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genic heating data, an important component of the urban energy budget for cities across the world.
Incorporation of anthropogenic heating data as inputs to existing climate modeling systems has direct
societal implications ranging from improved prediction of energy demand to health assessment, but such
data are lacking for most cities. To address this deficiency we have applied a standardized procedure to
develop a national database of seasonally and diurnally varying anthropogenic heating profiles for 61 of

ii{;vggjgemc heating the largest cities in the United Stated (U.S.). Recognizing the importance of spatial scale, the anthropo-
Urban climate genic heating database developed includes the city scale and the accompanying greater metropolitan
Atmospheric models area. Our analysis reveals that a single profile function can adequately represent anthropogenic heating
Waste heat during summer but two profile functions are required in winter, one for warm climate cities and another

for cold climate cities. On average, although anthropogenic heating is 40% larger in winter than summer,
the electricity sector contribution peaks during summer and is smallest in winter. Because such data are
similarly required for international cities where urban climate assessments are also ongoing, we have
made a simple adjustment accounting for different international energy consumption rates relative to
the U.S. to generate seasonally and diurnally varying anthropogenic heating profiles for a range of global
cities. The methodological approach presented here is flexible and straightforwardly applicable to cities
not modeled because of presently unavailable data. Because of the anticipated increase in global urban
populations for many decades to come, characterizing this fundamental aspect of the urban environment
— anthropogenic heating — is an essential element toward continued progress in urban climate

assessment.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Background and metivation

Energy consumption in cities leads to emissions of waste heat

into the urban air shed. These emissions arise from the functioning

I of cars, electricity use in buildings (e.g., from building heating,
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density. At the continental scale anthropogenic heat emissions are
small, averaging less than 0.4 W/m? in the United States, less than
0.7 W/m? in western Europe, and 0.2 W/m? in China (Flanner,
2009). The greater population density at the metropolitan or city
scales results in substantially larger magnitudes of Qr. For example,
using energy consumption inventories at the city scale researchers
have estimated anthropogenic heat emissions on the order of
10—100 W/m? for cities as diverse as Lodz, Poland (Klysik, 1996) and
Philadelphia PA, USA (Fan and Sailor, 2005). Sailor and Lu (2004)
present detailed summer and winter profiles for 6 cities in the
United States (Atlanta, Chicago, Los Angeles, Salt Lake City, San
Francisco, and Philadelphia). Their results illustrate the important
role of both local climate and population density in affecting the
magnitude of Qr. For example, while San Francisco has a population
density of roughly 0.00599 persons/m?, the winter magnitude of Q¢
in Chicago (with a population density of 0.00492 persons/m?) is
roughly 7 W/m? greater than that of San Francisco. Conversely,
despite the relatively harsh winter conditions in Salt Lake City, its
low population density results in a much lower winter Qs (~12 W/
m?) than that of Los Angeles (~30 W/m?).

The notion of scale must be considered when estimating urban-
induced Qr and subsequent impacts on urban meteorology and
climate. At the scale of a city block, the magnitude of anthropogenic
heating from the building sector increases proportionally with the
height (number of floors) of buildings. Thus, in central Tokyo,
Ichinose et al. (1999) found that Qs exceeded 400 W/m? during the
daytime and reached values up to 1590 W/m? in winter. Therefore,
the magnitude of anthropogenic heating varies substantially both
as a function of underlying climate, but also in direct proportion to
the population density of the region under study. Furthermore,
within any single city, the magnitude of anthropogenic heating
varies as a function of the spatial extent of the area of analysis,
necessarily incorporating diverse types of urban form and function
(Stewart and Oke, 2012) with contributions depending on localized
energy consumption, traffic patterns, and microclimate. Hence, Qris
typically largest at the neighborhood scale in downtown areas, is
lower in magnitude when averaged over the city, and lower still
when averaged over the greater metropolitan region.

Anthropogenic heating can be an important component of the
urban energy budget. For example, Fan and Sailor (2005) found that
inclusion of anthropogenic heating in mesoscale modeling of
Philadelphia resulted in air temperature elevations as large as
2—3 °C in winter. Salamanca et al. (2014) have similarly shown, via
utility of mesoscale modeling with the Weather Research and
Forecasting (WRF) model dynamically coupled to a building energy
parameterization, that usage of air conditioning (AC) systems
increased summertime nighttime air temperatures by more than
1 °C for the Phoenix metropolitan area. Notably, in addition to
highlighting this non-negligible warming effect, the authors
demonstrate that explicit representation of waste heat from AC
systems improved 2m-air temperature correspondence to obser-
vations, thereby confirming the critical role of this aspect of the
urban energy balance for improved predictability.

Inclusion of Qs clearly has significant implications for urban
climate, air quality, and energy demand. Thus, modeling efforts
aimed at investigating the urban environment must appropriately
characterize this aspect of the urban energy balance. At the present
time, users have two choices. First, usage of the WRF system (which
is easily coupled to a single layer urban canopy parameterization by
means of a namelist setting the user may turn on), or other similar
modeling systems, provides a default anthropogenic heating profile
scaled by a magnitude parameter (in WRF, these default values are
90, 50, and 20 W/m? respectively for commercial, high-density
residential, and low-density residential urban land categories).
While these profiles (Fig. 1) are user-editable, the lack of available
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Fig. 1. Representative diurnal profiles of anthropogenic heating available in WRE.

anthropogenic heating data for many cities increases the likelihood
that users simply use the profiles unchanged. In some cases, lack of
data leads urban modelers to either set anthropogenic heating
magnitudes off (e.g., Holt and Pullen, 2007), or to use custom profiles
that neglect some key emissions component such as the vehicle
sector (e.g., Lin et al., 2008). Maximum values occur at 8am and 5pm
local time, regardless of city or season. A second option within WRFis
to use the BEP + BEM (building effect parameterization with inte-
grated building energy model) option. However, as noted by Sala-
manca (Salamanca et al, 2012) this approach may lead to
underestimation of the anthropogenic heat effect as it completely
ignores emissions from transportation. Alternatively, researchers
can develop their own city-specific diurnal profile of Q¢ for their
region of interest. Development of detailed representations for select
regions (Chow et al., 2014) has begun, but coordinated local agency
(e.g., for provision of readily accessible and appropriate data) and
institutional efforts (e.g., for comprehensive multi-scale modeling of
the urban air shed coupled to the overlying atmosphere) are required
for the representation of spatially explicit, time-varying profiles of
Qr. Such coordination remains costly and therefore elusive for many
cities, but the need for the creation of a national (and by extension
international) anthropogenic heating database is as essential as ever
given the current, and projected, hydroclimatic significance of urban
areas (Georgescu et al., 2014), and is therefore in high demand for
individual researchers, as well as local, state, and national planning
agencies addressing urban sustainability concerns.

To address the growing need for a national database of
anthropogenic heating profiles, we have applied a published top-
down methodology (Sailor and Lu, 2004) to develop representa-
tive month-specific Qr profiles for 61 of the largest U.S. cities. The
method is “top-down” in that it uses suitably downscaled coarse
spatial and temporal resolution data to estimate diurnal profiles for
cities. These data have been obtained from the Bureau of Trans-
portation Statistics (U.S. Department of Transportation), the Energy
Information Administration (U.S. Department of Energy), the Na-
tional Climatic Data Center (U.S. Department of Commerce), and
the Urban Transportation Planning Package (U.S. Census). For each
urban area we have calculated diurnal profiles for two spatial
scales: city scale, and the accompanying greater metropolitan area.
For presentation purposes, however, we will summarize only the
city-scale (i.e., municipal definition of the spatial extent) results
here, but have made these and metropolitan area results available
online at geoplan.asu.edu/research-and-outreach/projects/AHdata.

2. Methodology

There are two basic approaches to estimating diurnal profiles of
Qr. Starting at the neighborhood scale, one approach is to monitor
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individual building energy consumption and to use roadway traffic
count and fuel economy data to assess heat released from neigh-
borhood traffic. Such a bottom-up approach is tedious, particularly if
the goal is to develop detailed profiles for many cities. However, in a
recent variation of this approach, Lee et al. (2014 ) applied regression
modeling to the national emissions inventory database (NEI), to
arrive at 4 km resolution hourly estimates of anthropogenic heat
emissions across the U.S. While promising, the method's accuracy is

Table 1

limited by the underlying assumption that locations of pollutant
emissions are coincident with locations of heat emissions—which is
not true of the building sector. Further, the approach is limited to the
spatial boundaries of the NEI dataset (U.S.). Alternatively, one can
start with coarser resolution data, in time and space, and scale as
needed to estimate Qs profiles at finer scales. This latter approach is
particularly useful for the present work, where the goal is to produce
detailed profiles for many cities using a standardized technique.

Cities used in the anthropogenic heating database project and their corresponding population densities, per capita daily vehicle distance traveled (DVD), and annual cooling

and heating degree days (CDD and HDD).

City State Pop. Dens (pers/km?) DVD (km/day) CDD (°C-day) HDD (°C-day)
Albuquerque NM 1123 46 909 4884
Anchorage AK 66 29 2 10193
Atlanta GA 1218 54 1883 2768
Austin TX 1024 50 2751 1903
Bakersfield CA 944 29 2258 2175
Baltimore MD 2962 34 1164 4764
Birmingham AL 561 56 2058 2677
Boston MA 4939 33 747 5681
Buffalo NY 2498 31 544 6617
Charlotte NC 949 48 1518 3388
Chicago IL 4572 33 843 6340
Cincinnati OH 1471 45 824 5473
Cleveland OH 1972 34 817 5762
Colorado Springs co 826 29 455 6292
Columbus OH 1399 42 1035 5250
Corpus Christi TX 734 40 3524 898
Dallas X 1358 50 2756 2284
Denver co 1515 36 769 6058
Detroit MI 1986 39 803 6137
El Paso X 982 30 2331 2474
Fort Worth TX 842 50 2756 2284
Fresno CA 1706 34 2124 2346
Houston X 1352 59 3155 1367
Indianapolis IN 876 52 1066 5378
Jacksonville FL 425 46 2665 1349
Kansas city MS 564 47 1360 5133
Las Vegas NV 1660 31 3568 1951
Lexington-Fayette KY 403 48 1190 4611
Los Angeles CA 3124 37 551 1419
Louisville KY 709 45 1614 4097
Memphis N 793 40 2258 2964
Miami FL 4300 31 4575 128
Milwaukee WI 2389 33 641 6894
Minneapolis MN 2737 39 753 7580
Nashville-Davidson TN 489 61 1646 3688
New Orleans LA 784 23 3005 1280
New York NY 10430 25 1105 4750
Oakland CA 2704 36 138 2873
Oklahoma city OK 369 39 1968 3634
Omaha NE 1242 30 1113 6167
Philadelphia PA 4394 30 1301 4613
Phoenix AZ 1080 44 4607 935
Pittsburgh PA 2132 37 736 5710
Portland OR 1689 38 424 4278
Raleigh NC 1091 49 1730 3247
Riverside CA 1446 39 1756 1446
Sacramento CA 1839 34 1178 2619
Salt Lake city uT 648 40 1160 5607
San Antonio X 633 47 3131 1496
San Diego CA 1552 38 720 1225
San Francisco CA 6633 36 164 2653
San Jose CA 2069 38 730 2001
Seattle WA 2800 42 189 4697
St. Louis MO 1991 46 1646 4535
Stockton CA 1826 30 1320 2643
Tampa FL 1143 37 3610 538
Toledo OH 1374 38 793 6145
Tucson AZ 886 35 3146 1511
Tulsa OK 769 36 2036 3573
Washington DC 3806 37 1549 4031
Wichita KS 927 34 1686 4594
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The actual method used in this study is based on the work
published in Sailor and Lu (2004). A summary of this approach is
presented here for reference. As a starting point, Qs is divided into
three components representing the major sources of waste heat in
the urban environment:

where the subscripts are for vehicles (V), building sector (B), and
human metabolism (M). The building sector can be further divided
into heat rejected directly from electricity consumption and heat
released from point-of-use heating fuels such as natural gas and
fuel oil.

Each component of the anthropogenic heating profile is based
on a population density formulation. That is, we first calculate per
capita energy intensity for the city and sector and then multiply
this value by the population density. While urban populations
generally swell during the day, most readily available population
data are for the resident population, which represents the
nocturnal populace. Analyses of detailed population data from the
U.S. Census (Bureau of Transportation Statistics, 2003) suggest the
daytime urban population is typically 50—100% higher than the
resident (or nocturnal) population. In the present study a daytime
increase factor was assumed for city-scale analyses. The scale factor
took on a value of 1.0 from 7pm in the evening until 6am in the
morning. It then transitioned linearly to a daytime value of 1.75
over the 2-h period from 7am to 9am, ramping back down to 1.0
from 5pm to 7pm. All nighttime population data were obtained
directly from the resident population data available from the U.S.
Census. At the larger metropolitan scale the daytime increase in
population is much smaller and was assumed negligible in this
work. The population data were then used with per capita data for
electricity, heating fuels, and transportation fuel use.

One enhancement in the present work relative to the original
manuscript (Sailor and Lu, 2004) is that we now correct for varia-
tions in weather from the state-level to the city-scale. Specifically,
the original method mapped monthly state-level energy con-
sumption data to the city scale simply by multiplying by the
appropriate population ratio. This approach ignored intra-state
climate variability, leading to similar per capita energy consump-
tion rates for different cities within any particular state. While city-
scale energy data are not commonly available, we have developed a
simple method for scaling state-level consumption data that re-
flects the weather-dependency of utility loads. Specifically, we
employed a method whereby regression models relating state-level
degree-days to state-level published consumption data are applied
using the corresponding city-level degree-day data (Sailor and
Vasireddy, 2006). This approach has been shown to significantly
reduce the error associated with the assumption that per capita
energy consumption is constant within any state.

3. Data resources

The goal of this study was to apply a standardized modeling
technique in an automated way to a wide range of U.S. cities with
diverse climates, geographies, and populations. The availability of
data ultimately limited the selection of available cities to 61 of the
largest U.S. cities, but the approach presented here can easily be
extended to other municipalities as data becomes available. The
selected cities, resident population density data (i.e., persons per
square kilometer), and daily vehicle distance estimates are pro-
vided in Table 1. This table also presents a summary of the annual
heating and cooling degree-days for each city (Arguez et al., 2012)
using the standard base temperature of 18.3 °C (65 °F).

3.1. Weather data

The National Climatic Data Center (NCDC) maintains climate
normal and actual weather data needed for incorporating weather
sensitivity into the mapping of state level energy data to the city
scale. Specifically, we used population-weighted state values of
monthly cooling and heating degree-days, courtesy of NCDC (series
5-1, 5-2, 2010). For the city-level degree-day data we accessed the
station normals database (Arguez et al., 2012). These data were
downloaded by year from ncdc.noaa.gov. This database allows
evaluation of monthly deviations from the monthly normals of
heating and cooling degree-days. From these resources we
extracted the year 2010 specific monthly heating and cooling
degree-days for all cities and states involved in our analysis.

3.2. Metabolism data

In prior work (Sailor et al., 2003), we found that metabolism is
generally a small component (~2—3%) of the total anthropogenic
heating profile. Nevertheless it is readily incorporated in our pop-
ulation density-based methodology. Specifically, the typical U.S.
diet consists of 2000—2500 kCal daily. Using a representative diet
of 2400 kCal and assumed nocturnal and daytime metabolic rates of
70 and 140 Watts, respectively (with a suitable 3-h linear transition
in morning and evening hours), we constructed metabolism pro-
files for each city. Since this metabolism happens both inside and
outside of buildings, it is important to make sure that the method
for estimating waste heat from buildings does not result in double
counting of human metabolism. As described below, the evaluation
of waste heat from the building sector only accounts for direct
energy use, and not for metabolic heat rejected by the HVAC sys-
tems from buildings. Thus, separate inclusion of the metabolism
component is appropriate.

3.3. Electricity data
Utilities within the U.S. are required to report state level

Table 2

Numeric values of hourly non-dimensional profile function values for the universal
summer (August) profile and the two winter (January) profiles, where Qfyax is daily
maximum Qf. Cold winter cities have annual HDD >4000 °C -day (18.3 °C base).

Hour Summer profile Winter profile
Cold winter cities Warm winter cities

1 0.25 Qfinax 0.37 Qfmax 0.28 Qfhax
2 0.23 Qfimax 0.35 Qfimax 0.26 Qfimax
3 0.25 Qfmax 0.35 Qfmax 0.25 Qfnax
4 0.21 Qfphax 0.34 Qfinax 0.25 Qf pax
5 0.22 Qfmax 0.35 Qfmax 0.26 Qf nax
6 0.29 Qfmax 0.40 Qfmax 0.34 Qfmax
7 0.53 Qfmax 0.62 Qfmax 0.58 Qfmax
8 0.82 Qfinax 0.86 Qfinax 0.87 Qf nax
9 0.87 Qfimax 0.95 Qfmax 0.92 Qfimax
10 0.80 Qfmax 0.89 Qfmax 0.84 Qfmax
11 0.80 Qfinax 0.88 Qfimax 0.83 Qfhax
12 0.84 Qfimax 0.91 Qfmax 0.86 Qfimax
13 0.89 Qfmax 0.93 Qfmax 0.90 Qfmax
14 0.89 Qfmax 0.93 Qfmax 0.90 Qfimax
15 0.93 Qfpnax 0.96 Qfphax 0.93 Qfinax
16 1.00 Qfmax 1.00 Qfmax 1.00 Qfmax
17 0.90 Qfmax 0.89 Qfmax 0.90 Qfimax
18 0.78 Qfmax 0.77 Qfmax 0.79 Qfinax
19 0.56 Qfmax 0.58 Qfmax 0.57 Qfmax
20 0.48 Qfmax 0.52 Qfmax 0.50 Qfimax
21 0.44 Qfnax 0.49 Qfimax 0.45 Qf nax
22 0.41 Qfphax 0.47 Qfpmax 0.43 Qf nax
23 0.36 Qfmax 0.44 Qfmax 0.39 Qfpmax
24 0.30 Qfphax 0.40 Qfihax 0.33 Qfipax
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aggregated monthly totals of electricity consumption (and other
fuels). These sector-specific data are archived by the U.S. Depart-
ment of Energy's Energy Information Administration (EIA 2010a, b).
For each state in our analysis these monthly consumption data were
obtained, converted to daily per capita consumption, and scaled to
reflect weather-related differences at the city scale. These data
provide a sense of the daily per capita magnitude of electricity
consumption (Eppc), but do not provide detail regarding the diurnal
variability of this usage. In order to develop such a diurnal profile,
we assumed the hourly electricity consumption (Eggr) for any city
can be written as Egyg = Eppc -f (hour), where

24
> f(hour) = 1.0 (2)
1

In prior work (Sailor and Lu, 2004), we obtained hourly load
profile data from a number of independent service operators (ISOs).
After suitable non-dimensionalization of the profiles we found that
load profiles could be represented reasonably well with two
“standard” profiles — one for summer, and one for winter.

3.4. Heating fuel data

The EIA also collects and archives state monthly usage totals for
various heating fuels (e.g., natural gas (NG), liquid petroleum gas
(LPG), kerosene, fuel oil). While NG is the dominant heating fuel in
the US, the contributions by other heating fuels to the total
anthropogenic heating profile cannot be neglected. The fraction of
total heating fuel demand met by natural gas (Fyg) is generally in
the range of 0.60—0.90, depending upon the state and sector. The
approach taken here was to scale NG profiles by Fyg to estimate
total heating fuel profiles.

While data for hourly electricity consumption rates are rela-
tively easy to obtain (for ISO service areas) the required data to
generate the corresponding diurnal profiles for heating fuels are
not typically available. Due to this lack of data, we opted to neglect
the diurnal variability of heating fuel consumption in the present
analysis. It is believed that this causes relatively little error in the
summertime profiles, but may have the unintended result of
lowering the midmorning peak in anthropogenic heating for winter
months, and can therefore be considered a conservative estimate
for this time of year.

3.5. Transportation data

Estimation of heat released from vehicles requires detailed
hourly profiles of traffic on major and minor roadways throughout
a city's area. It is also desirable to have comprehensive fleet infor-
mation, including an estimate of the fleet-averaged hourly speed
and fuel economy. The U.S. Department of Transportation publishes
annual summaries of Daily Vehicle Miles Traveled (DVMT) for
major urbanized areas (USDoT, 2013). These data are readily avail-
able for U.S. cities with populations greater than 50,000 (see www.
fhwa.dot.gov/policyinformation). We converted these data to per
capita daily vehicle distance (DVD) in units of km/person and
combined these DVD estimates with per capita state-level gasoline
sales (USDoT, 2011) to arrive at estimates of fleet fuel economy
within each city. For the case of Washington D.C., where the loca-
tion of purchase may not correlate well with location of use, data
from the surrounding states of Virginia and Maryland were aver-
aged with those from Washington D.C. to arrive at an estimate of
D.C. area fleet fuel economy. New Jersey and Alaska were the states
with the lowest average fuel economies of 17.9 (7.6 km per liter)
and 16.1 (6.8 km per liter) miles per gallon, respectively. Wyoming

and Indiana were the states with the highest fuel economies, at
26.0 (11.1 km per liter) and 25.0 (10.6 km per liter) miles per gallon,
respectively. The median fleet fuel economy across all states was
22.3 miles per gallon (9.5 km per liter).

It is generally reasonable to assume that per capita vehicle
distance traveled has little seasonal variation (Hallenbeck et al.,
1997). The hourly profile for vehicle emissions can be estimated
using hourly traffic data, where traffic counts are suitably converted
to fractions of daily traffic occurring within each hour. Given the
similarity among such profiles, we simply use the national profile
created by Hallenbeck et al. (1997).

With the hourly fractional traffic profiles (F;) defined above, and
the values for per capita daily vehicle distance (DVD), one can
calculate the total anthropogenic heat release in any hour from
vehicles by:

Qv (h) = DVD-F¢(h)- ppop(h)-EV, (3)

where ppop(h) is the hourly population density and EV is the energy
release per vehicle per kilometer of travel, given by:
EV — NHC ' ppe) 7

E (4)

where NHC is the net heat of combustion of gasoline (J kg~ 1), pruel is
the fuel density (kg 1" 1), and FE is the mean fuel economy (km 17 1).
The typical heat of combustion for automotive gasoline is
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45 x 10%J kg™, and its nominal density is 0.75 kg 1. For a fleet fuel
economy of 9.5 km per liter, EV takes on a value of 3605 ] m~! of
vehicle travel.

4. Results
The anthropogenic heating database project for U.S. cities rep-

resents a compromise between detail and ease of analysis. In order
to facilitate the application of the methodology, we implemented it

Table 3

using a spreadsheet approach allowing for automation of the data
input and manipulation process. A final set of twelve monthly
spreadsheets was compiled from these data. These spreadsheets
provide hourly anthropogenic heating estimates for each of the 61
cities. Thus, a total of 732 distinct anthropogenic heating profiles
have been developed. This is far too much data to effectively
communicate in a single manuscript. For presentation purposes, we
nominally divide the 61 cities into two climate types: cold climate
and warm climate cities.

Profile characteristics for city-scale anthropogenic heating in summer (August) and winter (January).

City State Qfmax summer (W/m?) Qfmax Winter (W/m?) Winter profile
Albuquerque NM 7.86 10.8 Cold
Anchorage AK 0.47 0.8 Cold
Atlanta GA 11.87 133 Warm
Austin X 9.65 9.8 Warm
Bakersfield CA 5.88 6.1 Warm
Baltimore MD 25.49 34.9 Cold
Birmingham AL 6.45 6.7 Warm
Boston MA 41.06 62.3 Cold
Buffalo NY 17.44 28.5 Cold
Charlotte NC 8.40 9.9 Warm
Chicago IL 34.64 57.5 Cold
Cincinnati OH 13.36 193 Cold
Cleveland OH 16.23 243 Cold
Colorado Springs co 5.83 8.3 Cold
Columbus OH 11.95 17.2 Cold
Corpus Christi TX 7.53 7.1 Warm
Dallas X 13.99 14.3 Warm
Denver co 11.80 15.7 Cold
Detroit MI 16.92 26.2 Cold
El Paso X 8.27 9.0 Warm
Fort Worth X 8.67 8.9 Warm
Fresno CA 11.61 123 Warm
Houston TX 13.00 12.6 Warm
Indianapolis IN 8.79 12.0 Cold
Jacksonville FL 3.82 3.7 Warm
Kansas city MS 5.64 74 Cold
Las Vegas NV 15.38 14.2 Warm
Lexington-Fayette KY 3.67 4.8 Cold
Los Angeles CA 21.54 22.6 Warm
Louisville KY 7.61 9.3 Cold
Memphis N 7.81 8.4 Warm
Miami FL 34.46 29.8 Warm
Milwaukee WI 17.88 27.8 Cold
Minneapolis MN 23.90 36.5 Cold
Nashville-Davidson TN 5.68 6.4 Warm
New Orleans LA 7.27 7.1 Cold
New York NY 62.87 96.6 Cold
Oakland CA 17.47 20.0 Warm
Oklahoma city OK 4.25 5.0 Warm
Omaha NE 10.64 15.7 Cold
Philadelphia PA 34.22 49.0 Cold
Phoenix AZ 9.22 7.7 Warm
Pittsburgh PA 16.35 25.5 Cold
Portland OR 11.74 14.4 Cold
Raleigh NC 10.29 11.8 Warm
Riverside CA 1091 109 Warm
Sacramento CA 12.43 13.9 Warm
Salt Lake city uT 4.92 6.6 Cold
San Antonio X 6.11 59 Warm
San Diego CA 10.84 11.2 Warm
San Francisco CA 42.77 48.5 Warm
San Jose CA 14.11 15.5 Warm
Seattle WA 23.08 28.2 Warm
St. Louis MO 20.84 26.0 Warm
Stockton CA 12.18 13.6 Warm
Tampa FL 9.48 8.4 Warm
Toledo OH 11.76 179 Cold
Tucson AZ 7.11 6.6 Warm
Tulsa OK 8.17 9.8 Cold
Washington DC 41.86 544 Cold
Wichita KS 8.44 11.2 Cold
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As illustrated in Table 2 the vast majority of the cities analyzed
had anthropogenic heating profiles that peak in winter. In fact, only
10 cities in the states of Florida, California, Arizona, Nevada, Texas,
and Louisiana had summer profiles that were larger than their
corresponding winter profiles. In comparing anthropogenic heating
profiles, however, it was generally found that summertime
anthropogenic heating profiles have a common shape regardless of
the underlying climate.

To determine if representative profiles could be used to repre-
sent anthropogenic heating, we undertook a two-stage (hierar-
chical average-linkage, followed by non-hierarchical k-means)
cluster analysis on non-dimensionalized profiles for the 61 U.S.
cities. This non-dimensionalization is accomplished by setting the
hourly maximum value of Q¢ for each city as characterized in Eq. (1).
Clustering of representative summer (July) profiles resulted in all

profiles falling into one cluster. This suggests that, provided a city-
scale multiplying factor can be determined, a single non-
dimensional profile function can be used to represent summer-
time anthropogenic heating in U.S. cities. Fig. 2a presents a box
plot of non-dimensional summer (July) profiles for all cities.
Wintertime profiles, however, show more dependence on cli-
matic region. Fig. 2b presents the results of a cluster analysis of
winter profiles. Two clusters of profiles resulted, one for cities with
cold winter climates and one for cities with warm winter climates.
This suggests that it is reasonable to define two non-dimensional
profiles for anthropogenic heating in winter—one that applies to
warmer cities, and one for colder cities. As shown by the non-
dimensional profiles in Fig. 2b, cold climate cities have relatively
higher nocturnal heating, a larger morning peak, and less vari-
ability during the day. Those cities that fell within a cold winter Qs
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Fig. 3. January diurnal profiles for the 8 U.S. cities with the largest anthropogenic heating magnitude for (a) summer, and (b) winter.
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Fig. 4. Relative contribution of each component to anthropogenic heating, averaged
over all cities for each month.

Table 4
Coefficients for regression models (Eqs. (5) and (6)) for seasonal maximum
anthropogenic heating results for all 61 cities.

Month Bo B1 B, RMSE (W/m?) R?

Winter -6.638 0.010 0.009 3.94 0.94
Spring —0.160 0.007 0.007 2.84 0.95
Summer 2.554 0.000 0.007 2.89 0.94
Autumn 0.618 0.006 0.007 2.70 0.95

profile could be classified as cities with total annual HDD >4000 °C-
days. Table 2 presents profile characteristics that can be used in
conjunction with maximum Qs values listed in Table 3, depending
upon whether the city is classified as a warm or cold winter climate
(e.g., HDD > 4000 °C-days). The summer and winter multipliers
used in these tables are for July and January, respectively.

Results for the 8 cities with the largest summer and winter
anthropogenic heating profiles are illustrated in Fig. 3. New York
tops the list in both seasons with a peak magnitude of 93.0 W/m? in
winter and 63 W/m? in summer. As mentioned earlier, the

Table 5

illustrated profiles are presented at city-scale. Focusing in at finer
resolution, for example the census tract within the central business
district, it is reasonable to expect the local magnitude to increase by
a factor of 10—20, but that at the same time the vertical height over
which this heat is released increases according to building height
(Sailor and Lu, 2004). Likewise, as the scale of analysis becomes
coarser, the magnitude of the anthropogenic heating diminishes.
We found that magnitudes at the city scale are typically a factor of
10—20 larger than those at the metropolitan scale (average factor
for the 61 cities examined here was ~17). This is a direct conse-
quence of the higher population densities at the city scale.

It is also instructive to consider the relative contribution that
each component makes to the total anthropogenic heating profile,
and to do so, we have calculated the relative contribution of vehi-
cles, electricity, heating fuels, and metabolism to the monthly
anthropogenic heat emissions for each city. Fig. 4 presents this
comparison summed across all cities. As would be expected, the
heating fuel contribution is largest in winter (months 1, 2, and 12)
and smallest in summer (months 6—8). The electricity sector
anthropogenic heating contribution is largest in summer and
smallest in winter. However, since electricity is also used for
heating (electric resistance heaters and fan power for air distribu-
tion), the variation between summer and winter electricity use is
less than it is for heating fuels. Monthly magnitudes for waste heat
emissions from vehicles and metabolism (averaged for all cities) are
constant throughout the year in our analysis at 3.85 and 0.29 W/m?,
respectively. Nevertheless, the relative contributions from the
vehicle sector and metabolism increase in summer since the total
anthropogenic heating is largest in winter. Specifically, averaged
across all cities, the daily average values of total anthropogenic
heating peak at 11.87 W/m? in January and are at a minimum value
of 8.44 W/m? in September.

4.1. Estimation process for other U.S. cities

In order to automate the profile generation process we
restricted ourselves to analysis of cities for which necessary data
were readily available. Because the underlying method relies
heavily on a population density formulation and is climate-
dependent, it is reasonable to consider the prospect of developing
a multiple parameter regression model to estimate the profiles.
Once such a model is developed it can then be applied to any city
not previously modeled. Before proceeding, however, it is impor-
tant to note that this process is inherently tied to the underlying

Per capita annual energy consumption ratios (fec) of various countries relative to that of the U.S. 2010 values have been used (source: IEA, 2010a, 2010b). Data are
separated by country membership in the Organisation for Economic Co-operation and Development (OECD).

Country Relative energy consumption rates f. (see Eq. (7))
Selected OECD countries Australia 0.69
Canada 1.19
Denmark 0.55
France 0.51
Germany 0.57
Italy 0.44
Japan 0.51
Sweden 0.77
United Kingdom 0.45
United States 1.00
Total all OECD 0.61
Selected non-OECD countries Brazil 0.22
Indonesia 0.13
India 0.08
China 0.23
Nigeria 0.14
Total all non-OECD 0.17
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energy intensity of the U.S. economy.

The results from the 732 individual anthropogenic heating
profiles (12 monthly profiles for 61 cities) were analyzed using a
stepwise multiple regression analysis to quantify the relative
importance of the factors that influence anthropogenic heat, in
order to develop a predictive model of maximum Qs for each season
that can be applied to other cities. From the independent variables
included in our analyses (HDD, CDD, DVD, population density), a
final set of models was determined for each season. The models for
winter, spring, and autumn comprised total monthly HDD and
population density, whereas the model for summer is reliant on
population density alone. The final predictive models are:

Qfinax(winter, spring, autumn) = 30 + PopDens*31 + HDD*52,
(5)

Qfingx(summer) = 80 + PopDens*g1, (6)

where degree day variables are monthly totals in °C-days, based on
a threshold temperature of 18.3 °C and PopDens depicts the pop-
ulation density in persons per square kilometer. The seasonal
values for the regression coefficients are given in Table 4 along with
Root Mean Square Error (RMSE) and R? values. The predicted value
of maximum Qf can be applied to the appropriate universal profile
to estimate diurnal profiles for each season of the year.

4.2. Non-U.S. city extrapolation

It should be noted that the value of Qgyax arrived at through
application of Egs. (5) and (6), and Table 2, may significantly
overestimate anthropogenic heating in cities within other coun-
tries where differences in infrastructure, end-use efficiency, and
demographics result in lower per capita consumption rates.
Therefore a correction factor applied to the results provided by
usage of Egs. (5) and (6) is necessary, to account for the fact that
individuals in a non-U.S. city would consume energy at a different
rate than their counterparts in similar U.S. climates.

As a first order correction we can compare the ratio of per capita
energy consumption in the target country to that in the U.S. The most
readily available data for this purpose are raw energy consumption
totals that can be converted to equivalent barrels of oil use per
person and then non-dimensionalized by dividing by the U.S. con-
sumption rate. Such sample energy consumption values (fe:) are
provided in Table 5 for a range of countries. If this ratio represents a
suitable correction factor it could be applied as a straightforward
multiplier to the value of Qgmax obtained from Egs. (5) and (6):

Table 6

Qfmax(non -us) :fec*Qfmaxa (7)

Table 6 presents Qgmax estimates for a number of countries
using this approach and data for the corresponding ratio of energy
consumption relative to U.S. consumption rates. The corre-
sponding summer and winter hourly anthropogenic heating
profiles for these 13 international cities are plotted in Fig. 5. Ab-
solute differences among the summertime profiles are consider-
ably less relative to the wintertime profiles. For example, the
summertime daytime absolute magnitude for Toronto, which
displays the greatest absolute values for this season, is about 3—4
times greater than anthropogenic heating for Copenhagen, which
displays the least values. During winter, the daytime absolute
magnitude for the city displaying the greatest anthropogenic
heating (Toronto) is about an order of magnitude greater than the
city displaying the least (Jakarta). The daytime wintertime values
for Toronto exceed 100 W/m?, and therefore exceed the values
obtained for New York City. This higher value is a product of
Canada's per capita energy consumption which in 2010 was 1.19
times greater than the U.S.

The values for Qgmax estimated through this extrapolation
process can be compared to similar studies investigating anthro-
pogenic heat emissions for cities across the world. One such study
employed the local scale urban consumption of energy (LUCY)
model to compare Qs in cities across a range of latitudes (Allen
et al., 2011). Maximum values of heat emission calculated using
the LUCY model were overall higher than our extrapolation
method (e.g. 577 W/m? compared to 93 W/m? for New York;
178 W/m? compared to 41 W/m? for Tokyo). These differences,
once again highlight the importance of scale when estimating
urban anthropogenic heat emissions. The profiles presented in the
current study were produced using city-scale data (with an added
correction for energy consumption for non-U.S. cities), whereas
the Qmax Vvalues estimated in Allen et al. (2011) come from the
highest individual 2.5' x 2.5’ grid cell within a city and therefore
highlights regions of the city with a higher magnitude of heat
emissions. The issue of spatial resolution is also highlighted in
Lindberg et al. (2013) where annual average Qr across London is
calculated using the LUCY model for spatial resolutions ranging
from 30” to 10'. Results from those simulations show a clear
relationship between spatial averaging and maximum values of
Qr. There are also differences in methodology that preclude a
direct comparison, for example: Qf was calculated for the months
of February and August in the LUCY study, compared to January
and July for the current study, and the current study includes a
daytime population increase factor, whereas population densities
used in LUCY are purely residential.

Estimated winter and summertime Qsmax for a selection of cities calculated from Egs. (5)—(7) and f... Degree data are from 2010. Total monthly HDD data are for January or July,

depending on hemisphere.

Country  City

Total annual HDD Total monthly winter HDD Population density (pers/km?) Maximum Qf summer (W/m?) Maximum Q; winter (W/m?)

Australia  Sydney 656 185 2100
Canada Toronto 3428 685 2650
Denmark Copenhagen 4305 639 1850
France Paris 2586 516 3550
Italy Rome 1123 314 2950
Japan Tokyo 1633 348 4750
Sweden  Stockholm 4627 780 2700
UK London 2681 457 5100
Brazil Sao Paulo 330 29 9000
Indonesia Jakarta 0 0 10500
India Mumbai 0 0 29650
China Shanghai 1633 398 13400
Nigeria Lagos 0 0 18150

24.48 21.81
53.27 103.26
17.19 41.06
30.58 39.95
21.93 23.10
40.92 37.14
35.12 74.50
38.77 39.16
33.45 17.79
23.06 11.97
40.07 21.77
52.06 36.60
42.92 22.96
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Fig. 5. (a) Summertime diurnal Qr profiles for selected non-U.S. cities. (b) Wintertime diurnal Qs profiles for selected non-U.S. cities. Note different axes scales for summer and

winter.

5. Conclusions

The anthropogenic heating database developed here (available
at geoplan.asu.edu/research-and-outreach/projects/AHdata) rep-
resents a valuable tool for urban climate modelers. With the
growing use of anthropogenic heating as a source term in the en-
ergy budget of urban climate models (Khan and Simpson, 2001;
Sailor and Fan, 2004; Feng et al., 2012; Georgescu et al., 2014),
there exists an urgent need for easily accessible estimates of
anthropogenic heating for large cities around the world. Such a
database is especially relevant for large-scale modeling applica-
tions where diverse cities, both in terms of local geography and
magnitude of anthropogenic heating, are simulated (e.g., Georgescu

et al.,, 2014), and several distinct place-based profiles are necessary
throughout the period of model integration.

At the same time it must be cautioned that the profiles devel-
oped here rely on a number of assumptions that limit their accuracy
and general applicability. Chief among these limitations are (1) the
lack of differentiation between workdays and non-workdays; (2)
lack of spatial differentiation of the profiles; and (3) potential
inaccuracies in the diurnal profile specifications for electricity and
heating fuel consumption. The first limitation is relatively easily
addressed through detailed analysis of traffic and energy con-
sumption data. The second limitation — that of spatial differentia-
tion can be addressed with readily available census data (as was
done by Sailor and Fan (2004) and more recently by Chow et al.
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(2014)). Of course, this requires significantly more effort and city-
specific analysis. The lack of city-specific detailed energy profiles
is believed to introduce relatively little error in the summer. This is
based in part on transportation profiles appearing to be relatively
similar across the country (Hallenbeck et al., 1997), and the fact that
heating fuel consumption is lower in the summer and relatively less
sensitive to temperature variability. In the winter, however, heating
fuel consumption is highly dependent upon temperatures and may
be expected to exhibit larger diurnal variation. Sailor and Lu (2004)
have estimated the diurnal variability in winter using logarithmic
models relating heating fuel consumption to temperature. The
models were developed using monthly data, but applied to diurnal
variations in temperature. While this approach has its place, it in-
troduces uncertainty that is not easily estimated due to the lack of
detailed data. We are currently addressing this issue through a
bottom-up analysis approach in which we model hourly energy
consumption of a representative suite of prototypical commercial
and residential buildings. This analysis may lead to more realistic
diurnal profiles of heating fuel consumption that can be applied in
the automated approach used for the anthropogenic heating
database project. It is also important to note that at the present
time the correction algorithm suggested by Eq. (7) for cities outside
the U.S. is preliminary and has yet to be validated. Nevertheless, it
represents a reasonable method for scaling initial estimates of
anthropogenic heating and hence makes the results of the
anthropogenic heating database project widely applicable to cities
around the world. At the present time a simplified software tool is
being developed to allow researchers to implement the results of
this study for any city of interest. Finally, although the data pre-
sented here has more immediate applicability for those in the
modeling community whose urban representation consists of a
single class (e.g., as available from the Moderate Resolution Imaging
Spectroradiometer) we caution against the direct inclusion of the Qs
profiles developed in this manuscript into urban canopy models
utilizing a multi-class urban representation (e.g., see Fig. 1).
Therefore, users are urged to scale the city-specific data provided
here appropriately, accounting for each urban land use class (e.g.,
Grossman-Clarke et al., 2005) utilizing readily available classifica-
tion data (in the U.S. such detailed classifications are available from
the National Land Cover Database; Fry et al., 2011) as well as class-
dependent parameters from the equations presented earlier.

The development of the rich set of seasonally and diurnally
varying anthropogenic heating profiles presented here serve as a
fundamental step forward in the continued investigation of urban
impacts on meteorology and climate, on air quality and energy
demand, and on the livelihoods of the many millions of in-
habitants moving into urban areas within the U.S. and globally.
Accurate representation of physical urban-atmosphere processes,
within state-of-the-art modeling systems, under contemporary
climate is necessary given projected changes of the urban land-
scape and continued emissions of long-lived greenhouse gases.
Therefore, strategic consideration of land-based adaptation and/or
mitigation approaches fundamentally relies on the utility of
applicable and reliant tools incorporating accurate and timely
data.

Acknowledgments

The authors wish to acknowledge Barrett, The Honors College at
Arizona State University for their support of JM Milne through his
senior thesis project. MG was supported by National Science
Foundation Grants EAR-1204774 and DMS-1419593, and U.S.
Department of Agriculture NIFA grant 2015-67003-23508. The
original methodological development (DJS and MAH) was sup-
ported by National Science Foundation Grant BCS-0410103.

References

Allen, L., Lingberg, F., Grimmond, C.S.B., 2011. Global to city scale urban anthropo-
genic heat flux: model and variability. Int. J. Climatol. 31, 1990—2005.

Arguez, A., Durre, L, Applequist, S., Vose, R.S., Squires, M.E, Yin, X., Heim, R.R].,
Owen, T.W., 2012. NOAA's 1981-2010 U.S. climate normals. Bull. Am. Meteorol.
Soc. 92 (11), 1687—1697.

Bureau of Transportation Statistics, 2003. Census Transportation Planning Package.
U.S. Department of Transporation, Bureau of Transportation Statistics.

Chow, W.T,, Salamanca, F.,, Georgescu, M., Mahalov, A., Milne, ].M., Ruddell, B.L,
2014. A multi-method and multi-scale approach for estimating city-wide
anthropogenic heat fluxes. Atmos. Environ. 99, 64—76. http://dx.doi.org/
10.1016/j.atmosenv.2014.09.053.

Energy Information Administration, 2010a. Electric power monthly. In: Energy In-
formation Administration. U.S. Department of Energy, Washington DC.

Energy Information Administration, 2010b. Natural Gas monthly. In: Energy Infor-
mation Administration. U.S. Department of Energy, Washington DC.

Fan, H., Sailor, D.J., 2005. Modeling the impacts of anthropogenic heating on the
urban climate of philadelphia: a comparison of implementations in two PBL
schemes. Atmos. Environ. 39 (1), 73—84.

Feng, ].M., Wang, Y.L, Ma, Z.G., Liu, Y.H., 2012. Simulating the regional impacts of
urbanization and anthropogenic heat release on climate across China. J. Clim. 25
(20), 7187—7203.

Flanner, M.G., 2009. Integrating anthropogenic heat flux with global climate
models. Geophys. Res. Lett. 36 (2), L02801.

Fry, J., et al,, 2011. Completion of the 2006 national land cover database for the
conterminous United States. Photogramm. Eng. Remote Sens. 77 (9), 858—864.

Georgescu, M., Morefield, P.E., Bierwagen, B.G., Weaver, C.P., 2014. Urban adaptation
can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci.
111 (8), 2909—2914. http://dx.doi.org/10.1073/pnas.1322280111.

Grossman-Clarke, S., Zehnder, J.A., Stefanov, W.L,, Liu, Y., Zoldak, M.A., 2005. Urban
modifications in a mesoscale meteorological model and the effects on near-
surface variables in an arid metropolitan region. ]J. Appl. Meteorol. 44,
1281-1297. http://dx.doi.org/10.1175/JAM2286.1.

Hallenbeck, M., Rice, M., Smith, B., Cornell-Martinez, C., Wilkinson, ]., 1997. Vehicle
Volume Distribution by Classification. Washington State Transportation Center.
University of Washington, Seattle WA 98105, Seattle, p. 54, 1107 NE 45th St.
Suite 535. http://depts.washington.edu/trac.

Holt, T., Pullen, ]., 2007. Urban canopy modeling of the New York City metropolitan
area: a comparison and validation of single- and multilayer parameterizations.
Mon. Weather Rev. 135, 1906—1930.

Ichinose, T., Shimodozono, K., Hanaki, K., 1999. Impact of anthropogenic heat on
urban climate in Tokyo. Atmos. Environ. 33, 3897—-3909.

IEA, 2010a. Energy Balances of Non-OECD Countries 2010. International Energy
Agency. OECD Publishing, Paris, p. 554. http://dx.doi.org/10.1787/energy_bal_
non-oecd-2010-en-fr.

IEA, 2010b. Energy Balances of Non-OECD Countries 2010. International Energy
Agency. OECD Publishing, Paris, p. 350. http://dx.doi.org/10.1787/energy_bal_
oecd-2010-en-fr.

Khan, S.M., Simpson, R.W., 2001. Effect of heat island on the meteorology of a
complex urban airshed. Bound. Layer Meteorol. 100 (3), 487—506.

Klysik, K., 1996. Spatial and seasonal distribution of anthropogenic heat emissions
in Lodz, Poland. Atmos. Environ. 30 (20), 3397—3404.

Lee, S.-H., McKeen, S.A., Sailor, D.J., 2014. A regression approach for estimation of
anthropogenic heat flux based on a bottom-up air pollutant emission database.
Atmos. Environ. 95, 629—-633.

Lin, C.-Y., Chen, F,, Huang, ].C., Chen, W.-C,, Liou, Y.-A., Chen, W.-N,, Liu, S.-C., 2008.
Urban heat island effect and its impact on boundary layer development and
land-sea circulation over northern Taiwan. Atmos. Environ. 42, 5635—5649.

Lindberg, F.,, Grimmond, C.S.B., Yogeswaran, N., Kotthaus, S., Allen, L., 2013. Impacts
of city changes and weather on anthropogenic heat flux in Europe 1995—2015.
Urban Clim. 4, 1-15.

NCDC, 2010a. Historical Climatology Series 5-1: Monthly State, Regional, and Na-
tional Heating Degree Days Weighted by Population. National Climatic Data
Center, Asheville, NC.

NCDC, 2010b. Historical Climatology Series 5-2: Monthly State, Regional, and Na-
tional Cooling Degree Days Weighted by Population. National Climatic Data
Center, Asheville, NC.

Sailor, DJ., Lu, L., Fan, H., 2003. Estimating urban anthropogenic heating profiles and
their implications for heat island development. In: Fifth International Confer-
ence on Urban Climate, Lodz, Poland.

Sailor, DJ., Lu, L., 2004. A top-down methodology for developing diurnal and sea-
sonal anthropogenic heating profiles for urban areas. Atmos. Environ. 38 (17),
2737-2748.

Sailor, DJ., Fan, H., 2004. The importance of including anthropogenic heating in
mesoscale modeling of the urban heat island. In: AMS (Ed.), 84th Annual
Meeting of the AMS, Symposium on Planning, Nowcasting, and Forecasting in
the Urban Zone, Seattle.

Sailor, D.J., Vasireddy, C., 2006. Correcting aggregate energy consumption data to
account for variability in local weather. Environ. Model. Softw. 21 (5), 733—738.

Salamanca, F, Georgescu, M., Mahalov, A., Moustaoui, M., Wang, M. 2014.
Anthropogenic heating of the urban environment due to air conditioning.
J. Geophys. Res. Atmos. 119, 5949-5965. http://dx.doi.org/10.1002/
2013]D021225.


http://refhub.elsevier.com/S1352-2310(15)30215-6/sref1
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref1
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref1
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref2
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref2
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref2
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref2
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref3
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref3
http://dx.doi.org/10.1016/j.atmosenv.2014.09.053
http://dx.doi.org/10.1016/j.atmosenv.2014.09.053
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref5
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref5
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref6
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref6
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref7
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref7
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref7
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref7
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref8
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref8
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref8
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref8
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref9
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref9
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref10
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref10
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref10
http://dx.doi.org/10.1073/pnas.1322280111
http://dx.doi.org/10.1175/JAM2286.1
http://depts.washington.edu/trac
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref33
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref33
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref33
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref33
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref14
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref14
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref14
http://dx.doi.org/10.1787/energy_bal_non-oecd-2010-en-fr
http://dx.doi.org/10.1787/energy_bal_non-oecd-2010-en-fr
http://dx.doi.org/10.1787/energy_bal_oecd-2010-en-fr
http://dx.doi.org/10.1787/energy_bal_oecd-2010-en-fr
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref17
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref17
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref17
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref18
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref18
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref18
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref19
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref19
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref19
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref19
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref20
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref20
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref20
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref20
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref21
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref21
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref21
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref21
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref21
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref22
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref22
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref22
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref23
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref23
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref23
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref24
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref24
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref24
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref25
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref25
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref25
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref25
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref26
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref26
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref26
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref26
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref27
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref27
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref27
http://dx.doi.org/10.1002/2013JD021225
http://dx.doi.org/10.1002/2013JD021225

18 D.J. Sailor et al. / Atmospheric Environment 118 (2015) 7—18

Salamanca, F., Martilli, A., Yague, C., 2012. A numerical study of the urban heat is- United States Department of Transportation (USDoT), 2011. Monthly Motor Fuel
land over Madrid during the DESIREX (2008) campaign with WRF and an Reported by States. U.S. Department of Transportation, Federal Highway
evaluation of simple mitigation strategies. Int. J. Climatol. 32, 2372—-2386. Administration.

Stewart, L.D., Oke, T.R., 2012. Local climate zones for urban temperature studies. United States Department of Transportation (USDoT), 2013. Urbanized Areas —
Bull. Am. Meteorol. Soc. 93, 1879—1900. http://dx.doi.org/10.1175/BAMS-D-11- 2010: Miles and Daily Vehicle-Miles of Travel. Federal Highway Administration,

00019.1. U.S. Department of Transportation.


http://refhub.elsevier.com/S1352-2310(15)30215-6/sref29
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref29
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref29
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref29
http://dx.doi.org/10.1175/BAMS-D-11-00019.1
http://dx.doi.org/10.1175/BAMS-D-11-00019.1
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref31
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref31
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref31
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref32
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref32
http://refhub.elsevier.com/S1352-2310(15)30215-6/sref32

	Development of a national anthropogenic heating database with an extrapolation for international cities
	1. Background and motivation
	2. Methodology
	3. Data resources
	3.1. Weather data
	3.2. Metabolism data
	3.3. Electricity data
	3.4. Heating fuel data
	3.5. Transportation data

	4. Results
	4.1. Estimation process for other U.S. cities
	4.2. Non-U.S. city extrapolation

	5. Conclusions
	Acknowledgments
	References


