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Abstract

The generalized Gerasimov–Drell–Hearn sum ruleIGDH
γ ∗d (Q2) for deuteron electrodisintegrationd(e, e′)np as function of

the squared four-momentum transferQ2 is evaluated by explicit integration. The calculation is based on a convent
nonrelativistic framework using a realisticNN-potential and including contributions from meson exchange currents, is
configurations and leading order relativistic terms. Good convergence is achieved. The prominent feature is a deep
minimum,IGDH

γ ∗d = −9.5 mb, at lowQ2 ≈ 0.2 fm−2 which is almost exclusively driven by the nucleon isovector anoma

magnetic moment contribution to the magnetic dipole transition to the1S0-state. AboveQ2 = 20 fm−2 the integralIGDH
γ ∗ (Q2)

approaches zero rapidly.
 2004 Elsevier B.V.

PACS: 11.55.Hx; 24.70.+s; 25.30.Fj
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1. Introduction

The Gerasimov–Drell–Hearn (GDH) sum rule f
real photons[1,2] relates the square of the anomalo
magnetic moment of a particle to the energy weigh
integral IGDH

γ from threshold up to infinity over th
beam-target spin asymmetry, i.e., the difference
the total photoabsorption cross sections for circula
polarized photons on a target with spin parallel a
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antiparallel to the spin of the photon,

IGDH
γ = 4π2κ2 e2

M2S

(1)=
∞∫

0

dωlab

ωlab

(
σP

γ

(
ωlab) − σA

γ

(
ωlab)),

with massM, chargeeQ, anomalous magnetic mo
ment κ and spin S of the particle. Furthermore
σ

P/A
γ (ωlab) denote the total absorption cross sectio

for circularly polarized photons of energyωlab on a
target with spin parallel and antiparallel to the pho
spin, respectively. The anomalous magnetic mome
defined by the total magnetic moment operator of
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(2)�M = (Q + κ)
e

M
�S.

Previously, this sum rule has been evaluated for
deuteron by explicit integration up to an energy
550 MeV including the contributions from the ph
todisintegration and single pion production chann
[3,4]. While for photodisintegration convergence w
achieved yielding a negative contribution of−413 µb,
the incoherent pion production contributions had
converged and a substantial positive contribution w
still missing, as is needed to balance the negative re
from photodisintegration in order to yield the sm
positive sum rule predictionIGDH

γ,d = 0.65 µb from the
deuteron’s small anomalous magnetic momentκd =
−0.143.

It is the aim of the present Letter to report on
first evaluation of the contribution of the electrod
integration channel, i.e.,d(e, e′)np, to the general
ized GDH integralIGDH

γ ∗d (Q2) for the deuteron by ex
plicit integration up to a maximum excitation ener
of 1 GeV.

2. The generalized GDH sum rule

The spin asymmetry of the deuteron for real ph
tons is related to the vector target asymmetryτ c

10 of
the total photoabsorption cross section[9], i.e.,

(3)σP
γ

(
ωlab) − σA

γ

(
ωlab) = √

6σ 0
γ

(
ωlab)τ c

10

(
ωlab),

where σ 0
γ denotes the unpolarized total photoa

sorption cross section. This spin asymmetry can
related to the transverse form factorF ′10

T of the
inclusive electrodisintegration cross section wh
appears for a vector polarized deuteron target
conjunction with a longitudinally polarized electro
beam.

The general inclusive cross section for deute
electrodisintegration including polarization degrees
freedom is governed by a set of ten inclusive form f
tors, namely two longitudinalFL andF 20

L , four trans-
verseFT , F 20

T , F 2−2
T T , andF ′10

T , and four longitudinal-
transverse interference form factorsF 1−1

LT , F 2−1
LT , F ′1−1

LT

and F ′2−1
LT , of which F 1−1

LT andF ′2−1
LT vanish below

pion threshold due to time reversal invariance. Exp
itly, the inclusive cross section reads[5]

σe

(
h,P d

1 ,P d
2

)
≡ dσ

dklab
2 dΩ lab

e

= 6c
(
klab

1 , klab
2

)

(4)

× {
ρLFL + ρT FT − Pd

1 ρLT F 1−1
LT sinφdd1

10(θd)

+ Pd
2

[(
ρLF 20

L + ρT F 20
T

)
d2

00(θd)

− ρLT F 2−1
LT cosφdd2

10(θd)

+ ρT T F 2−2
T T cos 2φdd

2
20(θd)

]
+ hPd

1

[−ρ′
T F ′10

T d1
00(θd)

+ ρ′
LT F ′1−1

LT cosφdd1
10(θd)

]
− hPd

2 ρ′
LT F ′2−1

LT sinφdd2
10(θd)

}
,

where incoming and scattered electron momenta
denoted byklab

1 andklab
2 , respectively,c(klab

1 , klab
2 ) and

ρ
(′)
α (α ∈ {L,T ,LT ,T T }) denote kinematical factors

h the degree of longitudinal electron polarizatio
Furthermore,Pd

00 = 1, andPd
1 andPd

2 describe vecto
and tensor polarization of the deuteron, respectivel
and the spherical angles(θd,φd) characterize the
deuteron orientation axis. The various form factors
functions ofEnp , the c.m. final state excitation energ
and ofqc.m., the three-momentum transfer in the c.
system.

At the photon point,Q2 = (�q)2 − ω2 = 0, the
purely transverse form factors are related to the
ious contributions of the general total photoabsorp
cross section of deuteron photodisintegration, nam
to the unpolarized total cross sectionσ tot

γ and to the
beam and target asymmetries for polarized phot
and deuterons as defined in[9]. In detail one has fo
Q2 = 0

σ tot
γ = Md

Wnpqc.m.
FT , τ0

20 = F 20
T

FT

,

(5)τ c
10 = F ′10

T

FT

, τ l
22 = F 2−2

T T

FT

,

where the invariant mass of the finalnp system is
denoted byWnp = Enp + 2M with M for the nucleon
mass.

Thus the spin asymmetry for real photons in(3)
corresponds to the vector target asymmetry for l
gitudinally polarized electrons of the above inclus
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cross section as defined by[5]

AV
ed(θd,φd)

= 1

4hPd
1 σ 0

e

(6)

× [
σe

(
h,P d

1 ,P d
2

) − σe

(−h,P d
1 ,P d

2

)
− σe

(
h,−Pd

1 ,P d
2

) + σe

(−h,−Pd
1 ,P d

2

)]
,

yielding for(θd,φd) = (0,0), i.e., deuteron orientatio
axis parallel to�q,

(7)AV
ed(0,0) = 6c(klab

1 , klab
2 )

σ 0
e

ρ′
T F ′10

T ,

with σ 0
e = σe(0,0,0) as unpolarized inclusive cros

section.
Therefore, we introduce as spin asymmetry

transverse virtual photons

(8)σP
T ,γ ∗

(
ωlab) − σA

T,γ ∗
(
ωlab) = √

6
Md

Wnpqc.m.
F ′10

T ,

which coincides at the photon point withEq. (3).
Correspondingly, we take as extension of the G
integral from real to virtual photons the definition[6,7]

IGDH
γ ∗d

(
Q2)

= √
6

∞∫

ωlab
th

dωlab

ωlab

Md

Wnpqc.m.

(9)× F ′10
T

(
Enp, qc.m.

)
g
(
ωlab,Q2),

whereMd denotes the deuteron mass. HereEnp or
equivalentlyWnp = Enp + 2M andqc.m. are functions
of ωlab andQ2

Wnp

(
ωlab,Q2) =

√
M2

d − Q2 + 2Mdωlab,

(10)qc.m.
(
ωlab,Q2) = Md

Wnp

√
Q2 + (

ωlab
)2

.

The factorg(ωlab,Q2) in (9) takes into account th
fact, that the generalization of the GDH integral is
a certain extent arbitrary. The only restriction for th
factor is the condition that at the photon pointQ2 = 0
one has

(11)g
(
ωlab,0

) = 1,
and that

(12)lim
ωlab→∞

g
(
ωlab,Q2)∣∣∣

Q2=const
< ∞

remains finite. As simplest extension we choose h
g(ωlab,Q2) ≡ 1.

Transforming(9) into an integral overEnp using

ωlab = 1

2Md

(
W2

np + Q2 − M2
d

)

(13)= 1

2Md

(
(Enp + 2M)2 + Q2 − M2

d

)
,

one obtains

IGDH
γ ∗d

(
Q2)

(14)= 2
√

6Md

∞∫
0

dEnp

F ′10
T (Enp, qc.m.)

(W2
np + Q2 − M2

d )qc.m.
,

where nowqc.m. has to be considered as a function
Enp andQ2, i.e.,

qc.m.
(
Enp,Q2)

= 1

2Wnp

(15)

×
√(

(Wnp − Md)2 + Q2
)(

(Wnp + Md)2 + Q2
)
.

3. Results for electrodisintegration

The generalized GDH integral of(14) has been
evaluated by explicit integration up to a maximu
excitation energyEnp = 1 GeV. The evaluation o
F ′10

T is based on an expansion into transverse ele
and magnetic multipole matrix elements accord
to [5]

F ′10
T = 16π2

∑
LL′jµ

(−)j
(

L′ L 1
1 −1 0

)

×
{

L′ L 1
1 1 j

}
e−2ρ

j
µ

(16)

× 
e
[(

EL′
(µj) + ML′

(µj)
)∗

× (
EL(µj) + ML(µj)

)]
,

whereµ labels the possible final partial waves of giv
total angular momentumj in the Blatt–Biedenharn
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parametrization[8], and ρ
j
µ its inelasticity which is

zero below pion threshold. Note, that due to pa
conservation one has in(16)either electric or magneti
contributions for a given multipolarityL and stateµj .

The calculation is based on a nonrelativistic fram
work as is described in detail in Refs.[9,11] but with
inclusion of the leading order relativistic contrib
tions. In the current operator we distinguish the o
body currents with Siegert operators (N), explicit m
son exchange contributions (MEC) beyond the Sie
operators, essentially fromπ - andρ-exchange, contri
butions from isobar configurations of the wave fun
tions (IC), calculated either in the impulse appro
imation [10] or in a coupled channel approach f
the most dominantN∆-configuration[11], and lead-
ing order relativistic contributions (RC). Bound an
scattering states are obtained from a realisticNN -
potential for which we have chosen the Bonn r-sp
and q-space (B) models[12] and the ArgonneV18 po-
tential [13]. The final state interaction (FSI) is take
into account for all multipoles up toL = 6 whereas
for the higher multipoles FSI can safely be neglec
and plane waves are used.

In Fig. 1 the transverse spin asymmetryσP
T ,γ ∗ −

σA
T,γ ∗ as function ofEnp for various values ofQ2

are shown. The prominent and most interesting f
ture, which one readily notes, is the resonance
structure right abovenp-break-up threshold aroun
Enp = 70 KeV. It stems essentially from the isove
tor M1-transition to the antibound1S0-state located a
this energy, which is well known from photo- and ele
trodisintegration to dominate the cross section n
threshold. Up to several MeV above threshold
leading contributions come essentially alone from
(L = 1)-multipoles while the higher multipoles giv
a negligible contribution only. Restriction toL = 1
yields from(16)explicitly

F ′10
T = − 8π2

3
√

6

(17)

× (
2
∣∣M1(2,0)

∣∣2 + ∣∣M1(1,1)
∣∣2 + ∣∣M1(3,1)

∣∣2
− ∣∣M1(2,2)

∣∣2 − ∣∣M1(4,2)
∣∣2

+ 2
∣∣E1(3,0)

∣∣2 + ∣∣E1(2,1)
∣∣2 + ∣∣E1(4,1)

∣∣2
− ∣∣E1(1,2)

∣∣2 − ∣∣E1(3,2)
∣∣2).
The E1-transitions leading to1P1 and3Pj (j = 0,1,2)
states and which are most important in the inclus
cross section, do not play a significant role in
spin asymmetry in this energy region. The reason
this feature is that the isoscalar transition to1P1 is
largely suppressed, while the triplet3Pj contributions
to (16) almost cancel each other. The cancellat
would be complete if spin–orbit and tensor forc
could be neglected, because in this case the m
elements are simply related by angular momen
recoupling coefficients. Thus, at low energies o
M1-transitions remain, essentially to1S0 and 3S1
states. The1S0 contribution is dominant because of t
large isovector part of the M1-operator arising fro
the large isovector anomalous magnetic momen
the nucleon. It is particularly strong close to brea
up threshold at about 70 KeV, where the1S0 state
is resonant. This feature is seen inFig. 2 where
this matrix element is displayed for various const
values ofQ2. Since this state can only be reach
by the antiparallel spin combination one finds
strong negative spin asymmetry and thus a nega
contribution to the GDH integral. The overwhelmin
predominance of the M1-transition into the1S0-state is
demonstrated inFig. 3where a comparison of the sp
asymmetry between calculations with all multipol
with all M1-multipoles and with the M1-transitio
into the 1S0-state alone is displayed. The latter tw
coincide completely and also the calculation includ
all multipoles shows only aboveEnp ≈ 1 MeV a small
deviation.

Besides this low energy feature which, howev
becomes less and less pronounced with increasingQ2

aboveQ2 = 1 fm−2, one notes the evolution of th
quasi-free peak as a distinct negative minimum in b
the spin asymmetry as well as in the leading M
matrix element located atEnp/MeV ≈ 10Q2/fm−2

(see lower panels ofFigs. 1 and 2). However, its size
decreases rapidly with increasingQ2. The rapid fall-
off of the spin asymmetry with increasing energyEnp

ensures furthermore that the generalized GDH-inte
converges sufficiently fast in view of the addition
energy weighting. In fact, convergence is achieve
one integrates up to an energyEnp roughly 100 MeV
above the quasi-free peak.

The resultingIGDH
γ ∗d (Q2) is shown inFig. 4. For

Q2 → 0 the integral approachesIGDH
γ d for real pho-
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Fig. 1. Transverse spin asymmetryσP
T,γ ∗ − σA

T,γ ∗ of deuteron electrodisintegrationd(e, e′)np as function ofEnp for various constan

four-momentum transfersQ2. The calculation is based on the ArgonneV18 potential[13] and includes all interaction and relativistic effects
nd
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tons. A pronounced minimum is readily seen arou
Q2 ≈ 0.2 fm−2 reflecting the deepest minimum of th
spin asymmetries inFig. 1 for this value ofQ2. The
left panel shows the influence of the various inter
tion effects from MEC, IC and RC. Near the min
mum, the largest effect arises from MEC, increas
the depth by about 10%, and to a smaller extent fr
IC while their influences in the other regions ofQ2

is quite small. Relativistic contributions are substa
tial near the photon point as has been noted alre
for photodisintegration[3]. But at higherQ2 they are
quite tiny. The bottom panel ofFig. 4 shows a com-
parison ofIGDH

γ ∗d (Q2) for three realistic potential mod
els, the Bonn r-space, the Bonn q-space (B)[12] and
the ArgonneV18 [13] models. Obviously, the potentia
model variation is quite small compared to the int
action effects. In view of the fact, that for real ph
tonsIGDH

γ,d is driven by the nucleon anomalous ma
netic moments, we have also evaluatedIGDH

γ ∗d (Q2) for
vanishing anomalous moments. The resulting integ
also shown in the bottom panel ofFig. 4, is quite
tiny, which underlines the fact that also the gene
ized GDH-integral is driven by the nucleon anomalo
magnetic moments.

4. Summary and conclusions

The beam-target spin asymmetry of deuteron e
trodisintegration for transverse virtual photons and
associated generalized Gerasimov–Drell–Hearn i
gral have been evaluated. The spin asymmetry for c
stant four momentum transfer exhibits as function
the final state excitation energyEnp a very interest-
ing low energy property, a pronounced negative m
imum aroundEnp = 70 KeV, which is deepest fo
Q2 ≈ 0.2 fm−2. It is dominated by a single magnet
dipole transition to the1S0-scattering state and a
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t
Fig. 2. Magnetic M1(2,0)-matrix element into the1S0-state for deuteron electrodisintegrationd(e, e′)np as function ofEnp for various constan
four-momentum transfersQ2 for ArgonneV18 potential[13].

Fig. 3. Transverse spin asymmetryσP
T,γ ∗ −σA

T,γ ∗ of deuteron electrodisintegrationd(e, e′)np as function ofEnp for Q2 = 0.2 fm−2 calculated

including all multipoles (solid), all M1-multipoles only (dashed) and the M1-transition into the1S0-state alone (dotted).
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Fig. 4. Generalized Gerasimov–Drell–Hearn integral as function ofQ2 for deuteron electrodisintegrationd(e, e′)np. Top panel: separate curre
contributions from normal nonrelativistic theory (N) and successivelyadded meson exchange currents (MEC), isobar configurations (IC), an
relativistic contributions (RC). Bottom panel: results of the complete calculation (T) for different potential models and for vanishing anoma
nucleon magnetic moments (labeled “point particle”).
ous
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re,
most completely governed by the nucleon anomal
magnetic moment. All other multipoles play an i
significant role. At higher excitation energies the s
asymmetry tends rapidly to zero, so that the gen
alized GDH-integral converges fast, already at a
hundreds of MeV. The minimum in the spin asym
metry leads to a corresponding negative minimum
IGDH
γ ∗d (Q2) aroundQ2 = 0.2 fm−2. An experimenta

check of these predictions for both the spin asymm
as well as for the GDH-integral would provide an a
ditional significant test of our present understanding
low energy behavior of few-body nuclei. Furthermo
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in view of this low energy property, an independe
evaluation in the framework of effective field theo
would be very interesting.

It remains as a task for future theoretical researc
evaluate the spin asymmetry and the GDH-integral
the other possible channels, like coherent and inco
ent single pion as well as two-pion electroproductio
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