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Abstract

We prove that every two-dimensional permutive cellular automaton is conjugate to a one-sided shift with
compact set of states.
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1. Preliminaries
1.1. Cellular automata on finitely generated abelian groups

In this section we recall the definition of a cellular automaton 4 with set of states ¥ on an
abelian group G of finite rank, and we give some notations (see [2,3] for example).

We denote by Z the set of integers and by N the set of nonnegative integers. Let G be a finitely
generated abelian group of rank # (see for example [11, Chapter 3]). We fix a representation of G
as a direct sum G = Z"@® T, where T is a finite abelian group. Then an element ge Gis an (n + 1)-
tuple: g = (my, ...,my, h), my, ....m,eZ, heT.

The set of states & of the cellular automaton 4 is a finite set with cardinality || > 1.

A configuration of A is a map x: G— . The set of all configurations is denoted by ¢ or by
M(G,%). The shift maps 6,: S — % are defined on the set of configurations as follows. For a
given element ge G the shift g, is defined by

o4(x)(a) = x(a+g), VaeG.
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The cellular automaton A is a map A: 9% — 9% which is local and homogeneous. This means
that the map A is defined by a given local (generating) function (or local rule) I : ¥ — &, where
Ny = [k, k]" x T, keN (&M is the set of all configurations/blocks on N; with values in #). For

a given xe. % we denote by x| « the restriction of the configuration x to Nj;. Then the map 4 is
defined by

A(x(g)) = (o4 (xli))-

There is an elegant topological definition of cellular automata in [9, Theorem 3.4]. To recall it we
introduce a product metric on the space of configurations #“ generated by the (discrete) metric

on the sets S and G (see [13, p. 122]). The space &¢ with this metric is compact and totally
disconnected, and therefore homeomorphic to the triadic Cantor set (see for example [13, pp. 142,

165-166]). The shifts o, : $Y% 5 9% are homeomorphisms. The set % is a G-space, i.e., the group
G acts on it as a group of transformations. The action is given by the embedding of G into the

group of homeomorphims of the space ¥ to itself: g— o0y (see for example [10, pp. 112-113]).
The natural maps B: %% — %% of the G-space ¥ are the G-maps, i.e., the continuous maps
which commute with all shifts ¢,:

Boy(x) = 0,B(x), VYgeG, Yxe¥C.

In [9, Theorem 3.4], it is proved that the cellular automata on F° are exactly the G-maps. The
proof of Hedlund is given in the case where G = Z, but the same proof works in general (see also
[16]).

Later on we shall consider the cellular automaton 4 : ¢ — %% as a dynamical system and shall
use the notation (4, %%). Recall that a (discrete, topological) dynamical system (f,X) is a
continuous map f : X — X on a (compact metric) space X (see [6, Chapter 2]).

1.2. Cellular automata on finitely generated abelian groups of rank n and on the n-dimensional
lattice 7"

In this section we give a representation of any cellular automaton on an abelian group
G =7"® T with states ¥ as a cellular automaton on Z" with appropriate state space. For this
purpose we will use the classical identification

WMZ7Z"®T,S)>M(Z",M(T,9)),
defined as follows. Let x: Z"@® T — % be a configuration. Then
h(x):2"->M(T,9)
is given by
i(x)(my, ...,my)(h) = x(my, ...,my, h)
for (my, ...,m,)eZ" and he T. The map i, is a homeomorphism (see for example [10, pp. 23-24]).
Now with a given cellular automaton 4 : %% — %% we associate a cellular automaton
A9V 97
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with state space & = %1 defined by

. |
A1 = l]All .

This means that the dynamical systems (4,.9%) and (Al,ylzn) are conjugate and therefore they
have the same dynamics, see for example [6, p. 109].

1.3. Representation of multi-dimensional cellular automata as one-dimensional cellular automata

A cellular automaton 4 : %% — 9% will be called an n-dimensional cellular automaton. Let
n>=2. We will use the identification 7,
h:M(Z",9) > M(Z,M(Z"', 7)),
given by
b(x)(my)(my, ..., my,) = x(my, ...,my,)

for xeM(Z",). The map i, is bijective and bicontinuous. The elements z of the set
M(Z,M(Z"", %)) are configurations on Z with values in the compact (totally disconnected)
space M(Z" !, ).
With the cellular automaton 4 : %7 — %%" we associate the map 4, : 9% — %%, where &, =
M(7"', %) such that
Ay = i Aiy .

The (topological) dynamical systems (4, %) and (4,, &%) are conjugate and therefore have the
same dynamics. The map A, is homogenecous and local, i.e., is a one-dimensional cellular
automaton, but with states in a compact set. This leads to a qualitative difference between one-
dimensional and higher dimensional cellular automata.

1.4. One-sided shifts with compact state space
Let K be a compact set with a metric pg(.,.). On the set KN = M(N, K) we define the metric

i) = 3 2xl). o)

n )
n=0 2

where u = (u(n)),~, and v = (v(n)),~, (see [6, p. 102] for the case K = {0,1}).
The map og : KN - KN defined by

og(u)(m) =u(m+1), VmeN

is called the shift map on KN. The dynamical system (o, KV) is called the one-sided shift (shift on
N) with state space K.
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1.5. Chaotic dynamical systems

Let X be a compact metric space and let /' : X — X be a continuous map. The dynamical system
(f,X) is called chaotic (in the sense of Devaney) (see [6, p. 119]; [4]) if and only if

e the set of periodic points of the map f is dense in X
e (f,X) is mixing, i.e., for any two (nonempty) open sets U, V< X there exists ke N with

AUV #0.

Note that the one-sided shift is a chaotic dynamical system (see [6, p. 119] in the case of finite K,
but the same proof works in general).

Remark 1. (1) The dynamical system (f, X) is called expanding if there exists a number § >0 such
that for any two different points x, y e X there exists ne N with p (f"(x),f"(y)) >0 (here py (., .) is
the metric on the space X). For an expanding map f on a compact metric space X the dynamical
system (f, X) is conjugate to a one-sided subshift with finite state space [9, Theorem 2.1]. A one-
sided subshift is a closed subset of the one-sided shift dynamical system invariant under the shift.

(2) The one-sided shift with state space K is expanding if and only if the set K is finite. We give a
simple argument for this assertion. Since the state space K is compact, but not finite, there exist a
point kg€ K and a sequence (k,),,~, with lim,,_, . px(ko,kn) = 0. Assume that the dynamical
system (ox, K") is expanding. Then there exists a number 6 >0 such that for any two different
points x,ye K" there is neN with d; (o’ (x), 0% (y))>0. Choose m so large that pg(ko,kn) <.
Consider the points x = (x(k));so€ K", x(k) =ko, k=0 and y = (y(k));so€K", x(0) =k,
x(k) = ko, k>1. Then dy(d%(x), a5 (y)) <9 for all 1>0.

2. Multidimensional cellular automata are conjugated to one-sided shifts with compact state space

Using the notion of permutive cellular automata, that was introduced in [9], Gilman proved in
[8] that (bi)permutive one-dimensional cellular automata are topologically conjugate to one-sided
shifts with appropriate finite state space. (Note that Gilman uses the expression “linear automata’
for “one-dimensional automata’. Usually, “linear automata” are automata whose local rule is
linear.) This implies that (bi)permutive cellular automata are chaotic as dynamical systems. This
theorem was rediscovered several times, e.g., see [1,5,7,14,18]. We will generalize this result to two-
dimensional cellular automata. Then, following the discussion of the two-dimensional case, the
generalization to n-dimensional automata is also possible.

Let us first recall the definition of permutivity in the one-dimensional case [9, Definition 6.3]: a
one-dimensional cellular automaton is called permutive if and only if the local function has the
property that, when all its variables but the leftmost (resp. the rightmost) take any fixed values,
then the resulting one-variable function is a bijection. Note that permutivity is sometimes called
permutativity in the literature; it is also called the class M property in [1].

We now introduce an appropriate notion of permutive two-dimensional cellular automaton.
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Let 4: 97 57 be a two-dimensional cellular automaton with states in a finite set &,
induced by a local generating function A:.%Y —.& where k = (—ki,k;), 1= (=1}, 1), with
kl,kz, 11, 126 N, and Uk7] = [—kl,kz] X [—Zl, 12]

For (a,b) e Uy, denote by M, the set Ux;\{(a,b)}. For any configuration ce S M we define
the map

io: S - P

by

c(x,y) if (x,p)#(a,b),

ie(s)(x,y) = {s if (x,y) = (a,b).

For every ce #Ma» we define the map
pe: S >
by

Definition 1. The local generating function / is permutive at (a, b) if the map p, is bijective for all
ce FMan,

Definition 2. The point (a,b)e Uy is called not essential for the local generating function 4 if
. = Constant for all ce S Man,

Definition 3. The cellular automaton A with local generating function 4: % - is called
permutive if and only if

e there exist u,v>=1 and ay, ...,a,, by, ..., b, with
-kh<a<-<a,<k, and —-ki<b<---<b, <k

such that the set of essential points of 4 of the form (o, %) or (f,—/;) is equal to the set
{(al ) 12)7 ceey (am 12)7 (b17 _11)7 ceey (bv7 _ll)}7

e the inequalities a; <0<a,, by <0<b, hold;
e the map 4 is permutive at the four points (ay,5), (ay, ), (b1, =), (by, —11).

Example 1. Let ¥ = GF(q) be the finite field with g elements. Then %Y is a vector space over
GF(q). The cellular automaton A4 with local generating function 4 is called a linear cellular
automaton if the map A:. 7% —.% is linear (over GF(q)). The linear cellular automaton A is
permutive if and only if 4 has essential points (a;,5h), (ay, ), (b1, =), (by,,—1;) with a; <0<a,,
b1 <0<b,.
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Remark 2. Permutivity was defined only for cellular automata on the grid Z”. It can be defined in
a similar way for a cellular automaton on a finitely generated abelian group of rank n, either
directly, or by using the conjugation of such cellular automata with appropriate cellular automata
on the grid 7".

Proposition 1. Let A be a two-dimensional permutive cellular automaton with state space . Then,

the dynamical system (A, yzz) is conjugate to a one-sided shift (o, K'N) with appropriate compact
state space K.

Proof. We use an idea of Gilman [§8] and consider the map
h: 97 K N,

where K=9M and M= (Zx[-L+1,L)u([a;,a,—1]x[Lb+1,00))u([bi,b, — 1] x
[—];,—o0)) (in the above notations), defined by

h(x)(n) = 4"(c)ly,  VneN

for the configuration x : Z> > % (here A" is the nth iteration of the cellular automaton A).

The map 4 is continuous and hA4 = ogh. Note that if the map % is defined from a
continuous map that is not a cellular automaton (i.e., that does not commute with the shifts),
then the map / is not necessarily surjective or bijective. But here we prove that £ is
bijective.

Step 1. The map h is injective.

Assume that A(x;) = h(x,) for )_cl,)_czeyzz. We will prove that x; = x,. The proof is by
induction and we will only give the first two steps. Since A(x;) = h(x,), we have h(x;)(0) =
h(x,)(0). This is equivalent to x,(m,n) = x,(m, n) for (m,n) e M. We will prove by induction on m
that x,(m,—/0) = xo(m,—1) for all m>=b,. For m =b,: the assumption implies A(x;)(1) =
h(x2)(1).

Therefore /(x1)(1)(0,0) = h(x,)(1)(0,0) or A(x;)(0,0) = A(x,)(0,0). From the definition of
the cellular automaton 4 we have A(x;)(0,0) = A(x;|Uxy). Since x;(a,b) = x»(a,b) for
(a,b)e U )\{(by, —1,)}, the permutivity of 4 at (b,,—I) implies x;(b,, —/1) = x5(by, —1;). The
next steps of the induction are similar. Having x;|M = x,|M and x,(m,n) = x,(m,n) for meZ,
—I <n<l, we prove as above that x;(m,n) = x,(m,n) for meZ, —oo <n< — 1.

In the same way we prove that x;(m, —/;) = x,(m, —1,) for m<b,.

In the same manner, using the permutivity of 4 at (a;,/) and (ay, ), we prove that x;(m,n) =
Xo(m,n) for meZ, h<n< .

Step 2: The map h is surjective.

Let ¢: N—.%". We have to find an extension ¢: Z*>—.% of ¢(0) with A(¢) = ¢. This is done in
several steps by induction, using the permutivity of the cellular automaton A4. First, we extend ¢(0)
to Mu(Z x {LL+ 1}). For all (m,1,), with m>a,, the procedure is the same as for (a,,/). We
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show only this step. The permutivity of 4 at (a,, /) implies that there exists only one s€.% such that
for ¢y : Ux1— & defined by

cr(a,b) = c(0)(a,b) if (a,b)# (au, b),
T s if (a,b) = (ay, h),

we have ¢(1)(0,0) = A(c;). Then we define é(ay, L) = s.

Using the permutivity of 4 at (a;,k) we define ¢ for (m,h), m<a,. In the same way the
extension ¢ is defined for (m,n), meZ, n=1. Using the permutivity of 1 at (by, 1), (b,,—1;) we
define the extension ¢ for (m,n), meZ, n< — 1.

Remark 3. (1) A consequence of our Proposition 1 above is that, for any permutive cellular
automaton A : % —n?zz, the dynamical system (A4, yzz) is chaotic (in the sense of Devaney),

since the dynamical systems (A4, yzz) and (og, KV) are conjugate. This assertion can be compared
to [20, Theorem A, p. 137]; [19, Theorem 3.4, p. 604].

(2) As we mentioned before, the one-sided shift with infinite compact state space is not
expanding. The n-dimensional cellular automata, n>2, are conjugate to one-dimensional cellular
automata with a Cantor set as state space. This is at least an intuitive reason for the result in [17]
that n-dimensional cellular automata are not expanding for n>=2.

3. Continuous maps commuting with some powers of the shift

Here we consider a continuous map B: % — %% for which there exists an integer /e N, />2
such that Bo! = ¢’B. We call such maps /-cellular automata; they are also called place-dependent
cellular automata [15]. In the case where the cellular automaton is linear, the reader can look at
[12].

Example 2. Let fy: %' 5.9 and fi: %' 5.9 be two local generating functions. They
generate a map B: % — %7 as follows: for xe %

B(x)(2n) = fo(x(2n —u), ..., x(2n + u)),
Bx)2n+1)=fi(x2n+1—-v),....x2n+ 1+ v)).

The map B is continuous and satisfies 6’B = Bd?,i.e., itis a 2-cellular automaton. We say that the
map B is generated by two local generating functions. In a similar way, we define maps induced by
[ generating functions.

With a small modification of the proof of [9, Theorem 3.4] we obtain

Proposition 2. The [-cellular automata B: 9% — S? are exactly the maps induced by | generating
functions.
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The theorem of Gilman [8] that we generalized above also holds for /-cellular automata.

Consider an I-cellular automaton B induced by the generating functions £y, ...,fi_ : ¥ > 7.
We say that the /-cellular automaton B is permutive if fy, ..., f;_; are permutive at the leftmost and
the rightmost arguments.

Proposition 3. Every permutive [I-cellular automaton is conjugate to an appropriate one-dimensional
shift with finite state space.

The proof is similar to the proof of Gilman [§].
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