
Computers and Mathematics with Applications 55 (2008) 2158–2172
www.elsevier.com/locate/camwa

Incorporating nonmonotone strategies into the trust region method
for unconstrained optimizationI

Neng-zhu Gua, Jiang-tao Mob,∗

a School of Business, University of Shanghai for Science and Technology, Shanghai 200093, China
b College of Mathematics and Information Science, Guangxi University, Nanning 530004, China

Received 7 July 2005; received in revised form 13 August 2007; accepted 30 August 2007

Abstract

This paper concerns a nonmonotone line search technique and its application to the trust region method for unconstrained
optimization problems. In our line search technique, the current nonmonotone term is a convex combination of the previous
nonmonotone term and the current objective function value, instead of an average of the successive objective function values
that was introduced by Zhang and Hager [H. Zhang, W.W. Hager, A nonmonotone line search technique and its application
to unconstrained optimization, SIAM J. Optim. 14 (4) (2004) 1043–1056]. We incorporate this nonmonotone scheme into the
traditional trust region method such that the new algorithm possesses nonmonotonicity. Unlike the traditional trust region method,
our algorithm performs a nonmonotone line search to find a new iteration point if a trial step is not accepted, instead of resolving the
subproblem. Under mild conditions, we prove that the algorithm is global and superlinear convergence holds. Primary numerical
results are reported.
c© 2008 Published by Elsevier Ltd
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1. Introduction

We consider the following unconstrained optimization problem

min{ f (x)|x ∈ Rn
}, (1.1)

where f : Rn
→ R is twice continuously differentiable.

Since it was proposed by Levenberg [1] and Marquardt [2] for nonlinear least-square problems and then developed
by Goldfeld [3] for unconstrained optimization, trust region methods have been studied extensively by many
researchers. For example, Powell [4] established the convergence result of the trust region method for unconstrained
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optimization, Fletcher [5], Yuan [6], Powell and Yuan [7] proposed various trust region algorithms for constrained
optimization problems. For a more complete introduction, we refer the reader to [8].

Trust region methods solve an optimization problem iteratively. At each iteration, a trial step dk is generated by
solving the subproblem

min
d∈R n

gT
k d +

1
2

dT Bkd = φk(d) (1.2)

s.t. ‖d‖ ≤ ∆k,

where gk = ∇ f (xk), Bk ∈ Rn×n is an approximate Hessian matrix of f at xk , ∆k > 0 is a trust region radius. Some
criteria are used to decide whether a trial step dk is accepted. If a trial step is not accepted, traditional trust region
methods resolve the subproblem (1.2) by reducing the trust region radius until an acceptable step is found. Therefore,
the subproblem may be solved several times at an iteration before an acceptable step is found, and these repetitious
processes are likely to increase the total cost of computation for large scale problems.

To improve the computational efficiency of trust region methods, new type trust region algorithms that combine
line search techniques have been developed (e.g., Necedal and Yuan [9] and Gertz [10]). The prominent virtue of
these algorithms is to perform a line search to find an successful iterative point when a trial step is not accepted; this
mechanism implies that the subproblem is needs to be solved once for each iteration.

Most of the proposed methods for optimization problems require objective function values monotonically
decreasing at each iteration. However, Grippo, Lampariello and Lucidi [11] shown that this scheme can considerably
slow the rate of convergence in the intermediate stages of the minimization process, especially in the presence of the
narrow curved valley. To overcome this shortcoming, they introduced a nonmonotone line search technique of the
form

f (xk + αdk) ≤ max
0≤ j≤m(k)

f (xk− j )+ δα∇ f (xk)
T dk, (1.3)

where δ ∈ (0, 1) is a constant, N is an integer and

m(k) =

{
k, k ≤ N ;

min{m(k − 1)+ 1, N }, k > N .
(1.4)

This technique leads to a breakthrough in nonmonotonic algorithms for nonlinear optimization. For example, based
on (1.3), Deng, Xiao and Zhou [12] first proposed a nonmonotone trust region method for unconstrained optimization,
Ke and Han [13], Sun [14], Fu and Sun [15] presented various nonmonotone trust region methods.

Recently, Zhang and Hager [16] found that there still exist some drawbacks with the nonmonotone technique (1.3).
First, a good function value generated in any iteration might be excluded due to the max in (1.3). Second, in many
cases, the numerical performance is dependent on the choice of N (see [11,17]). Moreover, for any given bound N
on the memory, even an iterative method is generating R-linearly convergence for a strongly convex function, the
iterates may not satisfy the condition (1.3) for k sufficiently large (see [18]). To improve these limitations, Zhang
and Hager [16] proposed a nonmonotone gradient method for unconstrained optimization. Their method requires an
average of the successive function values that is decreasing – that is to say, the steplength α is computed to satisfy the
following line search condition

f (xk + αdk) ≤ Ck + δα∇ f (xk)
T dk, (1.5)

where

Ck =

{
f (xk), k = 1;

(ηk−1 Qk−1Ck−1 + f (xk))/Qk, k ≥ 2,
(1.6)

Qk =

{
1, k = 1;

ηk−1 Qk−1 + 1, k ≥ 2,
(1.7)

and ηk−1 ∈ [ηmin, ηmax]. ηmin ∈ (0, ηmax) and ηmax ∈ (0, 1) are two chosen parameters. The numerical results
reported in [16] show that the nonmonotone technique (1.5) is particularly efficient for unconstrained problems.
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Inspired by this nonmonotone technique, Mo, Liu and Yan [19] introduced it into trust region method and developed
a nonmonotone algorithm. The numerical results indicate that the algorithm is robust and encouraging.

As we see, the definition of mean values Ck implies that each Ck is a convex combination of the previous Ck−1 and
fk , including the complex ηk and Qk . In theory, the best convergence results were obtained by dynamically varying
ηk , using values closer to 1 when the iterates were far from the optimum, and using values closer to 0 when the iterates
were near the optimum (see [16] for details). In practice, however, it becomes an encumbrance to update ηk and Qk
at each iteration. Therefore, in this study, we introduce another nonmonotone line search

f (xk + αdk) ≤ Dk + δα∇ f (xk)
T dk, (1.8)

where Dk is a simple convex combination of the previous Dk−1 and fk , say

Dk =

{
f (xk), k = 1;

ηDk−1 + (1 − η) f (xk) k ≥ 2
(1.9)

for some fixed η ∈ (0, 1), or a variable ηk . In the rest of this paper, our purpose is to develop an algorithm that
combines the nonmonotone technique (1.8) and trust region method for unconstrained optimization problems. The
algorithm doesn’t restrict the object function values to be monotonically decreasing. Furthermore, if a trial step is not
accepted, the algorithm performs the nonmonotone line search (1.8) to find an iterative point instead of resolving the
subproblem. The new algorithm can viewed as a generalization of the Nocedal and Yuan algorithm [9] from monotone
to non-monotone, or the Mo et al. algorithm [19] from non-linesearch to linesearch.

The paper is organized as follows. In Section 2, we describe the algorithm. In Section 3, we establish the global
convergence and superlinear convergence for the algorithm. Primary numerical results are presented in Section 4.
Finally, our conclusions are given in Section 5.

2. Algorithm

In this section, we state our method in the form of an algorithm. Throughout this paper, we use ‖ · ‖ to represent the
Euclidean norm and denote f (xk) by fk , ∇ f (xk) by gk , etc. Vectors are column vectors unless a transpose is used.

The method we present is also an iterative method. At each iteration, a trial step dk is generated by solving the trust
region subproblem (1.2). Similarly to [9], we solve (1.2) inaccurately such that ‖dk‖ ≤ ∆k ,

φk(0)− φk(dk) ≥ τ‖gk‖ min{∆k, ‖gk‖/‖Bk‖} (2.1)

and

dT
k gk ≤ −τ‖gk‖ min{∆k, ‖gk‖/‖Bk‖}, (2.2)

where τ ∈ (0, 1) is a constant.
To determine whether a trial step will be accepted, we compute ρk , the ratio between the actual reduction and the

predicted reduction. Instead of using fk − f (xk +dk) as the actual reduction, we choose Dk − f (xk +dk) as the actual
reduction, such that the algorithm does not require object function values to be monotonically decreasing. ρk is given
as

ρk =
Dk − f (xk + dk)

φk(0)− φk(dk)
, (2.3)

where Dk is defined by (1.9). If ρk ≥ µ, whereµ is a constant, we accept dk as a successful step and let xk+1 = xk+dk .
Otherwise, we generate a new iterative point by xk+1 = xk + αkdk , where αk is a steplength satisfying the line search
condition (1.8).

More precisely, we describe the nonmonotone trust region algorithm as follows:

Algorithm 1 (Nonmonotone Trust Region Method With line Search).

Step 1. Give x1 ∈ Rn , ∆1 > 0. Choose constants c1, c2, µ, ε, λ, δ, η, such that 0 < c1 < 1 < c2, µ ∈ (0, 1),
ε = 10−6, λ ∈ (0, 1), δ ∈ (0, 1/2) and η ∈ (0, 1); a symmetric positive definite matrix B1 ∈ Rn×n . Set
k := 1.
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Step 2. Compute gk , if ‖gk‖ < ε, stop.
Step 3. Solve (1.2) inaccurately, such that ‖dk‖ ≤ ∆k , (2.1) and (2.2) are satisfied.
Step 4. Compute Dk by (1.9) and ρk by (2.3).
Step 5. If ρk ≥ µ, go to Step 6. Otherwise, compute ik , the minimum nonnegative integer i satisfying

f (xk + λi dk) ≤ Dk + δλi gT
k dk . (2.4)

Set αk = λik ,

xk+1 = xk + αkdk, (2.5)

and

∆k+1 ∈ [‖xk+1 − xk‖, c1∆k], (2.6)

go to Step 7.
Step 6. Set

xk+1 = xk + dk, (2.7)

and

∆k+1

{
= ∆k, if ‖dk‖ < ∆k,

∈ [∆k, c2∆k], if ‖dk‖ = ∆k .
(2.8)

Step 7. Update the symmetric matrix Bk , set k := k + 1, go to Step 2.

Remark 2.1. Applying the Algorithm 2.6 in [9], we can find an inaccurate solution of (1.2), so that ‖dk‖ ≤ ∆k , (2.1)
and (2.2) are satisfied.

3. Global convergence

We now turn to analyze the convergence behaviour of Algorithm 1 when it is applied to problem (1.1). To this end,
the following assumptions are required.

Assumption A. The level set L = {x | f (x) ≤ f (x1)} ⊂ Ω , where Ω is a close, bound set of Rn .

Assumption B. There exists a positive constant m such that

dT Bkd ≥ m‖d‖
2, ∀d ∈ Rn and k = 1, 2, . . . .

Remark 3.1. Assumption A together with f is twice continuously differentiable, suggesting that there exists a
constant M > m, such that

‖∇
2 f (x)‖ ≤ M, ∀ x ∈ Ω . (3.1)

For simplicity, we define two index sets as follows

I = {k : ρk ≥ µ} and J = {k : ρk < µ}.

We first analyze the nonmonotone line search conditions (1.8). Obviously, if parameter η is chosen to be zero, this
line search reduces to a monotone line search. The following lemma show that if η ∈ (0, 1), Dk ≥ fk , this implies
that the nonmonotonicity of (1.8) can be guaranteed.

Lemma 3.1. Let {xk} be the sequence generated by Algorithm 1. Then

fk+1 ≤ Dk+1 (3.2)

holds for all k.
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Proof. Due to (1.9), the definition of Dk , we obtain Dk+1 − fk+1 = η(Dk − fk+1). Now, we consider two cases
dependent on k ∈ I and k ∈ J .

Case 1. k ∈ I , i.e., ρk ≥ µ. It follows from (2.1) and (2.3) that

Dk − fk+1 > µτ‖gk‖ min{∆k, ‖gk‖/‖Bk‖} ≥ 0.

Therefore we have Dk+1 − fk+1 ≥ 0.
Case 2. k ∈ J . In this case, the trial step cannot be accepted, and a line search is used in the algorithm. Note that

(2.2) implies that gT
k dk ≤ 0 for all k. This inequality together with (2.4) yield

Dk − fk+1 ≥ −δαk gT
k dk ≥ 0.

Therefore we also have Dk+1 − fk+1 ≥ 0 for k ∈ J . �

Next, we show that Algorithm 1 is well defined. It is enough to prove that there exists an integer ik such that line
search (2.4) holds.

Lemma 3.2. For any k ∈ J , the line search in Step 5 of Algorithm 1 terminates in a finite number of steps, i.e., there
exists an integer ik such that (2.4) holds.

Proof. Suppose first, for the purpose of deriving a contradiction, that there exists k ∈ J such that

f (xk + λi dk) > Dk + δλi gT
k dk, ∀i.

Using Dk ≥ fk , we obtain

f (xk + λi dk)− fk

λi > δgT
k dk .

Recall that f is differentiable, and taking the limit with i → ∞, we have

gT
k dk ≥ δgT

k dk . (3.3)

Since δ ∈ (0, 1/2), inequality (3.3) suggests that gT
k dk ≥ 0. However, from Step 2 of Algorithm 1, we have ‖gk‖ ≥ ε;

thus (2.2) implies that gT
k dk < 0. Therefore, (3.3) contradicts (2.2). This indicate that for any k ∈ J , there exists an

ik > 0, such that (2.4) holds. �

Under suitable assumptions, we can establish a lower bound for stepsize αk for k ∈ J .

Lemma 3.3. Assume that Assumption B holds, a sequence {xk} is generated by Algorithm 1. Then stepsize αk satisfies

αk >
(1 − δ)λm

M
(3.4)

for all k ∈ J .

Proof. From Step 5 of Algorithm 1, we have

f (xk + λ−1αkdk) > Dk + δλ−1αk gT
k dk . (3.5)

By Taylor’s expansion, we obtain

f (xk + λ−1αkdk) = fk + λ−1αk gT
k dk +

1
2
λ−2α2

k dT
k ∇

2 f (ξk)dk, (3.6)

where ξk ∈ (xk, xk + λ−1αkdk). Using (3.2), (3.5), (3.6) and (3.1), we get

δλ−1αk gT
k dk < λ−1αk gT

k dk +
1
2
λ−2α2

k M‖dk‖
2.

This inequality leads to

−(1 − δ)gT
k dk <

1
2
λ−1αk M‖dk‖

2. (3.7)
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Using (1.2) and (2.1), we have

−gT
k dk ≥

1
2

dT
k Bkdk . (3.8)

Combining (3.7) and (3.8), we obtain

(1 − δ)dT
k Bkdk < λ−1αk M‖dk‖

2. (3.9)

Inequality (3.9), together with Assumption B, imply that (3.4) holds. �

To establish the convergent results for the algorithm, we need to investigate some properties of the line search
condition, the following lemma indicates that sequence {Dk} is monotone decreasing. Here we need to define a
sequence

Mk = 1 + max
1≤i≤k

‖Bi‖ (3.10)

for all k.

Lemma 3.4. Let {xk} be the sequence generated by Algorithm 1. Then sequence {Dk} is monotonically decreasing.
Furthermore, if there exists a constant ε > 0 such that

‖gk‖ ≥ ε, ∀k. (3.11)

Then

Dk+1 − Dk ≤ −(1 − η)ψεmin{∆k, ε/Mk} (3.12)

is satisfied for all k, where ψ = min{µτ,
δτ(1−δ)λm

M }.

Proof. We first show that sequence {Dk} is monotonically decreasing.
If k ∈ I , we have from (2.3) and (2.1) that

Dk − f (xk+1) ≥ µ(φk(0)− φk(dk)) ≥ µτ‖gk‖ min{∆k, ‖gk‖/‖Bk‖}.

This leads to

f (xk+1) ≤ Dk − µτ‖gk‖ min{∆k, ‖gk‖/‖Bk‖}. (3.13)

If k ∈ J , it follows from (2.2), (2.4) and (3.4), that we obtain

f (xk+1) ≤ Dk − δταk‖gk‖ min{∆k, ‖gk‖/‖Bk‖}

≤ Dk −
δτ(1 − δ)λm

M
‖gk‖ min{∆k, ‖gk‖/‖Bk‖}. (3.14)

Let ψ = min{µτ,
δτ(1−δ)λm

M }, combining (3.13) and (3.14), we have

f (xk+1) ≤ Dk − ψ‖gk‖ min{∆k, ‖gk‖/‖Bk‖}. (3.15)

From (1.9) and (3.15), we obtain for all k

Dk+1 = ηDk + (1 − η) fk+1

≤ ηDk + (1 − η)(Dk − ψ‖gk‖ min{∆k, ‖gk‖/‖Bk‖})

= Dk − (1 − η)ψ‖gk‖ min{∆k, ‖gk‖/‖Bk‖}. (3.16)

It is clear from (3.16) that sequence {Dk} is monotonically decreasing.
Now, using (3.16), (3.11) and (3.10), we obtain

Dk+1 − Dk ≤ −(1 − η)ψεmin{∆k, ε/Mk}.

Thus (3.12) holds for all k. �

The following important lemma is required when we establish a lower bound for all ∆k .
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Lemma 3.5. Suppose that Assumption A holds if sequence {xk} does not Converge – that is, there exists a constant
ε > 0 such that (3.11) holds. Then

lim
k→∞

min{∆k, ε/Mk} = 0. (3.17)

Proof. Due to the definition of Dk , we have D1 = f1. Lemmas 3.1 and 3.4 give fk+1 ≤ Dk+1 ≤ Dk ≤ f1. Since
Assumption A implies that { f (xk)} is bounded below, we know that {Dk} is also bounded below. Using (3.12), we
have that (3.17) holds immediately. �

In the following lemma, we show that there exists a lower bound for ∆k , for k ∈ J .

Lemma 3.6. Let {xk} be the sequence generated by Algorithm 1, and suppose that sequence {xk} does not converge,
i.e., that (3.11) holds. Then the following inequalities

‖xk+1 − xk‖ ≥

√
2(1 − µ)τεmin{∆k, ε/Mk}

M − µm
if αk = 1, (3.18)

‖xk+1 − xk‖ >
2(1 − δ)τελ

M
min{1, ε/(∆k Mk)} if αk < 1 (3.19)

and

∆k > ε/Mk (3.20)

are satisfied for k ∈ J sufficiently large.

Proof. We first show that the inequalities (3.18) and (3.19) hold for k ∈ J sufficiently large.
(I) If ik = 0, αk = 1. By Step 5 of Algorithm 1, we have

‖xk+1 − xk‖ = ‖dk‖ ≤ ∆k, ∀k ∈ J. (3.21)

Using ρk < µ, (3.2) and (2.3), we obtain

f (xk)− f (xk + dk) ≤ Dk − f (xk + dk) ≤ µ

(
−gT

k dk −
1
2

dT
k Bkdk

)
. (3.22)

By Taylor’s expansion and (3.1), we have

f (xk + dk)− f (xk) ≤ gT
k dk +

1
2

M‖dk‖
2. (3.23)

Combining (3.22) with (3.23), we get

−gT
k dk −

1
2

M‖dk‖
2

≤ µ

(
−gT

k dk −
1
2

dT
k Bkdk

)
. (3.24)

It is clear from (3.24) and Assumption B that

−(1 − µ)gT
k dk ≤

1
2
(M − µm)‖dk‖

2. (3.25)

We have from (3.25) and (2.2) that

(1 − µ)τ‖gk‖ min{∆k, ‖gk‖/‖Bk‖} ≤
1
2
(M − µm)‖dk‖

2. (3.26)

Using (3.21), (3.26), (3.11) and (3.10), we obtain

(1 − µ)τεmin{∆k, ε/Mk} ≤
1
2
(M − µm)‖xk+1 − xk‖

2.

Thus (3.18) holds.
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(II) If ik > 0, i.e., αk < 1. Using (3.5), (3.2), Taylor’s expansion, (3.1), (2.2), (3.11) and (3.10), we obtain

0 > Dk − f (xk + λ−1αkdk)+ δλ−1αk gT
k dk

≥ fk − f (xk + λ−1αkdk)+ δλ−1αk gT
k dk

≥ −λ−1(1 − δ)αk gT
k dk −

1
2

Mλ−2α2
k ‖dk‖

2

≥ λ−1(1 − δ)τεαk min{∆k, ε/Mk} −
1
2

Mλ−2αk‖dk‖‖xk+1 − xk‖

≥ λ−1αk

[
(1 − δ)τεmin{∆k, ε/Mk} −

1
2

Mλ−1∆k‖xk+1 − xk‖

]
= λ−1αk∆k

[
(1 − δ)τεmin{1, ε/(∆k Mk)} −

1
2

Mλ−1
‖xk+1 − xk‖

]
.

Thus (3.19) holds.
We now prove that (3.20) holds for k ∈ J sufficiently large in two cases.

Case 1. αk = 1. Assume that (3.20) does not hold, i.e.,

∆k ≤ ε/Mk . (3.27)

It follows from (3.18) that

∆k ≥ ‖xk+1 − xk‖ ≥

√
2(1 − µ)τε∆k

M − µm
.

The above inequality yields

∆k ≥
2(1 − µ)τε

M − µm
. (3.28)

Inequality (3.27), together with (3.28), imply that

ε/Mk ≥ ∆k ≥
2(1 − µ)τε

M − µm
.

This contradicts (3.17).

Case 2. αk < 1. By Steps 3 and 5 of Algorithm 1, we have

‖xk+1 − xk‖ = αk‖dk‖ ≤ ∆k, ∀ k ∈ J. (3.29)

Suppose (3.20) does not hold, i.e., ∆k ≤ ε/Mk . Inequality (3.19) gives

‖xk+1 − xk‖ > 2(1 − δ)τελ/M. (3.30)

Then it follows from (3.27), (3.29) and (3.30) that

ε/Mk ≥ ∆k > 2(1 − δ)τελ/M,

and this contradicts (3.17). Thus (3.20) holds. �

Based on Lemmas 3.5 and 3.6, we now show that there exists a lower bound for the trust region radius ∆k , for all
sufficiently large k.

Lemma 3.7. Let {xk} be the sequence generated by Algorithm 1, suppose that sequence {xk} does not converge,
i.e., (3.11) holds. Then

∆k > ε/Mk (3.31)

for all sufficiently large k.
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Proof. If there are only finitely many ks such that ∆k+1 ≤ ∆k , namely, J is a finite set, then there exists a positive
constant η∗ such that ∆k > η∗ for all k. Note that (3.17) implies that limk→∞ ε/Mk = 0. Hence (3.31) holds for all
large k.

Now, we assume that J is an infinite set. Lemma 3.6 suggests that there exists a k̄ ∈ J such that (3.20) holds for
k ∈ J and k ≥ k̄. For any k ∈ I and k ≥ k̄, let ǩ = max{i : i ∈ J and i ≤ k}. The definition of ǩ suggests that

∆ǩ > ε/Mǩ (3.32)

and

ǩ + s ∈ I (3.33)

for all s = 1, 2, . . . k − ǩ. Using (3.32), (3.33), (2.6) and (2.8), we have

∆ǩ ≤ ∆ǩ+1 ≤ ∆ǩ+2 ≤ · · · ≤ ∆k . (3.34)

(3.34) together with (3.32) imply that

∆k > ε/Mǩ .

Due to the monotonicity of {Mk}, we have

Mk ≥ Mǩ .

Thus (3.31) holds. �

Now, we establish the global convergence for Algorithm 1. Similarly to [9], we assume that ‖Bk‖ does not grow
too rapidly.

Theorem 3.1. Suppose that Assumptions A and B hold, and {Bk} satisfies

∞∑
k=1

1/Mk = ∞. (3.35)

Then sequence {xk} generated by Algorithm 1 satisfies

lim inf
k→∞

‖gk‖ = 0. (3.36)

Proof. Assume that (3.36) does not hold, then there exists a constant ε such that (3.11) holds. It follows from (3.31)
that

∆k > ε/Mk (3.37)

for sufficiently large k. From (3.12), we obtain

(1 − η)ψεmin{∆k, ε/Mk} ≤ Dk − Dk+1. (3.38)

Using (3.37) and (3.38), we have

∞∑
k=1

(1 − η)ψε2/Mk ≤

∞∑
k=1

(Dk − Dk+1).

Thus

∞∑
k=1

1/Mk < ∞, (3.39)

This contradicts (3.35). Therefore (3.36) holds. �



N.-z. Gu, J.-t. Mo / Computers and Mathematics with Applications 55 (2008) 2158–2172 2167

In general, the superlinear convergence result of Algorithm 1 requires further assumptions; we state the assumptions
and main result in the following theorem.

Theorem 3.2. Suppose that subproblem (1.2) is solved accurately, i.e., dk = −B−1
k gk . Suppose also that

lim
k→∞

‖(Bk − ∇
2 f (x∗))dk‖

‖dk‖
= 0. (3.40)

Then if {xk} converges to a point x∗ such that ∇
2 f (x∗) is positive definite, the rate of convergence is superlinear, i.e.,

‖xk+1 − x∗‖ = o(‖xk − x∗‖).

Proof. Let xk+1 = xk + tkdk , where

tk =

{
1 if ρk ≥ µ;

αk if ρk < µ.
(3.41)

We will verify that tk ≡ 1 for k sufficiently large. Since {xk} is convergent and αk > (1 − δ)λm/M , we have dk → 0
as k → ∞. dk = −B−1

k gk and (3.40) imply that

lim
k→∞

‖gk − ∇
2 f (x∗)B

−1
k gk‖

‖B−1
k gk‖

= 0.

Thus

gT
k B−1

k gk = (B−1
k gk)

T
∇

2 f (x∗)(B
−1
k gk)+ o(‖B−1

k gk‖
2). (3.42)

By Lemma 3.1, Taylor’s expansion and (3.42), we obtain

f (xk − B−1
k gk)− Dk + δgT

k B−1
k gk ≤ f (xk − B−1

k gk)− fk + δgT
k B−1

k gk

= −(1 − δ)gT
k B−1

k gk +
1
2

B−1
k gT

k ∇
2 f (ωk)B

−1
k gk

= −

(
1
2

− δ

)
(B−1

k gk)
T
∇

2 f (x∗)(B
−1
k gk)+ o(‖B−1

k gk‖
2),

where ωk ∈ (xk, xk − B−1
k gk). Since ∇

2 f (x∗) is positive definite, we have

f (xk − B−1
k gk)− Dk + δgT

k B−1
k gk ≤ 0,

This inequality leads to

f (xk + dk) ≤ Dk + δgT
k dk

for k ∈ J sufficiently large. In other words, αk = 1 satisfies the line search condition (2.4) for k ∈ J sufficiently
large. �

By the definition of tk , we see that xk+1 = xk + dk holds for all sufficiently large k. Therefore, Algorithm 1
becomes the Newton method or quasi-Newton method for sufficiently large k. The superlinear convergence result can
be established as Proposition 1.3.2 in [20].

4. Numerical results

In this section, we present preliminary computational results to illustrate the performance of the nonmonotone
strategy (1.8). We choose test functions from Moré, Garbow and Hillstrom [21]. All our experiments are performed
in MATLAB Version 6.5. Some fixed parameter values are given as follows

∆1 = 0.5, λ = 0.5, δ = 0.4, kmax = 500.
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Table 1
Comparisons of Mtrls and Ntrls2

Problem Dim Mtrls Ntrls2
ni /n f /ng /ns ni /n f /ng /ns

Freudenstein and Roth 2 15/16/16/0 15/16/16/0
Beale 2 16/17/17/0 16/17/17/0
Helical valley 3 33/36/36/2 33/36/36/2
Bard 3 25/26/26/0 25/26/26/0
Gulf research and development 3 40/43/43/2 42/43/43/0
Box three-dimensional 3 54/55/55/0 54/55/55/0
Powell singular 4 36/38/38/1 51/52/52/0
Wood 4 41/42/42/0 41/42/42/0
Osborne 2 11 61/67/67/5 60/65/65/4
Extended Rosenbrock 1000 52/56/56/3 52/54/54/1

1500 50/55/55/4 49/52/52/2
2000 56/60/60/3 51/54/54/2

Extended Powell Singular 1000 77/78/78/0 75/76/76/0
1500 94/96/96/1 79/80/80/0
2000 102/104/104/1 84/86/86/1

Discrete integral equation 1000 13/14/14/0 13/14/14/0
2000 14/15/15/0 14/15/15/0

Extended Beale 1000 28/29/29/0 24/25/25/0
2000 35/36/36/0 31/32/32/0

Broyden tridiagonal 1000 109/110/110/0 105/106/106/0
2000 115/116/116/0 108/109/109/0

Broyden banded 1000 110/111/111/0 110/111/111/0
2000 125/126/126/0 114/115/115/0

Linear function — full rank 1000 128/129/129/0 101/102/102/0

Bk is updated by BFGS formula

Bk+1 = Bk +
yk yT

k

sT
k yk

−
BksksT

k Bk

sT
k Bksk

,

where sk = xk+1 − xk and yk = gk+1 − gk , we let Bk+1 = Bk as sT
k yk ≤ 0. In all tests, the initial matrix B1 is chosen

as | f1|I , where I is the identify matrix. The stopping condition is

max{‖g(xk)‖, ‖ f (xk)− f (x∗)‖} ≤ 10−6.

Firstly, to illustrate that the nonmonotone strategy (1.8) is not inferior to the corresponding monotone strategy,
especially for larger-dimensional test problems. We give test results in Table 1. Secondly, to show that the
nonmonotone strategy (1.8) is as effective as the nonmonotone strategy (1.5), we provide results in Tables 2 and
3. In Table 2, parameter η in both nonmonotone strategies is of fixed value. In Table 3, parameters ηk are varied.
Finally, the numerical results of Ntrls2 under different parameter values µ are presented in Table 4.

Notations listed in tables are defined as:

• Problem: the names of the test problems;
• Dim: the dimensions of the problems;
• ni : the number of iterations;
• n f : the number of function evaluations;
• ng: the number of gradient evaluations;
• ns : the number of line searches;
• Mtrls: the Algorithm 3.1 given by Nocedal and Yuan [9];
• Ntrls1: the nonmonotone strategy (1.5) is used in Algorithm 1;
• Ntrls2: the nonmonotone strategy (1.8) is used in Algorithm 1.
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Table 2
Comparisons of Ntrls1 and Ntrls2 with fixed values ηk

Problem Dim Ntrls1(0.15) Ntrls1(0.85) Ntrls2(0.15) Ntrls2(0.85)
ni /n f /ng /ns ni /n f /ng /ns ni /n f /ng /ns ni /n f /ng /ns

FROTH 2 15/16/16/0 15/16/16/0 15/16/16/0 15/16/16/0
BEALE 2 16/17/17/0 16/17/17/0 16/17/17/0 16/17/17/0
HELIX 3 33/36/36/2 31/32/32/0 33/36/36/2 31/32/32/0
BARD 3 25/26/26/0 25/26/26/0 25/26/26/0 25/26/26/0
GULF 3 42/43/43/0 42/43/43/0 42/43/43/0 42/43/43/0
BOX 3 54/55/55/0 55/56/56/0 54/55/55/0 55/56/56/0
SING 4 51/52/52/0 51/52/52/0 51/52/52/0 51/52/52/0
WOOD 4 41/42/42/0 41/42/42/0 41/42/42/0 41/42/42/0
OSB2 11 60/65/65/4 69/72/72/2 60/65/65/4 65/69/69/3
ROSEX 100 45/48/48/2 54/56/56/1 45/48/48/2 54/56/56/1

300 46/52/52/5 60/61/61/0 46/52/52/5 60/61/61/0
500 53/57/57/3 63/66/66/2 53/57/57/3 73/76/76/2

1000 54/57/57/2 66/67/67/0 54/57/57/2 60/63/63/2
SINGX 200 75/77/77/1 75/76/76/0 75/77/77/1 75/76/76/0

500 79/81/81/1 85/86/86/0 79/81/81/1 85/86/86/0
1000 75/76/76/0 75/76/76/0 75/76/76/0 75/76/76/0

PEN1 10 103/107/107/3 183/184/184/0 103/107/107/3 190/191/191/0
20 170/175/175/4 227/228/228/0 170/175/175/4 227/228/228/0
40 361/365/365/3 393/394/394/0 361/365/365/3 393/394/394/0

PEN2 10 285/311/311/25 402/415/415/12 285/311/311/25 395/407/407/11
20 369/383/383/13 446/451/451/4 369/383/383/13 446/451/451/4
30 426/431/431/4 474/475/475/0 426/431/431/4 474/475/475/0

VARDIM 100 40/41/41/0 39/40/40/0 40/41/41/0 40/41/41/0
IE 500 8/9/9/0 10/11/11/0 8/9/9/0 8/9/9/0

1000 13/14/14/0 13/14/14/0 13/14/14/0 13/14/14/0
2000 14/15/15/0 14/15/15/0 14/15/15/0 14/15/15/0

TRID 200 47/48/48/0 47/48/48/0 47/48/48/0 47/48/48/0
500 79/80/80/0 79/80/80/0 79/80/80/0 79/80/80/0

BAND 200 84/85/85/0 84/85/85/0 84/85/85/0 84/85/85/0
500 97/98/98/0 97/98/98/0 97/98/98/0 97/98/98/0

1000 110/111/111/0 110/111/111/0 110/111/111/0 110/111/111/0
LIN 500 91/92/92/0 91/92/92/0 91/92/92/0 91/92/92/0

To investigate whether the nonmonotone trust region strategy is superior to monotone trust region strategy, we
compare our algorithm with the Algorithm 3.1 proposed by Nocedal and Yuan [9], which is a pioneering work
incorporating line search into the trust region method. In this test, both parameters µ and η are set to be 0.25.

Table 1 suggests that nonmonotone linesearch (1.8) is quite promising. We can see in Table 1 that for most larger-
dimensional test problems, Ntrls2 takes fewer iterations and function evaluations than Mtrls.

In the second experiment, parameter η, both in (1.5) and (1.8), is fixed value. We consider two cases, say, η = 0.15
and η = 0.85. Parameter µ is given as 0.25. Other parameter values are declared as above.

In the third experiment, we consider various parameters ηk . In theory, the best convergence results were obtained
by dynamically varying ηk if the iterates were far away from the optimum, using values closer to 1, and if not, using
values closer to 0. Therefore we set ηk = 0.95 for k ∈ [1, 20], ηk = 0.5 for k ∈ [21, 40], ηk = 0.25 for k ∈ [41, 60]

and ηk = 0.01 for k ≥ 61. This test is done under two different values of µ, namely, µ = 0.25 and µ = 0.75. Other
parameter values are similar to the above experiment.

Tables 2 and 3 show that the results of nonmonotone strategies (1.8) and (1.5) are almost identical for the given
problems.

Finally, we give an experiment to observe the impacts of µ. As we shall see, the numbers for using line search
depend on the value of µ. If µ tends to zero, it means that the trial step can be accepted even if the ratios between the
actual reductions and the predicted reductions are very small. In this case, the line search is used infrequently in the
algorithm. On the other hand, if µ tends to 1, ρk ≥ µ is not necessarily satisfied for many k’s. Consequently, the line
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Table 3
Comparisons of Ntrls1 and Ntrls2 with varied values ηk

Problem Dim Ntrls1 (µ = 0.25) Ntrls1 (µ = 0.75) Ntrls2 (µ = 0.25) Ntrls2 (µ = 0.75)
ni /n f /ng /ns ni /n f /ng /ns ni /n f /ng /ns ni /n f /ng /ns

FROTH 2 15/16/16/0 15/16/16/0 15/16/16/0 16/18/18/1
BEALE 2 16/17/17/0 16/17/17/0 16/17/17/0 15/17/17/1
HELIX 3 31/32/32/0 31/32/32/0 31/32/32/0 31/32/32/0
BARD 3 25/26/26/0 25/26/26/0 25/26/26/0 24/26/26/1
GULF 3 42/43/43/0 42/43/43/0 42/43/43/0 56/59/59/2
BOX 3 55/56/56/0 55/56/56/0 55/56/56/0 55/56/56/0
SING 4 51/52/52/0 51/52/52/0 51/52/52/0 50/52/52/1
WOOD 4 41/42/42/0 41/42/42/0 41/42/42/0 41/42/42/0
OSB2 11 63/67/67/3 92/96/96/3 62/67/67/4 62/68/68/5
ROSEX 100 51/53/53/1 51/53/53/1 51/53/53/1 51/53/53/1

300 54/56/56/1 54/56/56/1 54/56/56/1 54/56/56/1
500 52/56/56/3 51/56/56/4 52/56/56/3 51/56/56/4

1000 51/55/55/3 51/55/55/3 51/55/55/3 51/55/55/3
SINGX 200 75/77/77/1 75/77/77/1 75/77/77/1 75/77/77/1

500 93/94/94/0 86/88/88/1 93/94/94/0 86/88/88/1
1000 75/76/76/0 75/76/76/0 75/76/76/0 75/76/76/0

PEN1 10 110/113/113/2 101/105/105/3 110/113/113/2 101/105/105/3
20 172/176/176/3 172/176/176/3 175/177/177/1 175/177/177/1
40 363/367/367/3 364/368/368/3 364/367/367/2 365/369/369/3

PEN2 10 296/321/321/24 279/306/306/26 286/309/309/22 259/286/286/26
20 406/421/421/14 376/393/393/16 406/421/421/14 376/393/393/16
30 443/447/447/3 435/439/439/3 449/454/454/4 444/451/451/6

VARDIM 100 40/41/41/0 40/41/41/0 39/40/40/0 40/41/41/0
IE 500 8/9/9/0 8/9/9/0 10/11/11/0 8/9/9/0

1000 13/14/14/0 13/14/14/0 13/14/14/0 13/14/14/0
2000 14/15/15/0 14/15/15/0 14/15/15/0 14/15/15/0

TRID 200 47/48/48/0 47/48/48/0 47/48/48/0 47/48/48/0
500 79/80/80/0 79/80/80/0 79/80/80/0 79/80/80/0

BAND 200 84/85/85/0 84/85/85/0 84/85/85/0 84/85/85/0
500 97/98/98/0 97/98/98/0 97/98/98/0 97/98/98/0

1000 110/111/111/0 110/111/111/0 110/111/111/0 110/111/111/0
LIN 500 91/92/92/0 91/92/92/0 91/92/92/0 91/92/92/0

search would be used frequently in the algorithm. In terms of Tables 2 and 3, we find that the varieties of ηk have little
effect on performance for the given problems. Therefore in this test, we let ηk be a fixed value of 0.5.

Table 4 implies that, the parameter values of µ have little effect on computation. This observation implies that the
ratios between the actual reduction Dk − f (xk + dk) and the predicted reduction φk(0)− φk(dk) are large enough in
most of the cases.

5. Concluding remarks

This paper presents a nonmonotone technique based on the nonmonotone technique proposed by Zhang and
Hager [16]. The main distinction of techniques (1.8) and (1.5) is that the nonmonotone term of the former is only
a simple convex combination of its previous one and fk . However, the latter induces the complex ηk and Qk . Based on
(1.8), we developed a nonmonotone trust region algorithm, and the actual reduction and line search in our algorithm
are nonmonotonic.

We have established global and superlinear properties and demonstrated how this technique can be efficiently
implemented. Finally, we have provided the computational results of our preliminary numerical experiments. The
theoretical and the computational results indicate that this nonmonotone technique has considerable practical utility
for solving unconstrained optimization problems.



N.-z. Gu, J.-t. Mo / Computers and Mathematics with Applications 55 (2008) 2158–2172 2171

Table 4
Numerical results of Ntrls2 with η = 0.5 under different values of µ

Problem Dim Ntrls2 (µ = 0.25) Ntrls2 (µ = 0.5) Ntrls2 (µ = 0.75) Ntrls2 (µ = 1)
ni /n f /ng /ns ni /n f /ng /ns ni /n f /ng /ns ni /n f /ng /ns

FROTH 2 15/16/16/0 15/16/16/0 16/18/18/1 16/18/18/1
BEALE 2 16/17/17/0 16/17/17/0 15/17/17/1 15/17/17/1
HELIX 3 31/32/32/0 31/32/32/0 31/32/32/0 31/32/32/0
BARD 3 25/26/26/0 25/26/26/0 24/26/26/1 24/26/26/1
GULF 3 42/43/43/0 42/43/43/0 51/54/54/2 49/53/53/3
BOX 3 55/56/56/0 55/56/56/0 55/56/56/0 55/56/56/0
SING 4 51/52/52/0 51/52/52/0 50/52/52/1 50/52/52/1
WOOD 4 41/42/42/0 41/42/42/0 41/42/42/0 41/42/42/0
OSB2 11 63/68/68/4 63/68/68/4 60/67/67/6 59/66/66/6
ROSEX 100 49/52/52/2 49/53/53/3 49/53/53/3 42/49/49/6

300 48/53/53/4 48/53/53/4 48/53/53/4 46/52/52/5
500 53/57/57/3 53/57/57/3 53/58/58/4 52/57/57/4

1000 51/55/55/3 51/55/55/3 51/55/55/3 50/54/54/3
SINGX 200 75/77/77/1 75/77/77/1 75/77/77/1 75/77/77/1

500 93/94/94/0 86/88/88/1 86/88/88/1 86/88/88/1
1000 75/76/76/0 75/76/76/0 75/76/76/0 75/76/76/0

PEN1 10 110/113/113/2 107/111/111/3 101/105/105/3 101/105/105/3
20 175/177/177/1 175/177/177/1 175/177/177/1 169/174/174/4
40 364/367/367/2 364/367/367/2 365/369/369/3 364/369/369/4

PEN2 10 281/302/302/20 300/323/323/22 300/334/334/33 282/318/318/35
20 420/433/433/12 411/430/430/18 394/406/406/11 400/416/416/15
30 431/433/433/1 434/437/437/2 434/437/437/2 431/435/435/3

VARDIM 100 40/41/41/0 40/41/41/0 40/41/41/0 40/41/41/0
IE 500 8/9/9/0 8/9/9/0 8/9/9/0 9/11/11/1

1000 13/14/14/0 13/14/14/0 13/14/14/0 13/14/14/0
2000 14/15/15/0 14/15/15/0 14/15/15/0 14/15/15/0

TRID 200 47/48/48/0 47/48/48/0 47/48/48/0 47/48/48/0
500 79/80/80/0 79/80/80/0 79/80/80/0 79/80/80/0

BAND 200 84/85/85/0 84/85/85/0 84/85/85/0 84/85/85/0
500 97/98/98/0 97/98/98/0 97/98/98/0 97/98/98/0

1000 110/111/111/0 110/111/111/0 110/111/111/0 110/111/111/0
LIN 500 91/92/92/0 91/92/92/0 91/92/92/0 91/92/92/0
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