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Abstract

We prove that every two-dimensional permutive cellular automaton is conjugate to a one-sided shift with
compact set of states.
r 2003 Elsevier Science (USA). All rights reserved.

MSC: 37B15; 68Q80

Keywords: Cellular automata; Permutivity; Permutativity; One-sided shift; Chaotic cellular automata

1. Preliminaries

1.1. Cellular automata on finitely generated abelian groups

In this section we recall the definition of a cellular automaton A with set of states S on an
abelian group G of finite rank, and we give some notations (see [2,3] for example).
We denote by Z the set of integers and by N the set of nonnegative integers. Let G be a finitely

generated abelian group of rank n (see for example [11, Chapter 3]). We fix a representation of G
as a direct sum G ¼ Zn"T ; where T is a finite abelian group. Then an element gAG is an ðn þ 1Þ-
tuple: g ¼ ðm1;y;mn; hÞ; m1;y;mnAZ; hAT :
The set of states S of the cellular automaton A is a finite set with cardinality jSjX1:

A configuration of A is a map
%
x : G-S: The set of all configurations is denoted by SG or by

MðG;SÞ: The shift maps sg :S-S are defined on the set of configurations as follows. For a

given element gAG the shift sg is defined by

sgð
%
xÞðaÞ :¼

%
xða þ gÞ; 8aAG:
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The cellular automaton A is a map A :SG-SG which is local and homogeneous. This means

that the map A is defined by a given local (generating) function (or local rule) l :SNk-S; where

Nk ¼ ½	k; k
n � T ; kAN (SNk is the set of all configurations/blocks on Nk with values in S). For

a given
%
xASG we denote by

%
xjk the restriction of the configuration

%
x to Nk: Then the map A is

defined by

Að
%
xðgÞÞ ¼ lðs	gð

%
xjkÞÞ:

There is an elegant topological definition of cellular automata in [9, Theorem 3.4]. To recall it we

introduce a product metric on the space of configurations SG generated by the (discrete) metric

on the sets S and G (see [13, p. 122]). The space SG with this metric is compact and totally
disconnected, and therefore homeomorphic to the triadic Cantor set (see for example [13, pp. 142,

165–166]). The shifts sg :S
G-SG are homeomorphisms. The setSG is a G-space, i.e., the group

G acts on it as a group of transformations. The action is given by the embedding of G into the

group of homeomorphims of the space SG to itself: g-sg (see for example [10, pp. 112–113]).

The natural maps B :SG-SG of the G-space SG are the G-maps, i.e., the continuous maps
which commute with all shifts sg:

Bsgð
%
xÞ ¼ sgBð

%
xÞ; 8gAG; 8

%
xASG:

In [9, Theorem 3.4], it is proved that the cellular automata on SG are exactly the G-maps. The
proof of Hedlund is given in the case where G ¼ Z; but the same proof works in general (see also
[16]).

Later on we shall consider the cellular automaton A :SG-SG as a dynamical system and shall

use the notation ðA;SGÞ: Recall that a (discrete, topological) dynamical system ð f ;XÞ is a
continuous map f : X-X on a (compact metric) space X (see [6, Chapter 2]).

1.2. Cellular automata on finitely generated abelian groups of rank n and on the n-dimensional
lattice Zn

In this section we give a representation of any cellular automaton on an abelian group
G ¼ Zn"T with states S as a cellular automaton on Zn with appropriate state space. For this
purpose we will use the classical identification

i1 : MðZn"T ;SÞ-MðZn;MðT ;SÞÞ;

defined as follows. Let
%
x : Zn"T-S be a configuration. Then

i1ð
%
xÞ : Zn-MðT ;SÞ

is given by

i1ð
%
xÞðm1;y;mnÞðhÞ ¼

%
xðm1;y;mn; hÞ

for ðm1;y;mnÞAZn and hAT : The map i1 is a homeomorphism (see for example [10, pp. 23–24]).

Now with a given cellular automaton A :SG-SG we associate a cellular automaton

A1 :S
Zn

1 -SZn

1
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with state space S1 ¼ ST defined by

A1 ¼ i1Ai	11 :

This means that the dynamical systems ðA;SGÞ and ðA1;S
Zn

1 Þ are conjugate and therefore they

have the same dynamics, see for example [6, p. 109].

1.3. Representation of multi-dimensional cellular automata as one-dimensional cellular automata

A cellular automaton A :SZn

-SZn

will be called an n-dimensional cellular automaton. Let
nX2: We will use the identification i2

i2 : MðZn;SÞ-MðZ;MðZn	1;SÞÞ;

given by

i2ð
%
xÞðm1Þðm2;y;mnÞ ¼

%
xðm1;y;mnÞ

for
%
xAMðZn;SÞ: The map i2 is bijective and bicontinuous. The elements

%
z of the set

MðZ;MðZn	1;SÞÞ are configurations on Z with values in the compact (totally disconnected)

space MðZn	1;SÞ:
With the cellular automaton A :SZn

-SZn

we associate the map A2 :S
Z
2-SZ

2 ; where S2 ¼
MðZn	1;SÞ such that

A2 ¼ i2Ai	12 :

The (topological) dynamical systems ðA;SZnÞ and ðA2;S
Z
2 Þ are conjugate and therefore have the

same dynamics. The map A2 is homogeneous and local, i.e., is a one-dimensional cellular
automaton, but with states in a compact set. This leads to a qualitative difference between one-
dimensional and higher dimensional cellular automata.

1.4. One-sided shifts with compact state space

Let K be a compact set with a metric rKð:; :Þ: On the set KN ¼ MðN;KÞ we define the metric

d1ð
%
u;
%
vÞ ¼

X
nX0

rKðuðnÞ; vðnÞÞ
2n

;

where
%
u ¼ ðuðnÞÞnX0 and v ¼ ðvðnÞÞnX0 (see [6, p. 102] for the case K ¼ f0; 1g).

The map sK : KN-KN defined by

sKð
%
uÞðmÞ ¼

%
uðm þ 1Þ; 8mAN

is called the shift map on KN: The dynamical system ðsK ;KNÞ is called the one-sided shift (shift on
N) with state space K :
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1.5. Chaotic dynamical systems

Let X be a compact metric space and let f : X-X be a continuous map. The dynamical system
ð f ;XÞ is called chaotic (in the sense of Devaney) (see [6, p. 119]; [4]) if and only if

* the set of periodic points of the map f is dense in X ;
* ð f ;XÞ is mixing, i.e., for any two (nonempty) open sets U ;VCX there exists kAN with

f kðUÞ-Va|:

Note that the one-sided shift is a chaotic dynamical system (see [6, p. 119] in the case of finite K ;
but the same proof works in general).

Remark 1. (1) The dynamical system ð f ;XÞ is called expanding if there exists a number d40 such
that for any two different points x; yAX there exists nAN with rX ð f nðxÞ; f nðyÞÞ4d (here rX ð:; :Þ is
the metric on the space X ). For an expanding map f on a compact metric space X the dynamical
system ð f ;XÞ is conjugate to a one-sided subshift with finite state space [9, Theorem 2.1]. A one-
sided subshift is a closed subset of the one-sided shift dynamical system invariant under the shift.
(2) The one-sided shift with state space K is expanding if and only if the set K is finite. We give a

simple argument for this assertion. Since the state space K is compact, but not finite, there exist a
point k0AK and a sequence ðkmÞmX1 with limm-N rKðk0; kmÞ ¼ 0: Assume that the dynamical

system ðsK ;K
NÞ is expanding. Then there exists a number d40 such that for any two different

points
%
x;

%
yAKN there is nAN with d1ðsn

Kð
%
xÞ; sn

Kð
%
yÞÞ4d: Choose m so large that rKðk0; kmÞod:

Consider the points
%
x ¼ ðxðkÞÞkX0AKN; xðkÞ ¼ k0; kX0 and

%
y ¼ ðyðkÞÞkX0AKN; xð0Þ ¼ km;

xðkÞ ¼ k0; kX1: Then d1ðsl
Kð

%
xÞ; sl

Kð
%
yÞÞod for all lX0:

2. Multidimensional cellular automata are conjugated to one-sided shifts with compact state space

Using the notion of permutive cellular automata, that was introduced in [9], Gilman proved in
[8] that (bi)permutive one-dimensional cellular automata are topologically conjugate to one-sided
shifts with appropriate finite state space. (Note that Gilman uses the expression ‘‘linear automata’’
for ‘‘one-dimensional automata’’. Usually, ‘‘linear automata’’ are automata whose local rule is
linear.) This implies that (bi)permutive cellular automata are chaotic as dynamical systems. This
theorem was rediscovered several times, e.g., see [1,5,7,14,18]. We will generalize this result to two-
dimensional cellular automata. Then, following the discussion of the two-dimensional case, the
generalization to n-dimensional automata is also possible.
Let us first recall the definition of permutivity in the one-dimensional case [9, Definition 6.3]: a

one-dimensional cellular automaton is called permutive if and only if the local function has the
property that, when all its variables but the leftmost (resp. the rightmost) take any fixed values,
then the resulting one-variable function is a bijection. Note that permutivity is sometimes called
permutativity in the literature; it is also called the class M property in [1].
We now introduce an appropriate notion of permutive two-dimensional cellular automaton.
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Let A :SZ2

-SZ2

be a two-dimensional cellular automaton with states in a finite set S;

induced by a local generating function l :SUk;l-S; where k ¼ ð	k1; k2Þ; l ¼ ð	l1; l2Þ; with
k1; k2; l1; l2AN; and Uk;l ¼ ½	k1; k2
 � ½	l1; l2
:
For ða; bÞAUk;l denote by Mða;bÞ the set Uk;l\fða; bÞg: For any configuration

%
cASMða;bÞ we define

the map

i
%
c :S-SUk;l

by

i
%
cðsÞðx; yÞ ¼ %

cðx; yÞ if ðx; yÞaða; bÞ;
s if ðx; yÞ ¼ ða; bÞ:

(

For every
%
cASMða;bÞ we define the map

m
%
c :S-S

by

m
%
cðsÞ ¼ lði

%
cðsÞÞ:

Definition 1. The local generating function l is permutive at ða; bÞ if the map m
%
c is bijective for all

%
cASMða;bÞ :

Definition 2. The point ða; bÞAUk;l is called not essential for the local generating function l if

m
%
c � Constant for all

%
cASMða;bÞ :

Definition 3. The cellular automaton A with local generating function l :SUk;l-S is called
permutive if and only if

* there exist u; vX1 and a1;y; au; b1;y; bv with

	k1pa1o?oaupk2 and 	 k1pb1o?obvpk2

such that the set of essential points of l of the form ða; l2Þ or ðb;	l1Þ is equal to the set

fða1; l2Þ;y; ðau; l2Þ; ðb1;	l1Þ;y; ðbv;	l1Þg;
* the inequalities a1o0oau; b1o0obv hold;
* the map l is permutive at the four points ða1; l2Þ; ðau; l2Þ; ðb1;	l1Þ; ðbv;	l1Þ:

Example 1. Let S ¼ GFðqÞ be the finite field with g elements. Then SUk;l is a vector space over
GFðqÞ: The cellular automaton A with local generating function l is called a linear cellular

automaton if the map l :SUk;l-S is linear (over GFðqÞ). The linear cellular automaton A is
permutive if and only if l has essential points ða1; l2Þ; ðau; l2Þ; ðb1;	l1Þ; ðbv;	l1Þ with a1o0oau;
b1o0obv:
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Remark 2. Permutivity was defined only for cellular automata on the grid Zn: It can be defined in
a similar way for a cellular automaton on a finitely generated abelian group of rank n; either
directly, or by using the conjugation of such cellular automata with appropriate cellular automata
on the grid Zn:

Proposition 1. Let A be a two-dimensional permutive cellular automaton with state space S: Then,

the dynamical system ðA;SZ2Þ is conjugate to a one-sided shift ðsK ;K
NÞ with appropriate compact

state space K :

Proof. We use an idea of Gilman [8] and consider the map

h :SZ2

-KN;

where K ¼ SM and M ¼ ðZ� ½	l1 þ 1; l2
Þ,ð½a1; au 	 1
 � ½l2 þ 1;NÞÞ,ð½b1; bv 	 1
 �
½	l1;	NÞÞ (in the above notations), defined by

hð
%
xÞðnÞ ¼ Anð

%
cÞjM ; 8nAN

for the configuration
%
x : Z2-S (here An is the nth iteration of the cellular automaton A).

The map h is continuous and hA ¼ sKh: Note that if the map h is defined from a
continuous map that is not a cellular automaton (i.e., that does not commute with the shifts),
then the map h is not necessarily surjective or bijective. But here we prove that h is
bijective.

Step 1: The map h is injective.

Assume that hð
%
x1Þ ¼ hð

%
x2Þ for

%
x1;

%
x2ASZ2

: We will prove that
%
x1 ¼

%
x2: The proof is by

induction and we will only give the first two steps. Since hð
%
x1Þ ¼ hð

%
x2Þ; we have hð

%
x1Þð0Þ ¼

hð
%
x2Þð0Þ: This is equivalent to

%
x1ðm; nÞ ¼

%
x2ðm; nÞ for ðm; nÞAM:We will prove by induction on m

that
%
x1ðm;	l1Þ ¼

%
x2ðm;	l1Þ for all mXbv: For m ¼ bv: the assumption implies hð

%
x1Þð1Þ ¼

hð
%
x2Þð1Þ:
Therefore hð

%
x1Þð1Þð0; 0Þ ¼ hð

%
x2Þð1Þð0; 0Þ or Að

%
x1Þð0; 0Þ ¼ Að

%
x2Þð0; 0Þ: From the definition of

the cellular automaton A we have Að
%
xjÞð0; 0Þ ¼ lð

%
xjjUk;lÞ: Since

%
x1ða; bÞ ¼

%
x2ða; bÞ for

ða; bÞAUk;l\fðbv;	l1Þg; the permutivity of l at ðbv;	l1Þ implies
%
x1ðbv;	l1Þ ¼

%
x2ðbv;	l1Þ: The

next steps of the induction are similar. Having
%
x1jM ¼

%
x2jM and

%
x1ðm; nÞ ¼

%
x2ðm; nÞ for mAZ;

	l1pnpl2 we prove as above that
%
x1ðm; nÞ ¼

%
x2ðm; nÞ for mAZ; 	Nonp	 l1:

In the same way we prove that
%
x1ðm;	l1Þ ¼

%
x2ðm;	l1Þ for mpb1:

In the same manner, using the permutivity of l at ða1; l2Þ and ðau; l2Þ; we prove that
%
x1ðm; nÞ ¼

%
x2ðm; nÞ for mAZ; l2pnoN:

Step 2: The map h is surjective.

Let
%
c :N-SM : We have to find an extension c̃ : Z2-S of

%
cð0Þ with hðc̃Þ ¼

%
c: This is done in

several steps by induction, using the permutivity of the cellular automaton A: First, we extend
%
cð0Þ

to M,ðZ� fl2 þ 1gÞ: For all ðm; l2Þ; with mXau; the procedure is the same as for ðau; l2Þ: We

ARTICLE IN PRESS

J.-P. Allouche, G. Skordev / Journal of Computer and System Sciences 67 (2003) 174–182 179



show only this step. The permutivity of l at ðau; lÞ implies that there exists only one sAS such that
for c1 : Uk;1-S defined by

c1ða; bÞ ¼ %
cð0Þða; bÞ if ða; bÞaðau; l2Þ;
s if ða; bÞ ¼ ðau; l2Þ;

(

we have
%
cð1Þð0; 0Þ ¼ lðc1Þ: Then we define c̃ðau; l2Þ ¼ s:

Using the permutivity of l at ða1; l2Þ we define c̃ for ðm; l2Þ; mpa1: In the same way the
extension c̃ is defined for ðm; nÞ; mAZ; nXl2: Using the permutivity of l at ðb1;	l1Þ; ðbv;	l1Þ we
define the extension c̃ for ðm; nÞ; mAZ; np	 l1:

Remark 3. (1) A consequence of our Proposition 1 above is that, for any permutive cellular

automaton A :SZ2

-SZ2

; the dynamical system ðA;SZ2Þ is chaotic (in the sense of Devaney),

since the dynamical systems ðA;SZ2Þ and ðsK ;KNÞ are conjugate. This assertion can be compared
to [20, Theorem A, p. 137]; [19, Theorem 3.4, p. 604].
(2) As we mentioned before, the one-sided shift with infinite compact state space is not

expanding. The n-dimensional cellular automata, nX2; are conjugate to one-dimensional cellular
automata with a Cantor set as state space. This is at least an intuitive reason for the result in [17]
that n-dimensional cellular automata are not expanding for nX2:

3. Continuous maps commuting with some powers of the shift

Here we consider a continuous map B :SZ-SZ for which there exists an integer lAN; lX2

such that Bsl ¼ slB: We call such maps l-cellular automata; they are also called place-dependent

cellular automata [15]. In the case where the cellular automaton is linear, the reader can look at
[12].

Example 2. Let f0 :S
2uþ1-S and f1 :S

2vþ1-S be two local generating functions. They

generate a map B :SZ-SZ as follows: for
%
xASZ

Bð
%
xÞð2nÞ :¼ f0ð

%
xð2n 	 uÞ;y;

%
xð2n þ uÞÞ;

Bð
%
xÞð2n þ 1Þ :¼ f1ð

%
xð2n þ 1	 vÞ;y;

%
xð2n þ 1þ vÞÞ:

The map B is continuous and satisfies s2B ¼ Bs2; i.e., it is a 2-cellular automaton. We say that the
map B is generated by two local generating functions. In a similar way, we define maps induced by
l generating functions.

With a small modification of the proof of [9, Theorem 3.4] we obtain

Proposition 2. The l-cellular automata B :SZ-SZ are exactly the maps induced by l generating

functions.

ARTICLE IN PRESS

J.-P. Allouche, G. Skordev / Journal of Computer and System Sciences 67 (2003) 174–182180



The theorem of Gilman [8] that we generalized above also holds for l-cellular automata.

Consider an l-cellular automaton B induced by the generating functions f0;y; fl	1 :S
2kþ1-S:

We say that the l-cellular automaton B is permutive if f0;y; fl	1 are permutive at the leftmost and
the rightmost arguments.

Proposition 3. Every permutive l-cellular automaton is conjugate to an appropriate one-dimensional

shift with finite state space.

The proof is similar to the proof of Gilman [8].
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