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ABSTRACT Brush-border membrane vesicles and an osmotic swelling assay have been used extensively to monitor the
pore-forming activity of Bacillus thuringiensis toxins. After a hypertonic shock, Manduca sexta midgut brush-border membrane
vesicles shrink rapidly and reswell partially to a volume that depends on membrane permeability and toxin concentration rather
than regaining their original volume as expected from theoretical models. Because efflux of buffer from the vesicles, as they
shrink, could contribute to this phenomenon, vesicles were mixed with a hypertonic solution of the buffer with which they were
loaded. Under these conditions, they are not expected to reswell, since the same solute is present on both sides of the
membrane. Nevertheless, with several buffers, vesicles reswelled readily, an observation that demonstrates the involvement of
an additional restoration force. Reswelling also occurred when, in the absence of toxin, the buffers were replaced by glucose, a
solute that diffuses readily across the membrane, but did not occur with rat liver microsomes, despite their permeability to
glucose. Unexpected swelling was also observed with rabbit jejunum brush-border membrane vesicles, suggesting that the
cytoskeleton, present in brush-border membrane vesicles but absent from microsomes, could be responsible for the restoration
force.

INTRODUCTION

An osmotic swelling assay based on light-scattering mea-

surements is a convenient technique for monitoring contin-

uously the flux of ions or neutral molecules across the

membrane of cells or vesicles (1,2). It is usually assumed

that, after a hypertonic shock and the resulting initial shrink-

ing, the swelling of the cells or vesicles is due to the entry of

water accompanying solute influx driven by the chemical

gradient across the membrane (1,2). It has also been sug-

gested that the vesicles could have some restoration forces

originating from the elasticity of the membrane and the

Donnan effect (1,3), and from the buildup of an internal

hydrostatic pressure as the vesicles shrink (4). The light-

scattering assay has proven very useful to monitor the pore-

forming activity of Bacillus thuringiensis insecticidal toxins
in lepidopteran midgut brush-border membrane vesicles (2).

Once activated by insect midgut proteases, B. thuringiensis
Cry toxins bind to specific receptors at the surface of midgut

epithelial cells and form lethal transmembrane channels (5).

The pores formed by these toxins allow the passage of mono-

valent and divalent anions and cations and relatively large

solutes such as sucrose, raffinose, and polyethylene glycols

(2,6–11). In receptor-free planar lipid bilayers, the Cry1Ca

toxin at high concentrations forms clusters composed of a

variable number of similar channels each having a maximal

pore radius of 1.0–1.3 nm (12). The osmotic swelling assay

has been used extensively to study the effect of specific

mutations (7,10,11,13,14), differential effects of pH (8,15)

and ionic strength (15), and the influence of protease inhib-

itors (16) on the pore-forming properties of the toxins, and to

investigate the ionic selectivity of their pores (9).

Despite extensive use of this technique, the kinetics of

volume recovery of the vesicles are still not completely un-

derstood. After an osmotic shock, in the presence of toxin,

vesicles do not reswell to their original volume but reach a

constant volume that depends on membrane permeability

and toxin concentration. To further characterize the osmotic

properties of the vesicles, a series of experiments was per-

formed withManduca sexta midgut brush-border membrane

vesicles. Membrane permeability was varied by the addition

of the B. thuringiensis toxin Cry1Ac or the potassium ion-

ophore valinomycin. The experimental results were com-

pared with those predicted by a mathematical model based

on Fick’s law of diffusion. Vesicle volume changes due to

osmosis are described by Jacobs’ equations (1,17,18) for

vesicles loaded with an impermeant solute and mixed with

both a permeant and an impermeant solute. However, since

the pores formed by the toxin are relatively large and non-

selective, Jacobs’ model was modified to simulate volume

changes resulting from the diffusion of two solutes: the

buffer with which the vesicles are loaded and the solute used

to impose the osmotic shock. Our results demonstrate that, in

addition to the chemical gradient across the membrane, a

mechanical restoration force contributes to vesicle reswell-

ing. This restoration force is also present in rabbit brush-

border membrane vesicles, but not in rat liver microsomes.
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MATERIALS AND METHODS

Preparation of membrane vesicles

Fertilized M. sexta eggs were purchased from the North Carolina State

University Entomology Department insectary (Raleigh, NC) and reared on a

standard synthetic medium supplied with the insects. Whole midguts were

isolated from fifth-instar larvae, freed of attached Malpighian tubules and

luminal contents, and rinsed thoroughly with ice-cold 300 mM sucrose,

17 mM Tris-HCl, pH 7.5, and 5 mM EGTA. Brush-border membrane vesi-

cles were prepared with a magnesium precipitation and differential centri-

fugation technique (19). The final membrane preparation was resuspended in

10 mM Hepes-KOH, pH 7.5, and stored at �80�C until use.

Rat liver microsomes were prepared with the method of van de Werve

(20), with some modifications. Livers from overnight-fasted maleWistar rats

(225–250 g) (Charles River, Saint-Constant, Quebec, Canada) were re-

moved, perfused with ice-cold 0.9% (w/v) NaCl and homogenized on ice in

4 ml/g of tissue of 250 mM sucrose, 50 mMHepes-Tris, pH 7.3, in a Waring

blender for 30 s at full speed. The homogenate was then passed 10 times in a

Potter homogenizer and centrifuged for 10 min at 1000 3 g. The resulting

supernatant was spun at 12,000 3 g for 20 min and the second supernatant

was centrifuged at 100,000 3 g for 60 min. The pellet was resuspended in

10 mM Hepes-Tris, pH 7.3, centrifuged at 100,000 3 g for 60 min, re-

suspended in the same solution, and stored in liquid nitrogen until use.

The proximal small intestines of male New Zealand white rabbits (1.7–

2 kg) (Charles River) were removed and flushed with ice-cold 0.9% (w/v)

NaCl. Jejunal brush-border membrane vesicles were prepared with a

magnesium precipitation and differential centrifugation technique (21,22).

The final membrane preparation was resuspended in 10 mM Hepes-Tris,

pH 7.3, and stored in liquid nitrogen until use.

Toxin

The Cry1Ac protoxin was produced from B. thuringiensis strain HD73,

solubilized, trypsin-activated, and purified by fast protein liquid chroma-

tography, as described earlier (23,24).

Light-scattering assay

Membrane permeability was analyzed using an osmotic swelling technique

based on light-scattering measurements (1,2). In preparation for the experi-

ments,M. sexta vesicles were diluted with the appropriate buffer to;90% of

the desired final volume and allowed to equilibrate overnight at 4�C. Before
the beginning of the experiments, they were diluted to 0.4 mg of membrane

protein/ml and with enough bovine serum albumin to achieve a final con-

centration of 1 mg/ml. Rabbit vesicles and rat microsomes were diluted

directly to 0.4 mg of membrane protein/ml without bovine serum albumin.

Rabbit vesicles were allowed to equilibrate overnight at 4�C and micro-

somes were allowed to equilibrate for at least 60 min at 4�C. In some

experiments, for comparison with rabbit vesicles and microsomes, M. sexta
vesicles were diluted directly to 100% of the desired volume without bovine

serum albumin. Vesicles and microsomes were warmed up to 23�C and

rapidly mixed with an equal volume of a hypertonic solution using a

stopped-flow apparatus (Hi-Tech Scientific, Salisbury, UK). WhenM. sexta
vesicles were permeabilized with the B. thuringiensis toxin, the vesicles

were first incubated with the indicated concentration of toxin for 60 min at

23�C and then submitted to the hypertonic shock. In some experiments,

while the vesicles were warming up, the indicated concentrations of

valinomycin (Sigma, St. Louis, MO) were added, from a stock solution of

5 mM in ethanol, to both the vesicle suspension and the KSCN solution used

for imposing the hypertonic shock. Scattered light intensity was monitored

with a photomultiplier tube located at 90� from the incident light beam in a

Spex Fluorolog CM-3 spetrofluorometer (Jobin Yvon Horiba, Edison, NJ) at

a wavelength of 450 nm and a frequency of 10 Hz for most experiments or

400 Hz for the study of the water permeability of the vesicles. In some

experiments, designed to study the influence of the refractive index of the

solutions on scattered light intensity, vesicles were replaced by a 0.004%

(v/v) suspension of polystyrene latex beads (diameter 105 nm) (Sigma). The

refractive index of the solutions was measured with a Reichert AR 200

refractometer (Reichert Analytical Instruments, Depew, NY).

Data analysis

Scattered light intensity measurements were normalized as follows: the

value of 0 was attributed to the intensity measured when the vesicles were

diluted with the same solution as that with which they were loaded and the

value of 1 was attributed, unless specified otherwise in the figure legends, to

the highest intensity measured for a particular set of experiments. Percent

volume recovery was defined as 100(1� It), where It is the relative scattered

light intensity measured at a given time t. Data are mean6 SE of the mean of

at least three experiments, each performed with a different vesicle prep-

aration. Experimental values for each individual experiment consist of the

average of five replicates obtained using the same vesicle preparation. For

the study of the water permeability of the vesicles, experimental curves were

fitted with the following single exponential function (25) to find the half

shrinking time (t1/2) of the vesicles:

I ¼ IMaxð1� expð�ktÞÞ; (1)

where I is the relative scattered light intensity at time t, IMax is the maximum

relative scattered light intensity reached and k is a rate constant (k ¼ ln(2)/t1/2).

Statistical comparisons were made with the two-tailed unpaired Student’s t-test.

Osmotic swelling simulations

The differential equations developed to describe variations in the volume of

the vesicles were solved using a Runge-Kutta algorithm, programmed in

Fortran 77 and compiled on a Unix platform. For the purpose of the simu-

lations, vesicles are considered as spheres initially having a diameter of

100 nm, a size that is within the range of those measured for mammalian

brush-border membrane vesicles (see, e.g., van Heeswijk and van Os (25))

and a good approximation of those estimated from electron micrographs of

lepidopteran midgut brush-border membrane vesicles (see, e.g., Wolf-

ersberger et al. (19)). The water permeability (PW) was set at 93 10�13 cm3/s,

a value that allows the vesicles to shrink completely in ;0.2–0.3 s, corre-

sponding to the shrinking time of M. sexta brush-border membrane vesicles

in our standard osmotic swelling assay used to monitor B. thuringiensis
toxin activity (8,9). Since the permeabilities to the solutes were adjusted so

that the rates of vesicle volume changes corresponded approximately to

those observed in the in vitro assay, simulations using somewhat smaller or

larger vesicles would yield similar results. For simplicity, the molar volume

of the solutes (vA and vB) were set equal to that of water (vW) (18 cm
3/mole).

In these simulations, the volume occupied by the solutes is very small in

comparison with that occupied by water. The volume of the vesicles (V) was
calculated for each value of time and converted to relative volume. In each

set of simulations, the value of 0 was attributed to the smallest volume

reached and the value of 1 was attributed to the initial volume of the vesicles.

Simulations are presented as 1 minus the relative volume to facilitate com-

parisons with the data derived from light-scattering experiments.

RESULTS AND DISCUSSION

Membrane permeability induced by the
B. thuringiensis toxin Cry1Ac

M. sexta midgut brush-border membrane vesicles loaded

with 10 mM Hepes-KOH, pH 7.5, were incubated for 60 min

with Cry1Ac and submitted to a hypertonic shock by mixing

them with an equal volume of the same buffer supplemented

with 150 mM KCl or 300 mM sucrose (Fig. 1). Due to the
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osmotic shock, water exited from the vesicles and their

volume decreased rapidly, as evidenced by a sharp rise in

scattered light intensity. Then, vesicles reswelled and subse-

quently recovered some of their original volume. As was

observed in previous studies on B. thuringiensis toxins

(2,7–11,15,16), vesicles reswelled partially to a volume that

depended on membrane permeability rather than regaining

their original volume. The rate and magnitude of vesicle swell-

ing, which depend on the permeability of the membrane to

the solute, increased, as expected, with toxin concentration.

Vesicles reswelled faster with KCl than with sucrose, in

agreement with previous studies (2,8).

Relation between vesicle volume
and scattered light intensity

M. sexta vesicles loaded with 1, 10, or 100 mMHepes-KOH,

pH 7.5, were rapidly mixed with an equal volume of solu-

tions containing various concentrations of KCl (Fig. 2). The

volume of the vesicles decreased as indicated by a rise in

scattered light intensity when the ratio between the osmo-

larities inside and outside the vesicles was,1. In the standard

assay used to test the activity of B. thuringiensis toxins (Fig. 1),
the initial ratio between the osmolarities inside and outside

the vesicles is ;0.09. Therefore, in Fig. 2, to facilitate com-

parisons with the results obtained with the standard assay,

scattered light intensities were normalized with those mea-

sured for this ratio. Since the relation between scattered light

intensity and the ratio between the osmolarity inside and

outside the vesicles was not always linear, the vesicles did not

appear to shrink as expected for ideal osmometers and

predicted by the Boyle-Van’t Hoff relation (26). The relation

tended to become somewhat more linear when the osmolar-

ity of the buffer solution with which the vesicles were loaded

was increased from 1.5 (Fig. 2 A) to 15 mOsm/l (Fig. 2 B), as
in the standard assay, or 150 mOsm/l (Fig. 2 C). In the ex-

periments illustrated in Fig. 2, A and B, the vesicle volume

never seemed to reach a minimum even for the smallest

ratios tested.

Variations in scattered light intensity are influenced by the

refractive index of the surrounding medium (27,28). To test

how the variation in refractive index of the KCl solutions

influenced the scattered light intensity measurements shown

in Fig. 2, the vesicles were replaced by a suspension of

nonosmotically sensitive polystyrene latex beads. Since salt-

induced aggregation of latex beads has been reported (29),

the KCl solutions were replaced by solutions of sucrose

having the same refractive index. No significant change in

scattered light intensity attributable to changes in the refrac-

tive index of the solutions was observed under the conditions

used for the experiment illustrated in Fig. 2 A. Changes in the
refractive index accounted for 0.09 6 0.01 and 0.17 6 0.03

relative scattered light intensity units, between the smallest

and highest osmolarity ratios, in Fig. 2, B and C, respec-
tively, and for ,0.05 units between the osmolarity ratios of

0.09 and 1, in both experiments. Even if changes in refractive

index slightly influenced the scattered light intensities, these

changes were too small, in comparison with those due to

changes in volume, to explain the shape of the curves pre-

sented in Fig. 2 or the differences observed between the

curves depicted in Fig. 2, A–C.
A possible nonlinear relation between the volume of the

vesicles and scattered light intensity, potential structural limi-

tations of the membrane, or a nonnegligible permeability of

the membrane to KCl and to Hepes-KOH could possibly

contribute to the fact that, in Fig. 2, the volume of the vesi-

cles does not appear to vary as expected for an ideal

osmometer. A nonlinear relation between scattered light

intensity and imposed osmotic gradient has already been

reported for M. sexta midgut vesicles loaded with 10 mM

Ches-KOH and submitted to various hypertonic solutions of

KCl (6). However, this result contrasts with those of other

studies that report a quasilinear relation for hog gastric

FIGURE 1 Permeability of the pores formed by Cry1Ac to KCl and to

sucrose inM. sextamidgut brush-border membrane vesicles.M. sexta brush-

border membrane vesicles equilibrated overnight in 10 mMHepes-KOH, pH

7.5, were incubated for 60 min with the indicated concentrations of Cry1Ac

(in pmol toxin/mg membrane protein). They were then mixed with an equal

volume of the same solution as that with which they were loaded (Hepes-

KOH) or with 10 mMHepes-KOH, pH 7.5, and (A) 150 mM KCl or (B) 300

mM sucrose. All solutions contained 1 mg/ml bovine serum albumin. For

clarity, error bars are shown for every 25th experimental point.
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vesicles (30), rabbit renal brush-border membrane vesicles

(31), and rabbit renal basolateral membrane vesicles (32).

Worman and Field (33) reported a deviation from linearity

when rat small intestine brush-border membrane vesicles were

submitted to large osmotic gradients. In these studies, vesi-

cles were loaded with solutions having an osmolarity com-

parable (102 mOsm/l) (33) or superior (from 265 to 320

mOsm/l) (30–32) to that of the solutions used to load the

vesicles in the experiments illustrated in Fig. 2. They were

also submitted to a smaller range of osmolarity ratios, thus

avoiding the region where the ratio between the osmolarity

inside and outside the vesicles is ,0.2, in which the curve

shown in Fig. 2 C deviates most from linearity. A quasilinear

relation was also observed for rabbit skeletal muscle sarco-

plasmic reticulum vesicles over a range of osmolarity ratios

similar to that shown in Fig. 2 C (34), but these experiments

are difficult to compare with those illustrated in Fig. 2, since,

in contrast to our experimental design, the osmolarity inside

the vesicles was varied and the osmolarity outside the vesi-

cles was kept constant.

In the standard assay (Fig. 1), the relative scattered light

intensity varies between 1, at the apex of the control curves

recorded without toxin, and 0.2–0.4, 60 s after the osmotic

shock at saturating toxin concentrations. Within this range,

the calibration curve is reasonably linear (Fig. 2 B). At sat-
urating toxin concentrations, scattered light intensities never

returned to the value measured in the absence of an osmotic

shock. According to experiments performed with latex beads,

this cannot be due to changes in the refractive index between

the Hepes-KOH and the KCl solutions. Furthermore, this

cannot be explained by a direct effect of the toxin on

scattered light intensity since no change in this parameter

was observed in the absence of an osmotic shock when vesi-

cles incubated with toxin were mixed with the solution with

which they were loaded (2). The observation that the vesicles

never appear to regain their initial volume may suggest

that the vesicle preparations could be contaminated with

membranes other than the brush-border membrane, such as

the basolateral membrane, in which the toxin is unable to

form pores (35,36). To test this hypothesis, experiments

similar to those illustrated in Fig. 1 were performed with

vesicles loaded with Hepes-KOH and exposed to a hyper-

tonic solution of KSCN in the presence of various concen-

trations of valinomycin (Fig. 3). Vesicles reswelled at a rate

that depended on valinomycin concentration. At low valino-

mycin concentrations, the rate of vesicle swelling is limited

by the valinomycin-induced membrane permeability to

potassium ions, whereas at high concentrations, the rate of

vesicle swelling is limited by the finite membrane permea-

bility to thiocyanate ions. Results obtained with valinomycin

(Fig. 3) are similar to those obtained with the toxin (Fig. 1)

and, even at high valinomycin concentrations, vesicles never

regained their initial volume. This had already been observed

withM. sexta vesicles (2) and with rabbit sarcoplasmic retic-

ulum vesicles (34). Thus, the presence of other membranes

FIGURE 2 Relation between scattered light intensity and volume of

M. sexta vesicles. Vesicles incubated overnight in (A) 1, (B) 10, or (C)

100 mM Hepes-KOH, pH 7.5, were submitted to a hypertonic shock by

mixing them rapidly with an equal volume of a solution containing the buffer

with which they were loaded and enough KCl to reach the indicated

osmolarity ratios. All solutions contained 1 mg/ml bovine serum albumin.

The maximum scattered light intensity measured for each ratio was

converted into relative scattered light intensity. The value of 0 was attributed

to the intensity measured when the vesicles were diluted with the same

solution as that with which they were loaded and the value of 1 was

attributed to that reached when the osmolarity ratio was equal to 0.09.
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cannot explain why, in Fig. 1, scattered light intensities never

returned to their initial values even at saturating toxin

concentrations.

Simulation of volume changes

A model based on Fick’s law of diffusion, similar to that

proposed by Jacobs (17), was developed to analyze the

theoretical effect of various factors on vesicle swelling. To

simulate changes in the volume of vesicles having a per-

meability not only to one but to two solutes, a third dif-

ferential equation was added to those of Jacobs (17). The

theoretical vesicles contain XA moles of solute A, XB moles

of solute B, and XW moles of water and have the per-

meabilities across the membrane (in cm3/s) PA, PB, and PW

for solutes A and B and water, respectively. At time 0, the

vesicles are mixed with A and B at the osmolarities CA and

CB. It is assumed that both osmolarities do not change over

time. The following equations describe the variation in the

number of moles of A, B, and water inside the vesicles over

time t:

dXA

dt
¼ PA CA � XA

V

� �
(2)

dXB

dt
¼ PB CB � XB

V

� �
(3)

dXw

dt
¼ PW

XA 1XB

V
� ðCA 1CBÞ

� �
: (4)

The volume V of the vesicles can be calculated for each

value of t with the following equation:

VðtÞ ¼ vAXAðtÞ1 vBXBðtÞ1 vWXWðtÞ; (5)

where vA, vB, and vW are the molar volumes of A, B, and

water, respectively. In Jacobs’ equations, the permeabilities

are given in cm/s and multiplied by the area of the mem-

brane. In our model, it is assumed that the area of the

membrane does not change over time and the permeabilities

are expressed directly in cm3/s. Jacobs’ equations were modi-

fied earlier by Johnson andWilson (37) to include Staverman’s

reflection coefficient, which is based on irreversible thermo-

dynamics (18,38). This coefficient must be taken into ac-

count when experimental data are fitted with a theoretical

model to determine the permeabilities of the membrane.

However, since only qualitative comparisons between the

experimental data and simulated experiments are presented

in this study, the reflection coefficient was neglected.

Equations 2–4 were solved for various permeabilities PA

and PB, as described under Materials and Methods (Fig. 4).

According to the simulations, if the membrane is only per-

meable to the solute used to impose the osmotic shock, the

vesicles should reswell to their initial volume at a rate that

depends on the permeability of the membrane for this solute

(Fig. 4 A). On the other hand, if the membrane is also

FIGURE 3 Permeability ofM. sexta vesicles to KSCN in the presence of

various concentrations of valinomycin. Vesicles equilibrated in 10 mM

Hepes-KOH, pH 7.5, were mixed with an equal volume of the same so-

lution as that with which they were loaded (Hepes-KOH) or with 150 mM

KSCN and 10 mM Hepes-KOH, pH 7.5. The indicated concentration of

valinomycin was added to both the vesicle suspension and the solution

used to impose the hypertonic shock. All solutions contained 1 mg/ml

bovine serum albumin. For clarity, error bars are shown for every 50th

experimental point.

FIGURE 4 Variations in the volume of the vesicles predicted by the

mathematical model. The simulated vesicles are spheres having a diameter

of 100 nm and containing 15 mOsm/l of solute A dissolved in water. At time

0, the vesicles are mixed instantaneously with a solution containing 15

mOsm/l of solute A and 150 mOsm/l of solute B. Membrane permeabilities

to the different solutes were: (A) 0 or (B) 0.1 3 PB for solute A and the

indicated permeabilities (PB) for solute B (in cm3/s).
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permeable to the buffer with which the vesicles are loaded,

they are predicted to regain only a fraction of their original

volume depending on membrane permeability (Fig. 4 B).
Efflux of buffer during the shrinking phase of the experiment

could therefore tentatively explain why, in the osmotic

swelling assay, the vesicles reswelled only partially, even at

saturating toxin concentrations (Fig. 1).

In this model, PW was kept constant when the permea-

bility to the solute was varied. However, since the pores

formed by the toxin allow the diffusion of relatively large

solutes, they are also expected to be permeable to water.

Previous studies have reported an effect of Cry toxins on

water permeability based on experiments in which the rate of

vesicle shrinkage after an osmotic shock of KCl (39,40) or

sucrose (2) increased as a function of toxin concentration. To

test whether it was appropriate to use a constant PW in the

simulations, we first searched for a salt that is unable to dif-

fuse through the pores formed by the toxin. An impermeable

solute can be found based on the cationic selectivity of the

pores (9,41–46) and the fact that osmotic swelling caused by

a dissociated salt depends on the influx of both ion species

and is limited by the rate of diffusion of the least permeable

ion (2,8). Indeed, in agreement with the anion being the

rate limiting species, amino acids bearing a net negative

charge diffuse more slowly through the pores formed by

B. thuringiensis toxins than neutral or positively charged

amino acids (9). Also, slower diffusion rates were observed for

the potassium salts of divalent anions than for the chloride

salts of divalent cations (9). Consequently, at pH 7.5, the

permeability to a solute composed of a trivalent anion, such

as Tris-citrate, is expected to be very low. This hypothesis

was confirmed with experiments performed with M. sexta
vesicles loaded with 10 mM Hepes-KOH, pH 7.5, incubated

for 60 min with various concentrations of Cry1Ac and mixed

with a solution composed of 150 mM Tris-citrate and 10 mM

Hepes-KOH, pH 7.5 (Fig. 5 A). In the absence of toxin, the

membrane has a small permeability to Tris-citrate. Increasing

toxin concentration caused the vesicles to shrink to a smaller

volume rather than increasing the rate at and extent to which

they reswelled. This observation probably results from the

inability of Tris-citrate to diffuse across the pores formed by

the toxin and from a nonnegligible permeability of these pores

to Hepes-KOH that overcomes the endogenous permeability

of the membrane to Tris-citrate. Thus, Hepes-KOH could leak

out of the vesicles in response to its increased concentration

after vesicle shrinking. Such a permeability to Hepes-KOH is

not apparent in Fig. 1, probably because the pores are more

permeable to KCl and sucrose than to Hepes-KOH.

To test the water permeability of the pores, vesicles were

therefore loaded with 10 mM Tris-citrate, pH 7.5, incubated

with various concentrations of Cry1Ac, and submitted to a

hypertonic solution of 150 mM Tris-citrate (Fig. 5 B). The
curves were then fitted with Eq. 1. The half shrinking times

(t1/2) of the vesicles calculated in the presence of 0, 5, 15, 50,
100, and 150 pmol of toxin/mg membrane protein were

equal to 496 2, 466 1, 456 3, 416 1, 416 2, and 406 2

3 10�3 s, respectively. Only t1/2 values calculated for 50,

100, and 150 pmol of toxin/mg membrane protein were

significantly different (p , 0.05) from the value obtained

without toxin. The rates of vesicle shrinking induced by Tris-

citrate and calculated from the initial slopes of the curves

shown in Fig. 5 B were not significantly different from each

other (p. 0.05). Since the toxin did not change substantially

the already large water permeability of the membrane, it

appears justified to use a constant water permeability, as a

reasonable approximation, in the simulations presented in

Fig. 4.

Effect of the buffer permeability of the pores
formed by Cry1Ac on vesicle swelling

Since valinomycin is very selective for potassium ions,

no efflux of buffer is expected through this ionophore. In

FIGURE 5 Permeability of the pores formed by Cry1Ac to Tris-citrate and

to water.M. sexta vesicles equilibrated overnight in (A) 10 mMHepes-KOH or

(B) 10 mM Tris-citrate, pH 7.5, were incubated for 60 min with the indicated

concentrations of Cry1Ac (in pmol toxin/mg membrane protein). They were

then mixed with an equal volume of the same solution as that with which they

were loaded (Hepes-KOH or Tris-citrate), or with (A) 150 mM Tris-citrate and

10 mMHepes-KOH, pH 7.5, or (B) 150 mM Tris-citrate, pH 7.5. The value 0

was attributed to the scattered light intensity measured when the vesicles were

diluted with the same solution as that with which they were loaded and the

value 1 was attributed (A) to the maximum intensity reached without toxin or

(B) to the mean intensity reached between 0.5 and 1 s. For clarity, error bars are

shown for every (A) 25th or (B) 10th experimental point.
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contrast with the prediction of the model (Fig. 4 A), the
results obtained with valinomycin (Fig. 3) were similar to

those obtained with the toxin (Fig. 1). As another means

of testing the hypothesis that efflux of buffer during the

shrinking phase of the experiment could explain why the

vesicles reswelled to a volume that depended on toxin con-

centration, experiments similar to those illustrated in Fig. 1

were performed with vesicles loaded with 10 mM Tris-

citrate, pH 7.5, and mixed with 150 mM KCl and 10 mM

Tris-citrate, pH 7.5 (Fig. 6). To summarize a large number of

similar experiments and to facilitate their comparison, data

are presented as percent volume recovery values measured

after 30 s. Replacing Hepes-KOH by Tris-citrate did not

change significantly the rate and extent of vesicle swelling in

the presence of KCl. Therefore, efflux of buffer during the

shrinking phase of the experiment cannot explain why the

vesicles reswell only partially since this is also observed

when buffer efflux is prevented by replacing the toxin by

valinomycin and in the presence of an impermeable buffer,

Tris-citrate. A possible explanation may be that the large

extent of shrinking may alter the mechanical integrity of the

vesicles and prevent them from completely resuming their

original volume over the time course of the experiments.

Reswelling in the presence of the same solute
inside and outside the vesicles

Vesicles are not expected to reswell when they are mixed

with a hypertonic solution of the buffer with which they are

loaded since they should only shrink until the buffer con-

centration becomes equal on both sides of the membrane.

Because solute influx can occur as the vesicles shrink,

however, the model predicts that the vesicles will only shrink

to a volume that depends on the permeability of the mem-

brane to the solute (Fig. 7 A). However, when incubated with
Cry1Ac, vesicles loaded with 10 mM Hepes-KOH, pH 7.5,

reswelled readily after having been mixed with 150 mM

Hepes-KOH, pH 7.5 (Fig. 7 B). This result suggests the

involvement of an additional restoration force that allows the

vesicles to reswell when they are mixed with a hypertonic

solution of the buffer with which they are loaded. Further-

more, in contrast with the simulations (Fig. 7 A), even at

saturating toxin concentrations, the actual vesicles shrank

to a volume close to that attained in the absence of toxin

(Fig. 7 B). This indicates that the toxin can only permeabilize

the membrane to a certain extent that is probably limited

by the number of toxin receptors present at the surface of the

membrane. To model vesicle reswelling under these condi-

tions, a term describing a hypothetical ‘‘mechanical force’’

can be added to Eq. 4, which becomes

dXw

dt
¼ PW

XA 1XB

V
� ðCA 1CBÞ

� �
� PWkCW 1� V0

V

� �
;

(6)

where CW is the concentration of water, V0 is the initial

volume of the vesicles, and k is a return constant. The me-

chanical term is equal to zero, before shrinking, when the

volume of the vesicles is equal to their initial volume, and

opposes shrinking increasingly as the volume of the vesicles

decreases. When Eq. 4 is replaced by Eq. 6, the model pre-

dicts that the vesicles should reswell even when they are

mixed with a hypertonic solution of the buffer with which

they are loaded (Fig. 7 C). In agreement with this prediction,

vesicles loaded with 10 mM KCl and 0.1 mM Hepes-KOH,

20 mM sucrose and 0.1 mMHepes-KOH, 10 mM imidazole-

HCl, 10 mM Tris-HCl, or 10 mM Caps-KOH and mixed

with a hypertonic solution of the same compounds reswelled

readily (Fig. 7 D). In contrast, volume recoveries of only

;5% were observed with Tris-citrate in the presence and

absence of toxin (Fig. 7 D), in agreement with the small

permeability of the membrane for this solute, which cannot

be increased by the addition of toxin (Fig. 5 A). In these

experiments, the pH of the imidazole-HCl, Tris-HCl, Hepes-

KOH, and Caps-KOH solutions were adjusted to the pKa of

the organic species to ensure the presence of an equal ratio

between the charged and uncharged species of each buffer. A

small concentration of Hepes-KOH was kept in the solutions

of KCl and sucrose used to load the vesicles to maintain a

constant pH. In agreement with a cationic selectivity of the

pores, similar percent volume recoveries were observed with

imidazole-HCl, Tris-HCl, and KCl, irrespective of the size

of the cation. Lower percent volume recovery values were

recorded for Caps-KOH and Hepes-KOH, although similar

levels were reached for both buffers, which are composed

of a larger anion. In the presence of an osmotic shock of

KCl, vesicle swelling was remarkably similar for vesicles

loaded with 10 mM Hepes-KOH or with 10 mM KCl and

0.1 mM Hepes-KOH (Fig. 7 E). In the presence of sucrose,

vesicle swelling was only slightly lower when the vesicles

were loaded with 20 mM sucrose and 0.1 mM Hepes-KOH

FIGURE 6 Effect of buffer composition on apparent membrane perme-

ability to KCl. M. sexta vesicles were loaded with 10 mM Tris-citrate (n) or

Hepes-KOH (:), pH 7.5, and incubated for 60 min with the indicated

concentrations of Cry1Ac. Vesicles were mixed with an equal volume of a

solution containing 150 mM KCl and the buffer with which they were

loaded. All solutions contained 1 mg/ml bovine serum albumin.
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than when they were loaded with 10 mM Hepes-KOH (Fig.

7 E). Taken together, these results strongly suggest that

in the standard osmotic swelling assay, a mechanical force

contributes substantially to the osmotic swelling of the

vesicles. They also stress that whatever the driving force,

the rate and extent of vesicle swelling after the initial

shrinking is controlled by the membrane permeability to

the solute.

FIGURE 7 Changes in the volume of vesicles exposed to the same solute on both sides of the membrane. (A) Predicted volume of vesicles loaded with 15

mOsm/l of solute A and mixed with 150 mOsm/l of the same solute. The membrane has the indicated permeabilities (PA) to the solute (in cm3/s). In these

simulations, no solute B is present. (B)M. sexta vesicles loaded with 10 mM Hepes-KOH, pH 7.5, and incubated for 60 min with the indicated concentrations

of Cry1Ac (in pmol toxin/mg membrane protein) were mixed with an equal volume of the same solution as that with which they were loaded (Hepes-KOH) or

with 150 mM Hepes-KOH, pH 7.5. For clarity, error bars are shown for every 25th experimental point. (C) Modeling of vesicle volume was performed as in A

except that Eq. 4 was replaced by Eq. 6 to take into account a mechanical force with k¼ 23 10�4. (D) The experiments were similar to those presented in panel

B; Hepes-KOH, pH 7.5 (n), was replaced in both the solutions used for loading the vesicles and those used for the osmotic shock by the same concentrations of

imidazole-HCl, pH 6.95 (¤), Tris-HCl, pH 8.1 (:), Tris-citrate, pH 7.5 (;), Caps-KOH, pH 10.5 (d), KCl (=), or isotonic solutions of sucrose (<).

Solutions containing KCl and sucrose also contained 0.1 mMHepes-KOH, pH 7.5. (E) Vesicles loaded with 10 mMHepes-KOH, pH 7.5, and incubated for 60

min with the indicated concentrations of Cry1Ac were mixed with an equal volume of a solution containing 150 mM KCl (d, Hepes-KOH/KCl) or 300 mM

sucrose (n, Hepes-KOH/Sucrose) and 10 mM Hepes-KOH, pH 7.5. Vesicles loaded with KCl were submitted to a hypertonic solution of KCl (=, KCl/KCl)
and vesicles loaded with sucrose were submitted to a hypertonic solution of sucrose (<, Sucrose/Sucrose). All solutions contained 1 mg/ml bovine serum

albumin.
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having been exposed to a hypertonic solution of KSCN
whether they were loaded with KSCN (Fig. 10 D) or not
(Fig. 10 C). These results suggest that the cytoskeleton,
present in brush-border membrane vesieles but absent

FIGURE 8 Theoretical relation between the volwne of the vesicles and
the ratio of the osmolarities inside and outside of the vesicles in the presence
of a mechanical force and in the absence of toxin. The simulated vesicles
contain (A) 1.5, (B) 15, or (e) 150 mM of solute A dissolved in water. The
vesicles are mixed instantaneously with a solution containing enough solute
A to reach the indicated osmolarity ratios. The minimwn volwne of the
vesicles reached after equilibriwn, when dXw/dt = O, was calculated with
Eq. 6 with the return constant k = 2 X 10-4
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As a corollary, the mechanical force added in Eq. 6 that
promotes vesiele reswelling also imposes a constraint on
vesiele shrinking and may explain why, in the absence of
toxin, the vesieles do not appear to shrink as expected from
ideal osmometers in Fig. 2. When k el O and the simulated
vesieles loaded with 1.5, 15, or 150 mM of solute A are
mixed with hypertonic solutions of solute A (or with a
mixture of solutes A and B), Eq. 6 predicts nonlinear rela
tionships between the minimum volume of the vesieles
(when dXw/dt = O) and the ratio between the intravesicular
and extravesicular osmolarities (Fig. 8) which follow a pattem
remarkably similar to that measured experimentally (Fig. 2).
Like Fig. 2, Fig. 8 shows that for the same osmolarity ratios,
the curves become increasingly linear as the intravesicular
osmolarity is increased (Fig. 8, A-C). Thus, the same hypo
thetical mechanical force can explain not only why the vesi
eles reswelled in the presence of toxin when the osmotic
shock was imposed with the same solute as that with which
the vesieles were loaded, but also why they did not shrink as
expected from ideal osmometers.

Origin of the restoration force

Experiments that highlight the additional restoration force
can also be performed without prior membrane permeabili
zation with toxin or valinomycin. M. sexta vesieles loaded
with 10 mM Hepes-Tris, pH 7.3, were mixed with an equal
volume of the same buffer supplemented with 400 mM su
crose or glucose (Fig. 9 A). In agreement with previous work
(2), glucose diffused readily across the midgut membrane of
M. sexta, whereas sucrose was impermeant. Reswelling was
also observed when M. sexta vesieles were loaded with
20 mM glucose and 1 mM Hepes-Tris, and submitted to a
hypertonic shock of glucose (Fig. 9 B). Similar experiments
were conducted with rat liver microsomes (Fig. 9, C and D),
also known to be more permeable to glucose than to sucrose
(47). In contrast with M. sexta vesieles, and despite their
larger permeability to glucose than to sucrose (Fig. 9 C),
microsomes loaded with glucose and mixed with a hyper
tonic solution of glucose reswelled at the same rate as those
mixed with sucrose (Fig. 9 D). These results elearly show
that the mechanical restoration force is much weaker in the
microsomes than in the vesieles.

To test whether a restoration force is also present in other
types of brush-border membrane vesieles, experiments were
carried out to compare vesieles prepared from rabbit jejunum
and from M. sexta midguts. Insect vesieles, loaded with
10 mM Hepes-Tris, pH 7.3, were first mixed with the same
buffer supplemented with 150 mM KSCN (Fig. 10 A).
Vesieles have a nonnegligible endogenous permeability to
KSCN that can be increased with the addition of valinomy
cin. M. sexta vesieles, also reswelled readily when they were
loaded with 10 mM KSCN and 1 mM Hepes-Tris and mixed
with a hypertonic solution of KSCN (Fig. 10 B). Rabbit
brush-border membrane vesieles also reswelled readily after
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from microsomes, could be responsible for the restoration

force.

The existence of a mechanical force does not question

the interpretation of results presented in previous studies on

B. thuringiensis toxins, in which the osmotic swelling assay

was used to monitor toxin pore formation, since vesicle

swelling only occurs when the membrane is permeable to the

external solute. Furthermore, in these studies only qualitative

comparisons were made between the swelling rates induced

by the toxins. However, calculations of the permeability of

FIGURE 9 Comparison of the os-

motic swelling ofM. sexta brush-border

membrane vesicles and rat liver micro-

somes. (A and B) M. sexta vesicles or

(C and D) rat microsomes were loaded

with (A and C) 10 mM Hepes-Tris, pH

7.3, or with (B and D) 20 mM glucose

and 1 mM Hepes-Tris, pH 7.3, and

mixed with an equal volume of (A and

C) 400 mM sucrose and 10 mM Hepes-

Tris, pH 7.3 (Sucrose), or 400 mM

glucose and 10 mM Hepes-Tris, pH 7.3

(Glucose), (B and D) 400 mM sucrose,

20 mM glucose, and 1 mM Hepes-Tris,

pH 7.3 (Sucrose), or 420 mM glucose

and 1 mM Hepes-Tris, pH 7.3 (Glu-
cose), or with the solution with which

they were loaded (Control). For clarity,

error bars are shown for every 50th

experimental point.

FIGURE 10 Osmotic swelling of M.
sexta and rabbit intestinal brush-border

membrane vesicles. (A and B) M. sexta

or (C and D) rabbit brush-border mem-

brane vesicles were loaded with (A and

C) 10 mM Hepes-Tris, pH 7.3, or (B

and D) 10 mM KSCN and 1 mM

Hepes-Tris, pH 7.3, and mixed with an

equal volume of (A and C) 150 mM

KSCN and 10 mM Hepes-Tris, pH 7.3,

(B and D) 160 mM KSCN and 1 mM

Hepes-Tris, pH 7.3, or the solution with

which they were loaded (Control). The

vesicle suspensions and solutions con-

tained 7.5 mM valinomycin (Val) or

an equivalent concentration of ethanol

(EtOH). For clarity, error bars are

shown for every 50th experimental

point.
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the membrane to a solute from the results obtained with

brush-border membrane vesicles and an osmotic swelling

assay should take into account the possible contribution of an

additional mechanical force. The intrinsic mechanical and

elastic properties of the membrane of liposomes and vesicles

have been studied in detail (4,48–52), but such forces could

not explain our results since they are also expected to be

present in microsomes and in brush-border membrane

vesicles. Reswelling when the solute inside and outside the

vesicles is the same has also been reported earlier. Kidney

brush-border membrane vesicles loaded with mannitol and

submitted to a hypertonic shock of mannitol reswelled, but

no reswelling was observed when mannitol was replaced by

cellobiose (4). These results were interpreted as indicating

that kidney vesicles have a small membrane permeability to

mannitol but are impermeable to cellobiose. In contrast with

our experiments, reswelling took as long as 10 h. It was

proposed that after the osmotic shock and subsequent vesicle

shrinking there remains a chemical gradient of mannitol,

probably due to a hydrostatic pressure caused by the pres-

ence of osmotically active molecules inside the vesicles. This

hydrostatic pressure could play a role similar to that of our

mechanical force added in Eq. 6, since it can also explain

why kidney vesicles do not behave like perfect osmometers

(4). However, in our experiments, the amplitude of such a

hydrostatic force should be rather small, since osmotically

active molecules present inside the vesicles are expected

to diffuse through the pores formed by the toxin during the

60-min incubation of the vesicles before the osmotic shock

and during the vesicle shrinking phase of the experiments.

CONCLUSION

The above results strongly suggest that a mechanical force

contributes to the reswelling of brush-border membrane

vesicles after a hypertonic shock. This force could also

explain why brush-border membrane vesicles do not appear

to shrink as expected for ideal osmometers. The fact that the

mechanical force is much less evident in rat liver micro-

somes than in brush-border membrane vesicles suggests that

the cytoskeleton could be at its origin. Our results also clearly

demonstrate that efflux of buffer during the shrinking phase of

the osmotic swelling assay does not appear to be sufficient to

explain whyM. sexta brush-border membrane vesicles reswell

partially to a volume that depends on membrane permeability

induced by B. thuringiensis toxins or by valinomycin since it

occurs in the presence of an impermeant buffer. Even if the

exact nature of the force that contributes to vesicle swelling

after a hypertonic shock remains to be studied, the osmotic

swelling assay remains a powerful tool to assess membrane

permeability.
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