. As of March 4, 2010, there were approximately
11,000 proteins included in an integrated PPI network analysis platform,
Protein Interaction Network Analysis (PINA), which collected and
annotated six other public PPI databases (MINT, IntAct, DIP, BioGRID,
HPRD, and MIPS/MPact) [25]. This provides much more annotation
information about human proteins than does KEGG, and has been used
for dense-module searching (DMS) of enriched association signals from
one or multiple GWAS datasets [26]. Another advantage in the DMS
approach is its flexibility in defining gene set size, which overcomes a
potential limitation of the fixed size in KEGG or other biological
pathways. However, DMS utilizes the information only from PPIs, rather



Fig. 1. Work flow for gene set analysis of GWAS datasets.
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than from gene regulation as in typical biological pathways. It highlights
the degree of incompleteness of our current knowledge about the
human genes and their regulation.

2.3. Formulating hypothesis

In the analysis of gene expression data, Tian et al. [27] formulated
two statistical hypotheses for testing coordinated association between
groups of genes with a phenotype of interest. In the context of GWAS
analysis, they are

Competitive null hypothesis (Q1) — The genes in a gene-set show
the same magnitude of associations with the disease phenotype
compared with genes in the rest of the genome;
Self-contained null hypothesis (Q2) — The genes in a gene-set are
not associated with the disease phenotype.

A third null hypothesis (Q3) – none of the gene sets considered is
associatedwith the phenotype–has also beenproposed recently [28,29]. In
contrast to Q1 and Q2, which test for individual gene sets, Q3 tests the
entire dataset. For tests of individual gene sets, Goeman and Buhlmann
[30] classified tests corresponding to Q1 and Q2 as competitive and self-
contained tests, respectively. While a competitive test compares disease
association test statistics for genes in the gene set versus that for genes in
the rest of the genome, a self-contained test directly tests gene set
association with disease and does not depend on genes outside the gene
set. Table 1 lists some examples of competitive tests for gene set analysis
of GWAS, including GSEA, over-representation analysis based on Fisher's
exact test (hypergeometric test) and their extensions such as ALIGATOR
[31] andGSA-SNP [32]. Table2 lists someexamplesof self-contained tests,
including the SNP Ratio Test [6], GRASSS [33] and the SPCAmethod [12].
When the “real” causal SNPs are fully contained in oneparticular gene set,
testing Q1 and Q2 are approximately the same. However, when SNPs in
multiple gene sets are associated with the disease or when causal genes
are shared by multiple gene sets, using competitive tests that compare
gene set association signalswith the rest of the genomemay result in loss
of power [8,34]. For example, Tintle et al. [35] found the SUMSTAT
statistics (based on the MAX–MIN statistic [36]) performed better than
GSEA and Fisher's exact test.

2.4. Constructing test statistics

A test statistic can be constructed with units based on either gene or
SNP association signals. We refer to them as gene-based and SNP-based
methods, respectively. In the former, the P-values of the SNPs located
within each gene are summarized by gene-level association measures
first, and, then, the gene-level P-values are used to calculate gene set test
scores. Thepower of thesemethodsmainly dependson theproportionof
the genes (for gene-based methods) or SNPs (for SNP-based methods)
with strongassociation signals in the gene set. In practice, several studies
reported that gene-based methods may have more power [5,37]; this is
because only a fewSNPs,which are often located ondifferent genes,may
contribute to disease risk (or are in LD with causal variants).

However, in gene-basedmethods, a consensus has not been reached
on the best strategy for SNP information reduction within each gene. A
common and simple approach is to represent each gene using the most
significant SNP. Since only one SNP P-value is used to represent each
gene, the potential effects of multiple association signals for the gene

image of Fig.�1


Table 1
Some examples of competitive tests, which compare disease associations for the genes in a gene-set with genes in the rest of the genome.

Reference Year Software Input data for
the method

Condense SNP information
within each gene

Gene set test statistic Significance
assessment

Gene-based methods
Wang et al.
[5]

2007 GSEA http://www.openbioinformatics.org/gengen Genotype Most significant SNP P-value;
Sime's combination test

Modified Kolmogorov–
Smirnov (KS) statistic

Sample
permutations

Askland et al.
[77]

2009 EVA (Exploratory Visual Analysis)
http://www.exploratoryvisualanalysis.org/

SNP P-values Most significant SNP P-value Fisher's exact test Hypergeometric
distribution

Guo et al.
[51]

2009 SNP P-values Most significant SNP P-value Modified Kolmogorov–
Smirnov statistic

SNP
permutations

Holmans et al.
[31]

2009 ALIGATOR (Association List Go AnnoTatOR)
http://x004.psycm.uwcm.ac.uk/~peter/

SNP P-values Most significant SNP P-value
with correction for gene size

Modified Fisher's Exact test Gene
re-samplings

Freudenberg et al.
[47]

2010 Genotype Most significant SNP P-value Odds ratio for the presence
of SNP associations;
number of loci in a category
that have SNP associations

Sample
permutations

Jia et al.
[26]

2010 dmGWAS
http://bioinfo.mc.vanderbilt.edu/dmGWAS.html

Genotype Most significant SNP P-value Z-score Gene
randomization
and sample
permutations

Luo et al.
[70]

2010 SNP P-values Linear combination test;
quadratic test; decorrelation
test of SNP P-values

Linear combination test;
quadratic test;
decorrelation test of gene
P-values

Normal or
Chi-square
distribution

Nam et al.
[32]

2010 GSA-SNP http://gsa.muldas.org SNP P-values Second best SNP P-value Z-statistic, maxmean
statistic [36], and modified
KS statistic [5]

Gene
re-samplings
and sample
permutations

Peng et al.
[41]

2010 SNP P-values Fisher's combined P-value;
Sidak's correction to the
most significant SNP; Sime's
combination test; or FDR
method

Fisher's exact test Hypergeometric
distribution

Zhang et al.
[87]

2010 i-GSEA4GWAS http://gsea4gwas.psych.ac.cn/ SNP P-values Most significant SNP P-value Modified Kolmogorov–
Smirnov (KS) statistic

SNP
permutations

SNP-based methods
Holden et al.
[88]

2008 GSEA-SNP
http://nr.no/pages/samba/area_emr_smbi_gseasnp

Genotype Modified KS statistic Sample
permutations

Schwarz et al.
[89]

2008 SNPtoGO
http://webtools.imbs.uni-luebeck.de/snptogo

SNP P-values Fisher's exact test Hypergeometric
distribution

Medina et al.
[90]

2009 GESBAP (GEne Set Based Analysis of
Polymorphisms)
http://bioinfo.cipf.es/gesbap/www/index.jsp

SNP P-values Sequential applications
of Fisher's exact test on
different partitions of the
gene list

Hypergeometric
distribution
corrected by
FDR[91]
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maybemissed. In addition, because longer genes aremore likely to have
significant P-values, this approach may inflate the association test
statistic for gene sets that have many long genes. Multiple comparison
procedures, such as Sidak's correction [38], Simes' correction [39], or
False Discovery Rate (FDR) [40], can be used to adjust the most
significant P-value (for the number of SNPs located on the gene), but
representing genes with the corrected P-values may give overly
conservative gene set testing results [5,41].

Recently, Ballard et al. [42] compared sevenmulti-marker association
tests, including single marker analysis using the best-scoring SNP, and
found that principal component regression [43] is the most powerful
among them. In addition, several recent studies also proposed using a
subset of SNPs with the lowest P-values. The selection of the SNP subset
can be based on a fixed truncation point [44–46] or data adaptive
thresholds [12]. It has been shown that the SNP selection process can
improve power over other approaches that either include all SNPs or use
only the most significant SNPs [12,37].

2.5. Potential sources of bias

When scoring gene sets, several sources of potential bias need to
be considered:

1) Linkage disequilibrium patterns. Because markers in high LD may
originate from a single association signal, an effective strategymay
involve down-weighting P-values from regions with high LD
compared to regionswith relatively independent association signals.
To this end, strategies have been proposed to groupmarkers in high
LD as a “proxy cluster” [8] or use LD blocks from the HapMap
database as units of analysis [47] and then assign a single P-value for
each cluster or LD block.

2) Overlapping genes. Another related and potentially serious problem
may result fromoverlapping genes.When several functionally related
genes in a gene set are clustered locally, careful attention should be
paid to the SNPsmapped to overlapping genes.When selectingoneor
more of the most significant SNPs to represent each gene, gene set
significance may be driven by only a few of these SNPs, because the
significant SNPsmapped tomultiple genes couldbe includedmultiple
times. For example, in our analysis of the GAIN schizophrenia dataset
[11], the "starch and sucrose metabolism gene set (HSA00500)"
included several genes located closely on the chromosome (e.g.,
UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8,
UGT1A9, UGT1A10). When the most significant SNP was used to
represent the association signal of each gene,most of the genes in the
cluster were represented by the same SNP, which had the P-value
6.502×10−4. Therefore, when this SNP has a small P-value, the gene
set would likely be identified as a significant gene set, while, in fact,
the results ofmultiple significant genes in the gene setweredrivenby
one highly significant SNP located on multiple genes.

http://www.openbioinformatics.org/gengen
http://linchen.fhcrc.org/grass.html
http://x004.psycm.uwcm.ac.uk/~peter/
http://bioinfo.mc.vanderbilt.edu/dmGWAS.html
http://sourceforge.net/projects/snpratiotest/
http://gsea4gwas.psych.ac.cn/
http://nr.no/pages/samba/area_emr_smbi_gseasnp
http://webtools.imbs.uni-luebeck.de/snptogo
http://bioinfo.cipf.es/gesbap/www/index.jsp


Table 2
Some examples of self-contained tests, which test for disease associations for genes in a gene-set directly.

Reference Year Software Input data for
the method

Condense SNP information
within each gene

Gene set test statistic Significance
assessment

Gene-based methods
Yu et al.
[37]

2009 SNP P-values Adaptive rank truncated
product statistic (ARTP)
method

Adaptive rank truncated
product statistic (ARTP)

An efficient single-
level permutation
algorithm

Chen et al.
[33]

2010 GRASS (Gene set Ridge regression in
ASsociation Studies)
http://linchen.fhcrc.org/grass.html

Genotype Principal components Sample
permutations

SNP-based methods
Dinu et al.
[92]

2007 Genotype U-statistic [93] Sample
permutations

Chai et al.
[34]

2009 Genotype Fisher's combined P-value,
corrected by Brown's
approximation

Chi-square
distribution

O'Dushlaine et al.
[6]

2009 SNP Ratio Test
http://sourceforge.net/projects/snpratiotest/

Genotype SNP Ratio Test Sample
permutations

De la Cruz et al.
[94]

2009 Genotype Fisher's combined P-value,
with rank truncation and
weights

Sample
permutations

Chen et al.
[12]

2010 Genotype Supervised Principal
Components

Mixture distribution

Eleftherohorinou et al.
[73]

2010 Genotype Cumulative trend test
statistics — sum of all single
SNP P-values in the gene set

Fit skewed normal
distribution to 1000
sample permutations

Ruano et al.
[68]

2010 Genotype Fisher's combined P-value Sample
permutations

Wang et al.
[55]

2011 SNP P-values t-statistic in mixed model Empirical null
distribution
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3) Gene set size and gene length. Finally, as mentioned above, in order
to score gene sets in an unbiased manner, all selection processes
(e.g., selecting the most significant SNPs to represent each gene and
selecting themost significant genes to represent each gene set) need
to beaccounted for in thefinal gene set analysis. For example,when a
gene is represented by the signal of a single SNP from the gene
region, the potential effects of multiple association signals for the
gene may be missed. Furthermore, because longer genes are more
likely to have nominally significant P-values, choosing the most
significant SNP to represent each gene may inflate the association
test statistic for gene sets that have many long genes. Several recent
studies assessed the impact of gene length on gene set analysis
results and proposed new resampling based strategies for the
correction of such bias [48,49].

There are other biases that might affect gene set analysis results
including annotation biases from different databases. Two examples
are: 1) genes that have been well studied are more thoroughly
annotated; and 2) there may be discrepancies of gene set definitions
in different databases (e.g., KEGG [20] vs. BioCyc [50]). Furthermore,
for enrichment based methods that test the competitive null
hypothesis, the choice of the background genes for the enrichment
test is a critical factor and a potential bias.

2.6. Assessing statistical significance

To preserve LD patterns, permutations of sample labels are
typically employed to establish null distribution of gene set scores.
However, several difficulties remain for the application of permuta-
tion tests to GWAS.

First, a typical GWAS measures a half million or more SNPs on
hundreds or even thousands of samples. The recalculation of a gene set
score for each permutation is extremely computationally intensive,
especially for competitive tests based on markers from the entire
genome. To reduce the amount of computation, several researchers
explored assessing gene set significance by resampling genes or SNPs
[31,32,51]. It has been suggested that apart from genomic regions that
exhibit long range LD (e.g., the Major Histocompatibility Complex
(MHC) region), SNPs located on different genes may have little LD
[31,33]. Another permutation scheme introduced recently is restandar-
dization, which combines sample label permutation and gene re-
sampling [36,52]. The idea of restandardization is that, while permuting
sample labels preserve the correlation structure between genes, the null
distribution based on sample permutation approximates the theoretical
null distribution (0,1) [53]. However, this distribution ignores the
empirical mean and standard deviation of the gene set statistic, which
can be approximated more closely by resampling genes. Therefore, for
each sample permutation, the mean and standard deviation from gene
resampling are used to restandardize the permutation value. Specifi-
cally, the restandardized permutation value is computed as
S�� = μþ + σþ

σ� S�−μ�ð Þ where (μ+, σ+) and (μ*, σ*) are the mean and
standard deviation of gene set scores obtained from resampling sets of
genes or permuting sample labels, respectively [36].

Second, it is not straight forward to model the hierarchical structure
in gene sets: SNPs lie within genes, which lie within gene sets using
permutation tests. To this end, an efficient algorithm that uses single
level permutation iterations to achieve the goal of the multiple-level
permutation procedure has been recently proposed [37].

Third, to increase sample size, many GWAS were conducted at
multiple study sites, often with different sampling designs. Permuta-
tion tests rely on exchangeability of the permuted units. To avoid
misleading results, careful consideration is required to account for
data structure in complex study designs [54].

An alternative strategy is to employ more flexible parametric
models. For GWAS with case–control designs, we have explored
modeling disease associationswith gene sets using a class of statistical
models called mixed effects models [55,56]. In addition to the fixed
effects that model the mean structure (e.g., overall association for a
group of genes), these models also include random effects that
account for variance and covariance structures in the dataset. Future
studies include assessing the feasibility of these models for GWAS
with more complex designs.

http://linchen.fhcrc.org/grass.html
http://sourceforge.net/projects/snpratiotest/
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Additionally, Bayesian methods have recently been proposed for
genetic association studies [57–60]. These methods can be extended
to combine association signals across SNPs and genes in the same
pathway. For example, Stephens et al. [61] performed a SNP set
analysis for the association between polymorphisms of the HNF1A
gene and plasma C-reactive protein (CRP) concentration [62] using
Bayesian regression approach. This approach was implemented in the
software BIMBAM [59].

3. Several areas for improving gene set analysis of GWAS

Although the underlying principle that many functionally related
genes collectively contribute to overall disease susceptibility is simple
andappealing, aswedescribed earlier, the complexities inGWASdataset
structure raise many technical issues. Several areas of improvement for
gene set analysis especially worth noting are as follows.

1) Improve statistical power for detecting disease associated gene
sets. Nearly all current methods treat every gene equally when
constructing gene set statistics, a more powerful strategy would
involve weighing genes and SNPs within a gene set differentially
by leveraging a priori biological information, such as that from
expression quantitative trait loci (eQTL) studies [16] or network
topology [26,63–66].
In addition, improving SNP coverage and, thus, the number of
informative genes may also be beneficial, although it will also
increase the computational burden. Holmans et al. [31] performed
an imputation analysis for un-typed SNPs using genotype
information from the HapMap samples. They demonstrated that
the imputation analysis could improve the power for detecting
bipolar disorder (BPD) associated gene sets using their ALIGATOR
method. Better refined gene set definitions [67,68] that group
genes according to well-defined biological information may also
be beneficial. For example, Low et al. [67] divided the estrogen
metabolic pathway into three sub-pathways involved in androgen
synthesis, androgen-to-estrogen conversion and estrogen removal
and then found only SNPs within the androgen-to-estrogen
conversion pathway were significantly associated with breast
and endometrial cancer susceptibilities.

2) Develop strategies for the assessment and comparison of gene set
analysismethods.When assessing the performance of amethod, it is
important to ensure that the proportion of false positive findings
from the test is as expected. Null gene sets can be generated by
randomly simulating disease outcomes without using any genotype
data [55], or by randomly sampling genes fromaGWASdataset [3,4].
Next, one can plot a histogram of the estimated P-values for these
“null” gene sets. These P-values are expected to roughly follow a
uniform distribution. It is desirable to have a method whose type I
error is equal to or less than the significance cutoff (e.g., 0.05).
Similarly, to compare the power of different methods, one can
randomly sample disease associated genes (with different strengths
of associations) from a GWAS dataset or generate disease outcome
based on genetic models with various parameters indicating
strengths of associations [12,55]. Benchmark GWAS datasets for
diseases with well known biological basis, such as Crohn's Disease
(CD), would also be useful for evaluating and comparing gene set
analysis methods.As an example, Ballard et al. [69] compared two
gene set analysis methods based on their applications to three CD
datasets. Although most GWAS gene set analyses are discovery
projects, careful attention still needs to be paid to guard against
spurious findings so that resources can be efficiently allocated to
subsequent genotyping, re-sequencing and functional studies.
As mentioned above, these biases may stem from gene length (the
number of SNPs in a gene), gene set size (the number of genes in a
gene set), overlapping genes, LD patterns, and population stratifi-
cations. In addition, any selection process during data processing
(e.g., selecting the most significant SNP to represent each gene)
should be accounted for in the final tests. The impact of several
potential sources of bias needs to be evaluated for gene set analysis
methods. When two or more GWAS datasets are available for the
same disease or phenotype, to minimize the bias, we suggest that
investigators use one dataset as the discovery dataset and the other
(s) as validation dataset(s) [26].

3) Assess the stability of gene set testing results. In addition to power
and type I error rate, another important aspect is the stability of
the significance testing results. Different sets of samples would
give different results due to sampling variations. When different
sub-samples from a homogenous population are taken, a method
with small variance, and thus stable results across the sub-
samples, would be desirable.One strategy is to take sub-samples
from all the samples, conduct gene set testing for each subsample,
and evaluate the stability of gene set P-values based on their
changes in rank ordering in different sub-samples. One possible
cause for instability of the results in genetic association studies is
genetic heterogeneity, in which different variants may account for
disease status or trait level in different patients.
To address this problem, several investigators have hypothesized
that results from testing gene sets rather than from individual
markers would be more stable across different samples in the
population and, thus, easier to replicate [31,32,51,70]. More
studies are needed to evaluate and test this hypothesis, which
has already been validated in gene expression studies [71]. Note
that replication and stability assessments are most meaningful
when type I error rate for a method is preserved, so applying a
method with severe downward biased P-values to two datasets
would not constitute a valid replication [72].

4) Develop threshold-free procedures. To improve stability of results,
one strategy is to develop threshold-free procedures with few, if
any, a priori selected parameters. For example, in the commonly
used over-representation analysis, a significance threshold is first
selected and used to classify whether or not genes are significantly
associated with a particular disease, followed by comparing the
proportion of disease associated genes in the gene set with the
proportion in the rest of the genome by Fisher's exact test. The
identification of an optimal threshold is often a difficult task.
Holmans et al. [31] suggested that investigators apply a range of
cutoff values and then select the cutoff value that gives the most
significant increase in over-represented gene sets. A more
comprehensive approach, albeit computationally intensive, is to
choose a threshold value that could make a reasonable compro-
mise among power, type I error rate, and stability of gene set
analysis results using a cross-validation scheme.

4. Summary and perspectives

In summary, recent studies [11,73–84] have repeatedly demon-
strated that gene set analysis is a promising approach for analyzing
and interpreting GWAS datasets in order to better understand the
genetic architecture underlying complex diseases. In this paper, we
have provided an up-to-date review of the current progress, as well as
the limitations in gene set analysis methods for GWAS. The power and
potential performance of these methods may be further improved by
integrating additional biological and environmental information at
the systems level. For example, network-based approaches that
combine association signals in GWAS with local PPI information can
help account for gene–gene interactions and identify genes playing
central roles in protein networks by interconnecting many disease
genes that are weakly associated with disease themselves [26,63–66].
Similarly, analysis that models gene pathways with environmental
interactions will help investigators identify novel genes with weak
marginal effects that act jointly with exposure factors [85]. As many
more GWAS datasets are expected to be generated in the near future,
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meta-analyses, which integratemultiple independent GWAS datasets,
can be included in gene set analysis methods to increase sample size
and power [86]. We hope this review and discussion on the
methodological issues on gene set analysis of GWAS will help
investigators to find better solutions, understand potential biases,
and make gene set analysis more practical and beneficial for
understanding genetic variants conferring disease risks in GWAS.
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