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a b s t r a c t

A new shifted Chebyshev operational matrix (SCOM) of fractional integration of arbitrary
order is introduced and applied together with spectral tau method for solving linear
fractional differential equations (FDEs). The fractional integration is described in the
Riemann–Liouville sense. The numerical approach is based on the shifted Chebyshev tau
method. The main characteristic behind the approach using this technique is that only a
small number of shifted Chebyshev polynomials is needed to obtain a satisfactory result.
Illustrative examples reveal that the present method is very effective and convenient for
linear multi-term FDEs.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent decades, the applied scientists and the engineers realize that FDEs provided a better approach to describe the
complex phenomena in nature, such as non-Brownianmotion, signal processing, systems identification, control, viscoelastic
materials and polymers (see [1–3] and references therein).

Spectral methods are one of the principal methods of discretization for the numerical solutions of differential equations.
The main advantage of these methods lies in their accuracy for a given number of unknowns (see, for instance, [4–6]). For
smooth problems in simple geometries, they offer exponential rates of convergence/spectral accuracy.

From the numerical point of view, in [3], Podlubny introduced a numerical approach for the arbitrary order derivative
by using the definition of Riemann–Liouville based on the relationship between the Grünwald–Letnikov derivative and the
Riemann–Liouville derivative. The Legendre wavelet method is developed and used for solving FDEs in [7]. Moreover, the
authors in [8–10] constructed an efficient spectral method for the numerical approximation of the multi-term FDEs based
on tau and pseudo-spectral methods. Furthermore, Bhrawy et al. [11] introduced a quadrature shifted Legendre taumethod
based on Gauss–Lobatto interpolation for solving the multi-order FDEs with variable coefficients.

The operational matrix of fractional derivatives has been determined for some types of orthogonal polynomials, such
as Chebyshev polynomials [12], Legendre polynomials [10]. The operational matrix of integration has been determined
for several types of orthogonal polynomials, such as Laguerre series [13], Chebyshev polynomials [14], Legendre
polynomials [15] and Bessel series [16]. Recently, Singh et al. [17] derived the Bernstein operational matrix of integration.
The Bernstein operationalmatrix approach is developed for solving a systemof high order linear Volterra–Fredholm integro-
differential equations in [18].

Up until now, and to the best of our knowledge, many formulas corresponding to those mentioned previously are
unknown and are traceless in the literature for fractional integration in the Riemann–Liouville sense. This partiallymotivates
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our interest in operational matrix of fractional integration for shifted Chebyshev polynomials. Another motivation is
concerned with the direct solution techniques for solving the integrated forms of FDEs using shifted Chebyshev tau method
based on operational matrix of fractional integration.

In this paper, an extension of the operational tau method is proposed to numerically solve the FDEs. The basic idea of
this technique is as follows: (i) The FDE is converted to an fully integrated form via multiple fractional integration in the
Riemann–Liouville sense. (ii) Subsequently, the various signals involved in the integrated form equation are approximated
by representing them as linear combinations of shifted Chebyshev polynomials. (iii) Finally, the integrated form equation is
converted to an algebraic equation by introducing the operational matrix of fractional integration of the shifted Chebyshev
polynomials. The key idea of the technique depends on the following integral property of the basis vector φ(x):

Iνφ(t) ≃ P(ν)φ(x),

where φ(x) = [TL,0(x), TL,1(x), . . . , TL,N(x)]T , in which the elements TL,i(x)(i = 0, 1, . . . ,N) are the shifted Chebyshev
polynomials on a certain interval [0, L] and P(ν) is the operational matrix of fractional integration of φ(x). Note that P(ν) is a
constantmatrix of order (N+1)×(N+1) and ν is arbitrary. Finally, the accuracy of the proposed algorithm is demonstrated
by test problems.

The paper is organized as follows. In Section 2we introduce somenecessary definitions and give some relevant properties
of Chebyshev polynomials. In Section 3 the SCOM of fractional integration is introduced. In Section 4 we apply SCOM of
fractional integration for solving linear multi-order FDEs. In Section 5 the proposed method is applied to several examples.
Also a conclusion is given in Section 6.

2. Preliminaries and notation

2.1. The fractional integration in the Riemann–Liouville sense

There are several definitions of a fractional integration of order ν > 0, and not necessarily equivalent to each other,
see [19]. The most used definition is due to Riemann–Liouville, which is defined as

Iν f (x) =
1

Γ (ν)

 x

0
(x − t)ν−1f (t)dt, ν > 0, x > 0,

I0f (x) = f (x).
(2.1)

One of the basic property of the operator Iν is

Iνxβ
=

Γ (β + 1)
Γ (β + 1 + ν)

xβ+ν . (2.2)

The Riemann–Liouville fractional derivative of order ν will be denoted by Dν . The next equation define Riemann–Liouville
fractional derivative of order ν

Dν f (x) =
dm

dxm
(Im−ν f (x)), (2.3)

wherem − 1 < ν ≤ m,m ∈ N and m is the smallest integer greater than ν.

Lemma 2.1. If m − 1 < ν ≤ m,m ∈ N, then

Dν Iν f (x) = f (x), IνDν f (x) = f (x) −

m−1
i=0

f (i)(0+)
xi

i!
, x > 0. (2.4)

2.2. Properties of shifted Chebyshev polynomials

Let TL,i(x); x ∈ (0, L) be the shifted Chebyshev polynomials. Then TL,i(x) can be obtained with the aid of the following
recurrence formula:

TL,i+1(x) = 2

2x
L

− 1

TL,i(x) − TL,i−1(x), i = 1, 2, . . . , (2.5)

where TL,0(x) = 1 and TL,1(x) =
2x
L − 1. The analytic form of the shifted Chebyshev polynomials TL,i(x) of degree i is

given by

TL,i(x) = i
i

k=0

(−1)i−k (i + k − 1)! 22k

(i − k)! (2k)! Lk
xk, (2.6)
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where TL,i(0) = (−1)i and TL,i(L) = 1. The orthogonality condition is L

0
TL,j(x)TL,k(x)wL(x)dx = hk δjk, (2.7)

where wL(x) =
1√
Lx−x2

and hj =
bj
2 π, b0 = 2, bj = 1, j ≥ 1.

The special values

T (q)
L,i (0) = (−1)(i−q) i (i + q − 1)!

Γ

q +

1
2


(i − q)! Lq

√
π, q ≤ i, (2.8)

will be of important use later.
A function u(x), square integrable in (0, L), may be expressed in terms of shifted Chebyshev polynomials as

u(x) =

∞
j=0

cjTL,j(x),

where the coefficients cj are given by

cj =
1
hj

 L

0
u(x)TL,j(x)wL(x)dx, j = 0, 1, 2, . . . . (2.9)

In practice, only the first (N + 1)-terms shifted Chebyshev polynomials are considered. Hence u(x) can be expanded in the
form

uN(x) ≃

N
j=0

cjTL,j(x) = CTφ(x), (2.10)

where the shifted Chebyshev coefficient vector C and the shifted Chebyshev vector φ(x) are given by

CT
= [c0, c1, . . . , cN ],

φ(x) = [TL,0(x), TL,1(x), . . . , TL,N(x)]T ,
(2.11)

If we define the q times repeated integration of Chebyshev vector φ(x) by Iqφ(x), then (cf. Paraskevopoulos [14])

Iqφ(x) ≃ P(q)φ(x), (2.12)

where q is an integer value and P(q) is the operational matrix of integration of φ(x). For more details see [14].

3. Operational matrix of fractional integration

The main objective of this section is to generalize the SCOM of integration (2.12) for fractional calculus.

Theorem 3.1. Let φ(x) be the shifted Chebyshev vector and ν > 0 then

Iνφ(x) ≃ P(ν)φ(x), (3.1)

where P(ν) is the (N + 1) × (N + 1) operational matrix of fractional integration of order ν in the Riemann–Liouville sense and is
defined as follows:

P(ν)
=



Ων(0, 0) Ων(0, 1) · · · Ων(0,N)
Ων(1, 0) Ων(1, 1) · · · Ων(1,N)

...
... · · ·

...
Ων(i, 0) Ων(i, 1) · · · Ων(i,N)

...
... · · ·

...
Ων(N, 0) Ων(N, 1) · · · Ων(N,N)


(3.2)

where

Ων(i, j) =

i
k=0

(−1)i−k 2i Lν (i + k − 1)! Γ

k + ν +

1
2


bj Γ


k +

1
2


(i − k)! Γ (k + ν − j + 1) Γ (k + j + ν + 1)

.
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Proof. The analytic form of the shifted Chebyshev polynomials TL,i(x) of degree i is given by (2.6), Using Eqs. (2.1) and (2.2),
and since the Riemann–Liouville’s fractional integration is a linear operation, then

IνTL,i(x) = i
i

k=0

(−1)i−k (i + k − 1)! 22k

(i − k)! (2k)! Lk
Iνxk

= i
i

k=0

(−1)i−k (i + k − 1)! 22k k!
(i − k)! (2k)! Lk Γ (k + ν + 1)

xk+ν, i = 0, 1, . . . ,N. (3.3)

Now, approximate xk+ν by N + 1 terms of shifted Chebyshev series, we have

xk+ν
=

N
j=0

ckjTL,j(x), (3.4)

where ckj is given from (2.9) with u(x) = xk+ν , that is

ckj =


1

√
π

Lk+ν Γ

k + ν +

1
2


Γ (k + ν + 1)

, j = 0,

j Lk+ν

√
π

j
r=0

(−1)j−r (j + r − 1)! 22r+1 Γ

k + r + ν +

1
2


(j − r)! (2r)! Γ (k + r + ν + 1)

, j = 1, 2, . . . ,N.

(3.5)

In virtue of (3.3) and (3.4), we get

IνTL,i(x) =

N
j=0

Ων(i, j)TL,j(x), i = 0, 1, . . . ,N, (3.6)

where Ων(i, j) =
i

k=0 ζijk, and

ζijk =



i (−1)i−k Lν (i + k − 1)! 22k k! Γ

k + ν +

1
2


(i − k)! (2k)!

√
π (Γ (k + ν + 1))2

, j = 0,

(−1)i−k i j Lν (i + k − 1)! 22k+1 k!
(i − k)! (2k)! Γ (k + ν + 1)

√
π

×

j
r=0

(−1)j−r (j + r − 1)! 22r Γ

k + r + ν +

1
2


(j − r)! (2r)! Γ (k + r + ν + 1)

, j = 1, 2, . . .N.

After some lengthy manipulation, ζi,j,k may be put in the following explicit form

ζijk =
(−1)i−k 2i Lν (i + k − 1)! Γ


k + ν +

1
2


bj Γ


k +

1
2


(i − k)! Γ (k + ν − j + 1) Γ (k + j + ν + 1)

, j = 0, 1, . . . ,N, (3.7)

where b0 = 2, bj = 1, j ≥ 1.
Accordingly, Eq. (3.6) can be written in a vector form as follows:

IνTL,i(x) ≃ [Ων(i, 0), Ων(i, 1), Ων(i, 2), . . . , Ων(i,N)]φ(x), i = 0, 1, . . . ,N. (3.8)

Eq. (3.8) leads to the desired result. �

4. Fractional SCOM for solving linear multi-order FDEs

In this section, the proposedmulti-order FDE is integrated ν times, in the Riemann–Liouville sense, where ν is the highest
fractional-order and making use of the formula relating the expansion coefficients of fractional integration appearing in
this integrated form of the proposed multi-order FDE to shifted Chebyshev polynomials themselves, and then we apply
tau approximations based on operational matrix. In order to show the fundamental importance of SCOM of fractional
integration, we apply it to solve the following multi-order FDE:

Dνu(x) =

k
i=1

γjDβiu(x) + γk+1u(x) + f (x), in I = (0, L), (4.1)
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with initial conditions

u(i)(0) = di, i = 0, . . . ,m − 1, (4.2)

where γi (i = 1, . . . , k + 1) are real constant coefficients and also m − 1 < ν ≤ m, 0 < β1 < β2 < · · · < βk < ν.
Moreover Dνu(x) ≡ u(ν)(x) denotes the Riemann–Liouville fractional derivative of order ν for u(x) and the values of
di (i = 0, . . . ,m − 1) describe the initial state of u(x) and g(x) is a given source function. For the existence and uniqueness
and continuous dependence of the solution to the problem, see [20].

If we apply the Riemann–Liouville integral of order ν on (4.1) and after making use of (2.4), we get the integrated form
of (4.1), namely

u(x) −

m−1
j=0

u(j)(0+)
xj

j!
=

k
i=1

γiIν−βi


u(x) −

mi−1
j=0

u(j)(0+)
xj

j!


+ γk+1Iνu(x) + Iν f (x),

u(i)(0) = di, i = 0, . . . ,m − 1,

(4.3)

where mi − 1 < βi ≤ mi,mi ∈ N , this implies that

u(x) =

k
i=1

γiIν−βiu(x) + γk+1Iνu(x) + g(x),

u(i)(0) = di, i = 0, . . . ,m − 1,

(4.4)

where

g(x) = Iν f (x) +

m−1
j=0

dj
xj

j!
+

k
i=1

γiIν−βi


mi−1
j=0

dj
xj

j!


.

In order to use the tau method with SCOM for solving the fully integrated problem (4.4) with initial conditions (4.2). We
approximate u(x) and g(x) by the shifted Chebyshev polynomials as

uN(x) ≃

N
i=0

ciTL,i(x) = CTφ(x), (4.5)

g(x) ≃

N
i=0

giTL,i(x) = GTφ(x), (4.6)

where the vector G = [g0, . . . , gN ]
T is given but C = [c0, . . . , cN ]

T is an unknown vector.
Now, the Riemann–Liouville integral of orders ν- and (ν − βj) of the approximate solution (4.5), after making use of

Theorem 3.1 (relation (3.1)), can be written as

IνuN(x) ≃ CT Iνφ(x) ≃ CTP(ν)φ(x), (4.7)

and

Iν−βjuN(x) ≃ CT Iν−βjφ(x) ≃ CTP(ν−βj)φ(x), j = 1, . . . , k, (4.8)

respectively, where P(ν) is the (N + 1) × (N + 1) operational matrix of fractional integration of order ν.
Employing Eqs. (4.5)–(4.8) the residual RN(x) for Eq. (4.4) can be written as

RN(x) =


CT

− CT
k

j=1

γjP(ν−βj) − γk+1CTP(ν)
− GT


φ(x). (4.9)

As in a typical tau method, see [4,12], we generate N − m + 1 linear algebraic equations by applying

⟨RN(x), TL,j(x)⟩ =

 L

0
RN(x)TL,j(x)dx = 0, j = 0, 1, . . . ,N − m. (4.10)

Also by substituting Eqs. (2.8) and (4.5) in Eq. (4.2), we get

u(i)(0) =

N
i=0

ciT
(i)
L,i (0) = di, i = 0, 1, . . . ,m − 1. (4.11)

Eqs. (4.10) and (4.11) generate N − m + 1 and m set of linear equations, respectively. These linear equations can be solved
for unknown coefficients of the vector C . Consequently, uN(x) given in Eq. (4.5) can be calculated, which give a solution of
Eq. (4.1) with the initial conditions (4.2).
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5. Illustrative examples

To illustrate the effectiveness of the proposed method in the present paper, some test examples are carried out in this
section. The results obtained by the present methods reveal that the present method is very effective and convenient for
linear FDEs.

Example 1. As the first example, we consider the following initial value problem,

D
3
2 u(x) + 3u(x) = 3x3 +

8
Γ (0.5)

x1.5, u(0) = 0, u′(0) = 0, x ∈ [0, L], (5.1)

whose exact solution is given by u(x) = x3.

By applying the technique described in Section 4.1 with N = 3, we may write the approximate solution and the right
hand side in the forms

u(x) =

3
i=0

ciTL,i(x) = CTφ(x), and g(x) ≃

3
i=0

giTL,i(x) = GTφ(x).

From Eq. (3.2) one can write

P( 3
2 )

=
4L

3
2

π
3
2



4
9

8
15

8
105

−8
945

−4
25

−8
63

8
135

8
385

−20
147

−152
675

−248
3465

136
4095

188
2025

136
1617

−56
975

−664
17325


, G =

g0
g1
g2
g3

 .

Therefore using Eqs. (4.9) and (4.10) we obtain
96L

3
2

105π
3
2


c0 +

96L
3
2

135π
3
2
c1 +


2976L

3
2

3465π
3
2


c2 −


672L

3
2

975π
3
2


c3 + c2 − g2 = 0, (5.2)


−

96L
3
2

945π
3
2


c0 +

96L
3
2

385π
3
2
c1 +


1632L

3
2

4095π
3
2


c2 −


7968L

3
2

17325π
3
2


c3 + c3 − g3 = 0. (5.3)

Now, by applying Eq. (4.11) for the initial conditions we have

CTφ(0) = c0 − c1 + c2 − c3 = 0,

CTD(1)φ(0) =
2
L
c1 −

8
L
c2 +

18
L
c3 = 0.

(5.4)

Finally by solving Eqs. (5.2)–(5.4) we get

c0 =
5L3

16
, c1 =

15L3

32
, c2 =

3L3

16
, c1 =

L3

32
.

Thus we can write

u(x) =

3
i=0

ciTL,i(x) = x3.

Numerical results will not be presented since the exact solution is obtained.

Example 2. Consider the following initial value problem,

D
3
2 u(x) + 3u(x) = 3x3 +

8
Γ (0.5)

x1.5, u(0) = 0, u′(0) = 0, x ∈ [0, L], (5.5)

whose exact solution is given by u(x) = x3.
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If we use the technique described in the previous example with N = 3, we get

c0 =
5L3

16
, c1 =

15L3

32
, c2 =

3L3

16
, c1 =

L3

32
.

Thus, we can write

u(x) =

3
i=0

ciTL,i(x) = x3,

which is the exact solution.

Example 3. Consider the equation

D2u(x) − 2Du(x) + D
1
2 u(x) + u(x) = x3 − 6x2 + 6x +

16
5
√

π
x2.5, u(0) = 0, u′(0) = 0, x ∈ [0, L], (5.6)

whose exact solution is given by u(x) = x3.

Now, we can apply the technique described in Example 1 with N = 3, and the 4 unknown coefficients will be in the form

c0 =
5L3

16
, c1 =

15L3

32
, c2 =

3L3

16
, c3 =

L3

32
.

Thus we can write, u(x) =
3

i=0 ciTL,i(x) = x3, which is the exact solution.

6. Conclusion

A general formulation for the Chebyshev operational matrix of fractional integration has been derived. The fractional
integration is described in the Riemann–Liouville sense. This matrix is used to approximate numerical solution of linear
multi-term FDEs. Our approach was based on the shifted Chebyshev tau method. The solution obtained using the suggested
method shows that this approach can solve the problem effectively. We note that similar technique can be applied to tau
method using Legendre polynomials or other Jacobi polynomials.
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