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This paper deals with optimal shapes against buckling of an elastic nonlocal small-scale Pflüger beams
with Eringen’s model for constitutive bending curvature relationship. By use of the Pontryagin’s maxi-
mum principle the optimality condition in form of a depressed quartic equation is obtained. The shape
of the lightest (having the smallest volume) simply supported beam that will support given uniformly
distributed follower type of load and axial compressive force of constant intensity without buckling, is
determined numerically. A special attention is paid to the influence of the characteristic small length
scale parameter of the nonlocal constitutive law to both critical load and optimal shape of the analyzed
beams. For the case when distributed follower type of load is zero, our results reduce to those obtained
recently for compressed nonlocal beam. Also the post buckling shape of the optimally shaped rod is stud-
ied numerically.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Lately there is considerable effort devoted to the study of stabil-
ity of nano beams. Nano beams are modeled within the framework
of second grade elasticity and within integral-based nonlocal the-
ories. While the classical elasticity is size independent, generalized
theories, allow one to account for the length scale that becomes
important in micro/nano structures.

According to Ma et al. (2008) one of the first papers, based on
the integral, non-local constitutive relation, suggested by Eringen
(1983), could be related to work of Peddieson et al. (2003) who
developed a non-local model for Bernoulli–Euler beams. This mod-
el is a suitable alternative to size-independent classical continuum
elasticity for applications at the nanoscale, where the discrete
atomistic nature of matter becomes important. Recently there
has been a number of studies of buckling of nonlocal nano beams.
We list some of them. Buckling analysis of multi walled carbon
nano tubes is treated in Sudak (2003). Wang et al. (2006) formu-
lated a nonlocal Timoshenko beam theory (a theory that takes into
account transverse shear deformation) and applied it to a buckling
analysis of a beam with constant cross-section and different
boundary conditions. In Lu et al. (2007) the equations of motion
for nonlocal Euler and Timoshenko beams are derived. Those equa-
tions are then applied to the study of wave propagation of a single
and double walled nano tubes. The results presented in Lu et al.
(2007) are suitable for the dynamic stability study of nano tubes.
In Wang and Wang (2007) the constitutive equations for the
ll rights reserved.
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carbon nano tubes as Euler–Bernoulli and Timoshenko beams are
presented. Again analysis was based on Eringer’s nonlocal theory.
Finally we mention the work of Challamel and Wang (2010) where
the lateral buckling of nano beams with constant cross-section was
studied.

The stability analysis of a nano beam subjected to a nonconser-
vative load (generalized Beck’s problem) has been presented in
Xiang et al. (2010), while the flow induced vibrations are treated
in Ke and Wang (2011). As stated in Lu et al. (2007), it is necessary
to address basic issues governing the nonlocal theories. The ques-
tion of optimally shaped rod is, in our opinion, an important issue
and we address it here.

The problem of determining optimal shape against buckling of a
nano rod, was treated, for the first time, in Atanackovic et al. (in
press) and Atanackovic et al. (2012). It was shown in these works
that the Pontryagin’s principle may be used successfully to deter-
mine the shape of the rod that has minimal volume (mass) and
is stable under the action of a prescribed force. There is consider-
able increase in the buckling load for optimally shaped rod made
of given amount of material when compared with the rod with
constant cross-section. Our intention in this work is to study stabil-
ity and optimal shape of a nano beam loaded by an axial compres-
sive force and distributed type follower load. Thus, we consider a
generalization of a classical Pflüger beam.

We give a motivation for studying this problem. Due to the
recent development of technology (MEMS and NEMS) the analysis
of micro/nano beams have become a very interesting field of
research. The investigation of mechanical behavior of such beams
is performed by the use of molecular dynamics simulations or con-
tinuum mechanics models. The molecular dynamic simulations are
very difficult for large scale systems. Since we are interested in
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Fig. 1. System under consideration.
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formulating the general procedure applicable to both large scale
(the length scale parameter tending to zero) and small scale sys-
tems the use of the continuum mechanics models is chosen. In par-
ticular this means that we will use the nonlocal elasticity theory
suggested by Eringen (1983). We give next the physical examples
corresponding to the mathematical model that will be used. As
the first example of the beam with uniformly distributed follower
loads we mention pipes conveying fluid (Plaut, 2004). We note that
the physical behavior of the fluid in macro/micro systems is differ-
ent from the behavior inside nano pipes. However, in order to ob-
tain at least qualitative results some authors neglected the above
mentioned differences and treated a nano pipe in the same way
as a macro/micro pipe (Lee and Chang, 2008; Wang, 2009; Tounsi
et al., 2009). In what follows we will use this approach. As the sec-
ond example we mention a nano beam in the air or fluid flow. This
situation occurs in many nano/micro electronic devices (air is used
as a cooling medium). We note that the stability boundary of a uni-
form Pflüger nano beam, pined at both ends, could be used to
determine the stability boundary of the shearable (Timoshenko)
uniform Pflüger macro beam since the governing equations have
the same structure. This conclusion is reached in Wang et al.
(2006). Besides investigating stability, the aim of the paper is to
give an insight into the influence of the size of the beam on the
optimal shape and savings in material. Since the optimal shape
of a compressed Pflüger macro beam has not been analyzed yet,
the analysis presented here, having small length scale parameter,
will cover macro, micro and nano beams. This will, potentially,
help engineers chose whether it pays off to use, or not to use, the
optimal shaped beam. Besides that, an interesting physical phe-
nomena, connected to regularization of the optimal solution, will
also be presented in the present work. Giving the motivation for
the problem treated here we continue by briefly describing the
main ideas of the paper.

Optimal shape of such a beam within the classical Bernoulli–Eu-
ler theory was presented in Atanackovic and Simic (1999). In solv-
ing our problem we will be faced with two problems. First we will
determine the critical load parameters (axial force and intensity of
distributed follower force) for a nano beam with constant cross-
section. We believe that this is a new result. Those load parameters
are obtained in closed form. When dealing with critical buckling
loads, according to Kovari (1969) the advantages of closed form
solutions are lessened by the need to solve complicated transcen-
dental equations generated by boundary conditions. That these
equations must be solved numerically suggests that a far more effi-
cient process would be to give the original boundary value problem
a numerical treatment ab initio. Thus besides the standard proce-
dure that involves theory of holomorphic functions we will apply
the numerical method presented in Goodman (1965). For engi-
neering applications this quite efficient successive iterations meth-
od seems to be more efficient and will be used in determining the
critical load parameters given in form of interaction curves for sev-
eral values of the small length scale parameter of nonlocal consti-
tutive law.

Next we will use the Pontryagin’s maximum principle to deter-
mine the optimality conditions. We will show that the optimality
condition determining the optimal shape of the micro/nano beam
takes the form of a depressed quartic equation. Note that general-
izations of the classical elastica theory, like the one at hand, lead to
more complicated two point boundary value problems since opti-
mality conditions are given in the form of polynomials. For exam-
ple, see Spasic and Glavardanov (2009) where the posed boundary
value problem requires a solution of the cubic equation and where
its explicit solution, that determines optimal shape, was shown in
terms of the Chebishev radicals. Thus, in obtaining a numerical
solution that determines the optimal shape of a micro/nano beam
for given arc length, in each iteration one solve the depressed
quartic equation explicitly by the use of Ferrari’s method. Since this
procedure requires to many ‘‘if then else’’ conditions in each step of
integration we will proceed differently. Namely, we will treat the
optimality condition as a first integral and use it to solve one state
variable. Also we will differentiate it to obtain the relation that
connects changes of optimal cross section with respect to the
remaining state variables. When compared to numerical procedure
that involves the Ferrari solution, the suggested procedure is more
efficient.

Finally we will determine the post-critical shape of an optimally
shaped beam by numerical integration of the corresponding equi-
librium equations.

2. Mathematical formulation of the problem

Consider a simply supported, naturally straight beam BC of
length L. In order to derive governing equations we define the rect-
angular Cartesian coordinate system xBy whose axis x coincides
with the beam axis in the undeformed state while the y axis is per-
pendicular to the x axis (see Fig. 1). Also we introduce the arc
length of the beam axis in the undeformed state S measured from
the fixed end B. In deriving the governing equations we assume
that the beam has a variable cross sectional area A ¼ A Sð Þ. At the
movable end C, the beam is loaded by a concentrated force F of
constant intensity F acting along the x axis. Also the beam is loaded
by a uniformly distributed follower type of load of constant inten-
sity say q0.

The corresponding differential equations describing the equilib-
rium of the beam element of length dS (see detail in Fig. 1) read

dH
dS
¼ �qx;

dV
dS
¼ �qy;

dM
dS
¼ �V cos hþ H sin h; ð1Þ

where H;V are the components of the contact force along the x and
y axes, respectively, M is the contact couple, h is the angle between
the tangent to the beam axis and the x axis and qx and qy are the
projections of the uniformly distributed follower type of load q0

to the coordinate axes. Since

qx ¼ �q0 cos h; qy ¼ �q0 sin h;

Eq. (1) becomes

dH
dS
¼ q0 cos h;

dV
dS
¼ q0 sin h;

dM
dS
¼ �V cos hþ H sin h: ð2Þ
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To the system (2) we adjoin the following geometrical relations

dx
dS
¼ cos h;

dy
dS
¼ sin h: ð3Þ

Following the lines of the nonlocal Eringen elastica theory the con-
stitutive equation suitable for micro/nano beam-like structures
reads (Peddieson et al., 2003; Sudak, 2003; Wang et al., 2006; Chall-
amel and Wang, 2010).

MðSÞ � l2c
d2M

dS2 ¼ EI
dh
dS
; ð4Þ

where lc is the small length scale parameter of nonlocal constitutive
law that is appropriate to the material and that can be identified
from atomistic simulations or by using dispersive curve of the
Born–Karman model of lattice dynamics as mentioned in the above
listed references. In (4) EI stands for the bending rigidity of the
beam i.e. Young’s modulus E multiplied by the second moment of
area I. It is worth noting that the system consisting of (2)–(4) can
be transformed into a more convenient form for further analysis.
Namely, by differentiating (2)3 and using (2)1,2 and (4) we get the
following system of six first order ordinary differential equations

dH
dS
¼ q0 cos h;

dV
dS
¼ q0 sin h;

dM
dS
¼ �V cos hþ H sin h;

dx
dS
¼ cos h;

dy
dS
¼ sin h

dh
dS
¼ M

EI þ l2c ðH cos hþ V sin hÞ
:

ð5Þ

The boundary conditions corresponding to Eq. (5) are

xð0Þ ¼ 0; yð0Þ ¼ 0; yðLÞ ¼ 0; HðLÞ ¼ �F;

Mð0Þ ¼ 0; MðLÞ ¼ 0: ð6Þ

Since the beam has a variable cross-sectional area its volume W
reads

W ¼
Z L

0
AðSÞdS: ð7Þ

In what follows we take the following form of the second moment
of area

IðSÞ ¼ cA2ðSÞ: ð8Þ

We note that the constant denoted by c depends on the shape of
the cross section. For example, in the case of circular cross section
c ¼ 1=ð4pÞ. In the following we use Au ¼ AðSÞ ¼ const., for S 2 ½0; L�,
to denote the cross-sectional area of the uniform beam to which
the optimal one, with the same stability boundary, will be com-
pared. In this case the second moment of area is Iu ¼ cA2

u.
We can now introduce the following dimensionless quantities

t ¼ S
L
; n ¼ x

L
; g ¼ y

L
; A ¼ A

L2 ; Au ¼
Au

L2

a ¼ A

Au

; j ¼ lc
L
; h ¼ HL2

EIu
; v ¼ VL2

EIu
; m ¼ ML

EIu
;

k1 ¼
FL2

EIu
; k2 ¼

q0L3

EIu
; w ¼ W

AuL
: ð9Þ

By using (9) the system (5) becomes

_h ¼ k2 cos h; _v ¼ k2 sin h; _m ¼ �v cos hþ h sin h;

_n ¼ cos h; _g ¼ sin h; _h ¼ m
a2 þ j2 h cos hþ v sin hð Þ ; ð10Þ

where a dot over the variable represents the derivative with respect
to the dimensionless arc length t. The boundary conditions (6) now
read

nð0Þ ¼ 0; gð0Þ ¼ 0; mð0Þ ¼ 0; gð1Þ ¼ 0;
hð1Þ ¼ �k1; mð1Þ ¼ 0: ð11Þ
In obtaining (10) we used EI=EIu ¼ EcA2ðSÞ= EcA2
u

� �
¼ a2. Eqs. (10)

and (11) describe the nonlinear equilibrium equations of the Pflüger
beam based on Eringen’s nonlocal elasticity theory. Note that the
classical Bernoulli–Euler elastica theory is obtained as a special case
for j ¼ 0 (Atanackovic, 1997).

The dimensionless volume is given by

w ¼
Z 1

0
aðtÞdt: ð12Þ

Since we are interested in stability and the optimal shape against
buckling, it is necessary to define a solution to Eqs. (10) and (11)
whose stability will be investigated. It can be seen that for fixed j
and any ðk1; k2Þ the system (10) and (11) has the solution
h0 ¼ �k1 � k2ð1� tÞ; v0 ¼ 0; n0 ¼ t; g0 ¼ 0; m0 ¼ 0, h0 ¼ 0, in
which the beam axis remains straight. By introducing small pertur-
bations Dh; . . . ;Dh, solutions to (10) and (11) can be expressed as
h ¼ h0 þ Dh; . . . ; h ¼ h0 þ Dh. Substituting these into the system
(10), (11) and omitting D in front of Dv ;Dm;Dg;Dh we obtain

_ðDhÞ ¼ k2ðcos h� 1Þ; _v ¼ k2 sin h;

_m ¼ �v cos hþ Dh� k1 � k2ð1� tÞ½ � sin h; _ðDnÞ ¼ cos h� 1;

_g ¼ sin h; _h ¼ m
a2 þ j2 Dh� k1 � k2ð1� tÞ½ � cos hþ v sin hf g

ð13Þ

subject to

Dnð0Þ ¼ 0; gð0Þ ¼ 0; mð0Þ ¼ 0; gð1Þ ¼ 0;
Dhð1Þ ¼ 0; mð1Þ ¼ 0: ð14Þ

Note that the system (13) and (14) possesses the trivial solution
Dh ¼ v ¼ Dn ¼ g ¼ m ¼ h ¼ 0. The linearized system that will be
used for determining the buckling load and optimal shape follows
by neglecting the higher-order terms in (13). In this way we get

_ðDhÞ ¼ 0; _v ¼ k2h; _m ¼ �v � k1 þ k2ð1� tÞ½ �h;
_ðDnÞ ¼ 0; _g ¼ h; _h ¼ m

a2 � j2 k1 þ k2ð1� tÞ½ � ð15Þ

subject to (14).

3. Critical buckling load

In order to determine the stability boundary of the beam for
fixed j, we intend to determine the values of the load parameters
k1; k2ð Þ for which the system (13) and (14) has more than one solu-

tion in every neighborhood of k1; k2ð Þ. Note that bifurcation points
of the nonlinear system (13) and (14) are bifurcation points of the
linearized system (15) and (14). To be sure that the bifurcation
points of the linearized system are also bifurcation points of the
nonlinear system some sufficient conditions should be formulated.
In what follows we assume that these conditions are satisfied and
note that checking of them could be done along the lines of Chow
and Hale (1982), for example by following the standard procedure
of Liapunov–Schmidt reduction. We will not be concerned with
this analysis here. From now on we assume that aðtÞ is a positive
and continuously differentiable function.

Therefore in order to find the buckling loads we need to deter-
mine the eigenvalues of the system (15) and (14). Note that this
can be done only by using (15)2,3.6. Namely, by differentiating
(15)3 and using (15)2,6 we obtain that the critical load of the Pflüger
beam is determined if the following equation

€mþ k1 þ k2ð1� tÞ
a2 � j2 k1 þ k2ð1� tÞ½ �m ¼ 0 ð16Þ

subject to

mð0Þ ¼ 0; mð1Þ ¼ 0 ð17Þ
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has a nontrivial solution. In order to derive (16) we assumed that
the following holds

aðtÞ > j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2ð1� tÞ

p
; ð18Þ

which makes sense since j is the small length scale parameter. For
the linear eigenvalue problem, the eigenfunctions are determined
up to a multiplicative constant. Hence, it is permissible to chose

_mð0Þ ¼ 1; ð19Þ

which fixes this constant. Then since the function multiplying m in
(16) is analytic in 0;1½ �by applying the arguments of Whittaker and
Watson (1966), we conclude that the linear differential equation
(16) with the initial conditions (17)1 and (19) has a unique solution.
In the special case when j ¼ 0, corresponding to the classical elas-
tica theory, the problem (16) and (17) reduces to the Pflüger beam
with the axial compressive force treated in Atanackovic (1997), that
will be used in estimations of the influence of the small length scale
parameter j on the critical load.

Given j > 0 and aðtÞ being constant or not, the eigenvalue pair
ðk1; k2Þ of the system (15) and (14) or equivalently of the system
(16) and (17) defines a set of curves /n; n ¼ 1;2; . . . called interac-
tion curves (see Antman, 1995). Our next goal is to find the lowest
interaction curve (i.e. a curve corresponding to the lowest buckling
mode) for the nano/micro beam with constant cross-section
aðtÞ ¼ 1, corresponding to the uniform beam of unit volume. In
what follows we will assume that k1; k2 are positive. Next we pres-
ent two possible ways to determine the interaction curves.

3.1. Standard procedure

In this subsection we derive an analytical form of a characteris-
tic equation that determines the interaction curves of the uniform
beam for j > 0. Therefore we solve

€mþ k1 þ k2ð1� tÞ
1� j2 k1 þ k2ð1� tÞ½ �m ¼ 0 ð20Þ

subject to (17). Introducing the new independent variable

y ¼ 2
j2 k1 þ k2ð1� tÞ½ � � 1

j3k2
: ð21Þ

Eq. (20) becomes

d2m

dy2 �
1
4

1þ 2
k2j3y

� �
m ¼ 0: ð22Þ

Next we suppose a solution of (22) in the form

mðyÞ ¼ j3k2

2
ye�

y
2þ

j2 k1þk2½ ��1
2 f ðyÞ; ð23Þ

where f ðyÞ is the function to be determined. Substituting (23) into
(22) leads to the following linear differential equation for f ðyÞ

y
d2f

dy2 þ ð2� yÞ df
dy
� 1þ 2

k2j3

� �
y ¼ 0: ð24Þ

If we introduce the following notation

a ¼ 1þ 1
2k2j3 ; ð25Þ

the general solution to (24) reads (see Abramowitz and Stegun,
1970; Lebedev, 1965)

f ðyÞ ¼ C1Uða;2; yÞ þ C2Wða;2; yÞ; ð26Þ

where C1 are C2 are arbitrary constants. Also, in (26) Uða;2; yÞ
stands for the confluent hypergeometric function defined by

Uða;2; yÞ ¼
X1
k¼0

ðaÞk
ð2Þk

yk

k!
; ð27Þ
while Wða;2; yÞ stands for the confluent hypergeometric function of
the second kind given by (see Lebedev, 1965)

Wða;2; yÞ ¼ 1
Cða� 1Þ

X1
k¼0

ðaÞk
1þ kð Þ!

yk

k!
wðaþ kÞ � wð1þ kÞ½

(

� wð2þ kÞ þ ln y

#)
þ 1

yCðaÞ : ð28Þ

In (27) and (28) we used Cð�Þ to denote the Euler gamma function,
ðaÞk is the Pochhammer symbol defined in the usual way

ðaÞk ¼ aðaþ 1Þ � � � ðaþ k� 1Þ; k > 0

with ð�Þ0 ¼ 1, and wð�Þ is the logaritmic derivative of the gamma
function i.e. wð�Þ ¼ C0ð�Þ=Cð�Þ. Since a > 0 the functions U a;2; yð Þ
and W a;2; yð Þ are linearly independent. Taking into account (21),
(23) and (26) the general solution of (20) reads

mðtÞ ¼ e
t
j j2 k1 þ k2ð1� tÞ½ � � 1
� �
� C1U a;2;2

j2 k1 þ k2ð1� tÞ½ � � 1
j3k2

� �	

þ C2W a;2;2
j2 k1 þ k2ð1� tÞ½ � � 1

j3k2

� �

: ð29Þ

The solution (29) can also be obtained if this problem is treated as a
special case of the one presented in Polyanin and Zaitsev (2003). By
enforcing the boundary conditions (17) we find that the nontrivial
solutions exist iff

j2 k1 þ k2½ � � 1
� �

j2k1 � 1
� �

U a;2;2
j2 k1 þ k2½ � � 1

j3k2

� �
W

	

� a;2;2
j2k1 � 1

j3k2

� �
�U a;2;2

j2k1 � 1
j3k2

� �
W

� a;2;2
j2 k1 þ k2½ � � 1

j3k2

� �

¼ 0: ð30Þ

Eq. (30) presents the characteristic equation that determines
the critical loads ðk1; k2Þ of the beam having the unit cross-sec-
tional area for given j.

3.2. Numerical solution of eigenvalue problem

Following the observation given in the introduction we now
give the original boundary value problem (16) and (17) a numeri-
cal treatment ab initio. Thus, in order to determine the critical loads
we apply the numerical method directly to (16) and (17) as sug-
gested in Goodman (1965). Namely, given j > 0 and k1 > 0, we
put k ¼

ffiffiffiffiffi
k2
p

, and start with an initial guess for k say k0. Next we
integrate (16), with the initial conditions (17)1 and (19), together
with backward integration of the equation adjoint to (16) with a
variable say m�, which has to be done with the following starting
values

m�ð1Þ ¼ 1; _m�ð1Þ ¼ 0: ð31Þ

The increment of k reads

Dk ¼ mð1ÞR 1
0

2kð1�uÞmðuÞ _m� uð Þdu

1�k1j2�k2j2ð1�uÞ½ �2
: ð32Þ

The procedure is repeated for kþ Dk until the convergence is
achieved, (see Appendix A for details).

4. Optimization problem and its solution

The main goal of this section is to derive governing equations
describing the optimal shape of the beam. In order to do that we
suppose that j and k1; k2ð Þ are given. Then we say the beam has
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the optimal shape if it is so shaped that any other beam of the same
length and smaller volume will buckle under the same load k1; k2ð Þ.
Also, we define a set of admissible cross-sectional area functions U
as a set of continuously differentiable functions on the closed inter-
val ½0;1� satisfying (18). With these definitions we can state an
optimization problem in the following way: given j > 0 and
k�1; k

�
2

� �
find a� tð Þ 2 U such that the integral (12) is minimal and

that the eigenvalue pair k1; k2ð Þ belonging to the lowest interaction
curve of (16) and (17) with aðtÞ ¼ a�ðtÞ equals k�1; k

�
2

� �
. In other

words, we wish to find the distribution of material along the mi-
cro/nano beam so the beam is of minimal volume and stable
against buckling i.e. minaw. We chose to use the Pontryagin max-
imum principle as a mathematical tool for deriving the governing
equations. In order to apply the Pontryagin maximum principle
we introduce the variables

x1 � m; x2 � _m;

so that Eqs. (16) and (17) become

_x1 ¼ x2; _x2 ¼ �
k1 þ k2ð1� tÞ

a2 � j2 k1 þ k2ð1� tÞ½ � x1 ð33Þ

subject to

x1ð0Þ ¼ 0; x1ð1Þ ¼ 0: ð34Þ

We note that the condition (34) leads to unimodal optimization.
With respect to this we introduce the costate variables p1;p2 to
form Hamiltonian H, (the Pontryagin function)

H ¼ aþ p1x2 � p2
k1 þ k2ð1� tÞ

a2 � j2 k1 þ k2ð1� tÞ½ � x1 ð35Þ

and find the optimal distribution of the material a as a solution of
the equation @H=@a ¼ 0, leading to

1þ 2ap2x1 k1 þ k2ð1� tÞ½ �
a2 � j2 k1 þ k2ð1� tÞ½ �f g2 ¼ 0: ð36Þ

The corresponding costate equations and the natural boundary con-
ditions read

_p1 ¼
k1 þ k2ð1� tÞ

a2 � j2 k1 þ k2ð1� tÞ½ � p2; _p2 ¼ �p1 ð37Þ

and

p2ð0Þ ¼ 0; p2ð1Þ ¼ 0: ð38Þ

Comparing (33) and (34) with (37) and (38) we conclude that there
is the connection between the state and costate variables

p1 ¼ x2; p2 ¼ �x1 ð39Þ

reducing the optimality condition (36) to

1� 2a k1 þ k2ð1� tÞ½ �
a2 � j2 k1 þ k2ð1� tÞ½ �f g2 x2

1 ¼ 0: ð40Þ

Eq. (36) can be cast in the form of a depressed quartic equation

a4�2a2j2 k1þ k2ð1� tÞ½ ��2a k1þ k2ð1� tÞ½ �x2
1þj4 k1þ k2ð1� tÞ½ �2 ¼ 0;

ð41Þ
which can be solved by the use of the Lodovico Ferrari method.
Note, that from (35) and (39), by the use of (40) and (18) we
calculate

@2H
@a2 ¼

3a2 þ j2 k1 þ k2ð1� tÞ½ �
a a2 � j2 k1 þ k2ð1� tÞ½ �f g > 0

and conclude that the necessary condition for minimum of H with
respect to a is satisfied. This eliminates the other possible choices of
type (39). Thus, the optimal shape of the beam aðtÞ ¼ a�ðtÞ, follows
as a solution of the boundary value problem given by (33), (34) and
(41).
We make two remarks here. First we note that when j ¼ 0 and
k1 ¼ 0, we recover the optimality condition for the Pflüger beam
posed in the sense of the classical Bernoulli–Euler elastica theory
(see Atanackovic and Simic, 1999). Secondly, the influence of non-
local theory as well as the generalization of the classical elastica
theory shown in Spasic and Glavardanov (2009), lead to a compli-
cated two point boundary value problem since the optimality con-
ditions are given in complex form. Namely, in both cases the posed
boundary value problems require the solution of a cubic or qua-
dratic equation. However, it appears that the explicit form of these
solutions are not suitable for further numerical analysis. As a con-
sequence we use an alternative procedure that avoids to many ‘‘if
then else’’ conditions required in each step of integration of the
two point boundary value problem (33) and (34) with (41) solved
explicitly by Ferrari’s method. Namely, we differentiate the opti-
mality condition (40) and then use (33)1 and (40) in order to obtain
an expression for _a as a function of a and x2. Next the optimality
condition (40) is used to eliminate the state variable x1 from
(33)2. In this way the original optimization problem given by
(33) and (40) is transformed into the following one

_a ¼
�1ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a k1 þ k2ð1� tÞ½ �

p
x2 � k2

2 j2 þ a2

k1þk2ð1�tÞ½ �

h i
3
2 aþ j2

2a k1 þ k2ð1� tÞ½ �
;

_x2 ¼ �1ð Þ k1 þ k2ð1� tÞ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a k1 þ k2ð1� tÞ½ �

p
and further to

_a ¼
2a k1 þ k2ð1� tÞ½ �f g3=2x2 � k2a j2 k1 þ k2ð1� tÞ½ � þ a2

� �
k1 þ k2ð1� tÞ½ � j2 k1 þ k2ð1� tÞ½ � þ 3a2f g ;

_x2 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2ð1� tÞ½ �

2a

r
: ð42Þ

The corresponding boundary conditions now follow from (34) and
(40)

að0Þ ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 þ k2

p
; að1Þ ¼ j

ffiffiffiffiffi
k1

p
: ð43Þ

Note that Eq. (42) corresponds to the case mðtÞ ¼ x1ðtÞ – 0 for
t 2 ð0;1Þ leading to the lowest buckling mode. The boundary value
problem (42) and (43) can easily be solved by shooting method
yielding the optimal distribution of the material along the micro/
nano beam a�ðtÞ.

5. Numerical results

In this section we present numerical results concerned with the
critical load of the uniform micro/nano beam, the optimal shape of
it as well as the postbuckling behavior of both uniform and optimal
micro/nano beam for the same load and small length scale beam
parameter j.

5.1. Critical load

Here we present the critical load of the uniform Pflüger micro/
nano beam that is obtained by a numerical solution of the corre-
sponding linear eigenvalue problem for several values of system
parameters. In particular, we chose several values for parameter
j and then for fixed k1 we find the lowest value of k2 that satisfies
either (30) or was obtained by the iterative procedure given in Sec-
tion 3.2 and Appendix A. In that way we determine the lowest
interaction curves (the curves corresponding to the lowest buck-
ling mode) presented in Fig. 2. As expected the results for the crit-
ical load obtained by numerical solutions of (30) and the numerical
procedure given in Section 3.2 and Appendix A, coincide but the
latter is more tractable. As the matter of fact for j belonging to a



Fig. 2. Interaction curves for several values of the small length scale parameter.
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small neighborhood of zero it was very difficult to solve (30), so the
lowest interaction curve, corresponding to that region was ob-
tained by the numerical method of Goodman.

We make a few comments on the interaction curves in Fig. 2.
First, we analyze the case j ¼ 0 that corresponds to the classical
Bernoulli–Euler beam. It is worth noting that in this case the inter-
action curve agrees very well with the corresponding critical val-
ues presented in Atanackovic (1997), see Table 13.12.1 on p. 185
therein, with differences that are less then 10�3. Next, for the beam
compressed only by a force ( k1 – 0; k2 ¼ 0) the critical load ob-
tained as a solution to (30) for k2 ¼ 0 agrees very well with the
analytical solution k1 ¼ p2= 1þ j2p2

� �
that follows from (20) and

(17) and is in agreement with the previously reported results
(see Sudak, 2003; Wang et al., 2006). Finally we comment on the
Pflüger micro/nano beam described by the Eringen’s model for
constitutive bending curvature relationship (j – 0). In Fig. 2 we
show four interaction curves obtained for j 2 0:1;0:2;0:3;0:4f g.
From the interaction curves presented we conclude that by
increasing the small length scale parameter j the critical load de-
creases. It is also worth noting an interesting property. Namely, fix-
ing k1 (or k2) and increasing j the influence of the change of j on
the change of the critical value k2 (or k1) is described by a non-
monotonic function. This property deserves more investigation.
5.2. Optimal shape

The main goal of this subsection is to analyze the influence of
the micro/nano beam parameter j on the optimal shape and
savings in material along the interaction curve with respect to
(a)

Fig. 3. The optimal shapes of the beam for j ¼ 0:1, k1 ¼ 1
the uniform beam. In order to determine the optimal shape of
the beam the boundary problem given by (42) and (43) was solved
numerically. Once the optimal shape was determined, the volume
of the optimal beam follows from (12). Note that the buckling
mode can also be determined if the system (42) and (43) is solved
along the Eqs. (15)5,6 (14)2,4 and (40).

We mention an important fact. Namely, for j ¼ 0 (the classical
Bernoulli–Euler beam theory) the boundary conditions (43) imply
that the cross-sectional area of the optimal beam will vanish at
both ends of the beam. Physically this is an unwanted property.
For micro/nano beam, i.e., for j > 0 the cross-sectional areas at
the ends of the optimal beam are greater then zero! This means
that the nonlocal constitutive bending curvature relationship reg-
ularizes the optimal solution. We mention that the same effect is
observed in Atanackovic et al. (in press). The boundary conditions
(43) also show that að0Þ > að1Þ for given k1; k2 and j greater then
zero and that the increase in j leads to the increase in the cross
sectional areas at both ends of the optimal beam.

Next we analyze several specific examples, numerically.
Since the main goal of optimization is to reduce the volume,

remaining at the same time the critical loads unchanged, we will
perform all the analysis along the interaction curves corresponding
to the uniform beam (see Fig. 2). In order to comment on the opti-
mal shape of the beam we chose j ¼ 0:1 and two points on the
interaction curve say (k1 ¼ 1; k2 ¼ 15:194), (k1 ¼ 8, k2 ¼ 1:953).
The corresponding optimal shapes for these two points are given
in Fig. 3(a) and (b), respectively. Both shapes satisfy (18). From
Fig. 3. we can conclude that there exists only one local extremum.
We also note that since the point (k1 ¼ 1; k2 ¼ 15:194) is relatively
close to ðk1 ¼ 0; k2 ¼ 18:957Þ, Fig. 3(a) qualitatively presents the
shape of the optimal beams loaded dominantly by the uniformly
distributed follower type of load. In a similar way it follows that
Fig. 3(b) presents the shape of the optimal beam loaded domi-
nantly by a concentrated force.

Next, we analyze the maximal value of the cross-sectional area
amax and its location t� on the beam axis.

From Fig. 4. it follows that for j 2 0:01; 0:1;0:2;0:3f g the increase
in k1 along the interaction curves, 0 < k1 < p2= 1þ j2p2

� �
, causes

the decrease in the maximal value of the cross-sectional area amax.
However, for j ¼ 0:4 the increase in k1 first causes amax to increase
and than to decrease. Note that the changes of amax along all the
interaction curves are relatively small and that these changes
decrease when j increases (see Fig. 4).

Fig. 5 shows that for j 2 0:01;0:1;0:2;0:3;0:4f g, the coordinate
t�, that measures how far the maximal cross-sectional area is from
the left end of the beam, increases if k1 increases along the interac-
tion curves. We note that the higher slopes of t�ðk1Þ along the inter-
action curves correspond to the higher values of j. Also t� never
(b)

, k2 ¼ 15:194, (a) and j ¼ 0:1, k1 ¼ 8, k2 ¼ 1:953 (b).



Fig. 4. The maximal cross-sectional areas along interaction curves.

Fig. 5. The locations of maximal cross-sectional area of the optimal beam along
interaction curves.

Fig. 6. The volume of the optimal beam along interaction curves.

Table 1
Range of savings in material along the interaction
curves.

j Range of savings (%)

0.01 13.37–18.93
0.1 11.22–17.75
0.2 7.96–16.73
0.3 5.47–17.19
0.4 3.82–18.98
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exceeds 0.5 meaning that the maximal cross section of the optimal
Pflüger micro/nano beam remains on the left part of the beam. We
also conclude that the changes of t� along all the interaction curves
are significant and that these changes increase when j increases.

Finally we present the savings in material obtained if the opti-
mal beam is used instead of the uniform one. The volumes of opti-
mal beams are denoted by w and will be given for several values of
j and, as before, with respect to the interaction curves shown in
Fig. 2. The numerical results are presented in Fig. 6.
From Fig. 6 we conclude that for any fixed j 2 0:01;0:1;f
0:2;0:3;0:4g the volumes of the optimal beams along the interac-
tion curves increase. The savings in material are determined by
1�w. Table 1. shows the range of savings in material along the
interaction curves depending on j. From Fig. 6 and Table 1. one
can conclude that the optimal beams loaded dominantly by the
uniformly distributed follower type of load are more efficient than
the optimal beams loaded dominantly by a concentrated force. It is
worth noting that the increase of j increases this effect.

Finally, let us fix the value of k1 and allow the parameters j and
k2 to vary. Then from Fig. 6 it follows that the increase in j leads to
the decrease in savings if k1 does not belong to a neighborhood of
zero.

5.3. Postbuckling behavior

In this subsection we analyze the postbuckling behavior of the
uniform and the optimal beam for the same load and beam param-
eter j. In order to do so let ðk�1; k

�
2Þ be a point on the interaction

curve corresponding to given j (see Fig. 2) and a�ðtÞ be the
cross-sectional area of optimal beam corresponding to ðk1; k2Þ ¼
ðk�1; k

�
2Þ. If we chose k1 to be a bifurcation parameter and introduce

the load increment Dk1 just to pass the stability boundary, the
postbuckling behavior of both uniform and optimal beam is deter-
mined as a nontrivial solution of the nonlinear problem (13) and
(14) with (k1; k2Þ ¼ ðk�1 þ Dk1; k2Þ for aðtÞ ¼ 1 and aðtÞ ¼ a�ðtÞ,
respectively.

In order to perform numerical calculations we set j ¼ 0:1,
Dk1 ¼ 0:05 and select two points (k�1 ¼ 1; k�2 ¼ 15:194), (k�1 ¼
8; k�2 ¼ 1:953) on the interaction curve. The corresponding
postbuckling shapes are given in Fig. 7.

From the curves presented in Fig. 7 we conclude that for the
same load and small length scale beam parameter, the maximal
displacement in the lateral direction of the uniform beam is greater
then the one corresponding to the optimal beam, while the latter is
of smaller volume. Namely, the volume of the optimal beam for
j ¼ 0:1; k�1 ¼ 1; k�2 ¼ 15:194, shown in Fig. 3a, reads wmin ¼
w� ¼ 0:838. If one introduces the uniform beam of the same vol-
ume as the optimal one and put aðtÞ ¼ asv ¼ 0:838 in the linearized
problem (16) and (17) for j ¼ 0:1 and k�1 ¼ 1 one obtains the
critical load k�2 ¼ 10:125. Then one can conclude that while the
optimal beam of the volume wmin buckles at (k1; k2Þ ¼ ð1;15:194Þ,
for the same load the uniform beam of the same volume as the
optimal one will be very far in the postcritical region.

Referring to Fig. 7 again, one can observe that the maximal lat-
eral displacement of the optimal beam is obtained on the right part
of the beam. This is quite expectable if we recall the shape of the
optimal beam (see Fig. 3).

At the end we comment on the fact that the postbuckling
shapes are obtained for Dk1 > 0. This suggests that the supercritical
bifurcation occurs for both optimal and uniform beam. Moreover,
calculations show that along the whole interaction curve for
j ¼ 0:1 only supercritical bifurcation occurs. We note that the sim-
ilar results could be obtained if we chose k2 as a bifurcation
parameter.



(a) (b)

Fig. 7. The postbuckling shapes of the uniform (dashed line) and optimal beam for j ¼ 0:1; k1 ¼ 1, k2 ¼ 15:194, (a) and j ¼ 0:1; k1 ¼ 8, k2 ¼ 1:953 (b).
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6. Conclusion

In this paper we treated a micro/nano beam pinned at both ends
and loaded by a concentrated compressive force and the uniformly
distributed follower type of load. For the constitutive equation,
that take into account nano effects, Eringen’s model for bending
curvature relationship is used. The main results of this paper are:

1. The system of six nonlinear first order ordinary differential
equations (13) and (14) describing the deformations of the
micro/nano beam with a variable cross-section is derived.

2. By linearizing the system (13) and (14) we obtained the system
(16) and (17) that determines the stability boundary of the
micro/nano beam with a variable cross-section. As a special
case we derived the characteristic equation (30) that deter-
mines the stability boundary of the uniform beam in closed
form. We believe that this result is new. Along with that we
used a known and suitable numerical method for obtaining
the stability boundary directly from the system (17) and (20).

3. By using the characteristic equation (30) and numerical method
presented in Appendix A we determined the interaction curves
for several values of a small length scale parameter. The results
are presented in Fig. 2 showing that the increase in the small
length scale parameter decreases the critical load.

4. We used the Pontryagin maximum principle to derive necessary
conditions for optimality and the corresponding governing
equations (42) and (43) that are suitable for numerical treat-
ment and make the problem of finding the optimal shape of
the nano beam more tractable.

5. By solving the governing equations (42) and (43) numerically
we determined the characteristic optimal shapes of the Pflüger
micro/nanobeam for two different sets of load and beam
parameters (see Fig. 3). We also determined the volume of the
optimal beam along the interaction curves corresponding to dif-
ferent values of the small scale length parameter j. The results
presented in Fig. 6 show that the savings in material along the
interaction curves decrease as k1 increases. This means that the
optimal beams loaded dominantly by a uniformly distributed
follower type of load are more efficient than the optimal beams
loaded dominantly by a concentrated force. We note that the
increase of j increases this effect.

6. We determined the postcritical shape of the optimal and uni-
form beam. The results show that the larger deflection occurs
in the case of the uniform beam (see Fig. 7). Also, the numerical
results for j ¼ 0:1 suggest that supercritical bifurcation occurs
along the interaction curve for both uniform and optimal beam.

7. Our results show that for j 2 0:01;0:1;0:2;0:3;0:4f g the sav-
ings in material obtained by using the optimal shape of the
beam are varying from 3:82% to 18:98% (see Table 1).
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Appendix A. Numerical solution of eigenvalue problem (16) and
(17).

We start with (16), by rewriting it in the form (33) with a ¼ 1
and introduced k2 ¼ k2. We assume the initial data (34)1 and from
(19), x2ð0Þ ¼ 1. It is also assumed k ¼ k�. Now, Eq. (33) can be inte-
grated as an initial value problem, and the solution denoted by
x�i ðtÞ; i ¼ 1;2ð Þ. In general it will be found that the computed value
x�1ð1Þ differs from zero, representing the condition (34)2. To obtain
the correct solution the value of x�1ð1Þ must be made as small as
possible. By defining dxi tð Þ ¼ xi tð Þ � x�i tð Þ and dk ¼ k� k� and than
substituting it into (33) there results to a first approximation

d _x1 ¼ dx2; d _x2 ¼ �
k1 þ k�2ð1� tÞ

1� j2 k1 þ k�2ð1� tÞ
 � dx1

� 2k�ð1� tÞx1

1� j2 k1 þ k�2ð1� tÞ
 �� �2 dk:

These are the equations of differential corrections. The equations
adjoint to them read

� _z1 ¼ �
k1 þ k�2ð1� tÞ

1� j2 k1 þ k�2ð1� tÞ
 � z2; � _z2 ¼ z1;

which are to be solved only once by backward integration subject to
the initial conditions z1ð1Þ ¼ 1; z2ð1Þ ¼ 0. According to Goodman
(1965) the relation between dxi’s and zi’s reads

�x�1ð1Þ ¼ �dk
Z 1

0

2k�ð1� tÞx�1z2dt

1� j2 k1 þ k�2ð1� tÞ
 �� �2 :

Substituting the numerical solutions of the initial value problems
into this equation and solving it for dk the improved values of k
are obtained. The suggested procedure for the Pflüger micro/nano
beam was implemented on PC. The integral in (32), was calculated
numerically while two initial value problems were solved by the
use of standard Runge Kutta integrator with fixed step size. Note
that only a few steps are necessary. For the illustration we show
the sequence for k ¼

ffiffiffiffiffi
k2
p

, for the values j ¼ 0:05, k1 ¼ 9 starting
from k0 ¼ 1. It reads k1 ¼ 1:129; k2 ¼ 1:122; k3 ¼ 1:122. More on
this quite efficient successive iterations method that is truly
equivalent to Newton’s method can be found in the cited paper of
Goodman (1965).
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