Pullout resistance of granular anchors in clay for undrained condition

B.C. O’Kellya,*, R.B.J. Brinkgreveb,c, V. Sivakumard

a Department of Civil, Structural and Environmental Engineering, Trinity College Dublin, Dublin, Ireland
b Geo-Engineering Section, Delft University of Technology, CN Delft, The Netherlands
c Research and Projects, Plaxis bv, Computerlaan 14, 2628 XK Delft, The Netherlands
d Geotechnical Engineering SPACE, Queen’s University Belfast, Belfast, UK

*Corresponding author. Tel.: +353 1896 2387; fax: +353 1677 3072.

Received 21 January 2013; received in revised form 2 August 2014; accepted 7 September 2014
Available online 13 December 2014

Abstract

Granular anchors (GAs) can resist pullout/uplift forces, compression forces and also provide ground improvement. Under pullout loading, a centrally located tendon transmits the applied surface load to the base of the granular column via a base plate attachment, which compresses the column causing significant dilation of the granular material to occur, thereby forming the anchor. This paper describes a program of field testing and numerical modelling of the pullout resistance of GA installations in overconsolidated clay for the undrained (short term) condition. Pertinent modes of failure are identified for different column length to diameter (L/D) ratios. The applied pullout load is resisted in shaft capacity for short GAs or in end-bulging of the granular column for long GAs. In other words, the failure mode is dependent on the column L/D ratio. A novel modification in which the conventional flat base-plate is replaced by a suction cup was shown to significantly improve the undrained ultimate pullout capacity of short GAs.

© 2014 The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.

Keywords: Bulging capacity; Failure; Granular anchor; Uplift; Ultimate capacity

1. Introduction

Granular anchors are a relatively new and promising foundation solution, particularly suited for lightly loaded structures. In addition to the improvement provided to the surrounding ground, granular anchors can resist both pullout/uplift forces and compression forces. Hence they have been adopted, for instance, to prevent foundation uplift caused by flooding (Liu et al., 2006) or to resist foundation heave in expansive clays (Phanikumar et al., 2004, 2008; Sharma et al., 2004; Srirama Rao et al., 2007). Another recent development is the jet mixing anchor pile, a supporting technology particularly suited for foundation pit engineering in soft clay. The ultimate capacity and load–deformation relationship of such piles have been investigated by Xu et al. (2014) using uplift field tests and numerical analyses.

The focus of the present study is to investigate the ultimate capacity and load–deformation relationship of granular anchor (GA) foundations under uplift loading. The GA consists of three main components (Fig. 1): a horizontal base plate, a central vertical tendon (metallic rod or stretched cable) and densified granular material introduced into the borehole to form a granular column. Under an applied uplift force (P), the
tendon transmits the load to the column base via the base plate attachment. The resulting upward pressure over the column base compresses the laterally confined granular column against the sidewall of the soil body, thereby mobilizing an anchor resistance.

Unlike a conventional concrete anchor cast in-situ, pullout loading can be applied to the GA immediately after its installation. Significant yielding occurs under pullout loading. For short GAs, this is also accompanied by significant ground heave. In contrast, conventional concrete anchors generally fail by sudden pullout on mobilizing the full shaft capacity, assuming the anchor itself remains structurally sound. The granular column also acts as an effective drainage system to prevent excessive buildup of porewater pressure from occurring (Sivakumar et al., 2013).

The success of the GA technique for real applications requires a method to reasonably predict the load–displacement behavior for pullout loading. Various methods of analyses that consider different failure modes, including the vertical slip surface model (friction cylinder method) and block type failures (e.g. inverted cone, circular arc, or in the case of deep anchors, truncated cone), exist for the determination of the ultimate pullout capacity of strip/plate anchors embedded in uniform deposits of sand/clay (Meyerhof and Adams, 1968; Illamparuthi et al., 2002; Merifield et al., 2001; Merifield and Sloan, 2006; Khatri and Kumar, 2009, Rangari et al., 2013). Recently, Miyata and Bathurst (2012a, b) investigated the tensile reinforcement load/pullout capacity of steel strips used in reinforced soil walls in Japan. However, the failure modes for GAs are more complex compared with these scenarios; i.e. strip/plate anchors embedded in uniform deposits of sand/clay. This arises on account of the distinctly different response of the densified gravel material (used to construct the granular column) compared with that of the surrounding native material. For the GA, the applied pullout loading at the ground surface is transferred directly to the tendon base-plate assembly and resisted by the granular column. The dilatancy of the granular material is a significant factor controlling the GA’s pullout capacity. Recent experimental studies by O’Kelly et al. (2013) and Sivakumar et al. (2013), among others, indicate that the applied pullout load is resisted in shaft capacity for short GAs or in localized bulging near the column base for long GAs. In other words, the failure mode depends on the column length to diameter \((L/D)\) ratio.

The motivations for the experimental and numerical studies presented in this paper were to: (a) investigate the operation of GAs, particularly the development of the pullout load–displacement response for the undrained (short term) condition; (b) confirm the postulated modes of failure in shaft capacity or in end bulging and their dependence on the column \(L/D\) ratio and ground conditions/properties; (c) develop appropriate methods of analyses for the determination of the ultimate pullout capacity. The research programme involved performing 8 instrumented GA field tests which were subsequently modeled using finite element software. A novel modification of the GA arrangement to improve its undrained ultimate pullout capacity was also modeled numerically.

2. Experimental programme

2.1. Ground conditions

Full-scale field trials were performed on 8 GAs installed in the upper Brown Boulder Clay (BrDBC) layer of the Dublin Boulder Clay (DBC) deposit; an intact lodgement till. This is the primary superficial deposit within the greater Dublin region, Ireland. The DBC deposit is heavily overconsolidated (it was deposited under ice sheets more than 1 km in thickness), with reported overconsolidation ratios of 15–30. The DBC material is significantly stiffer and stronger than other well-characterized tills (e.g. ~6–8 times stiffer than typical London Clay and ~5 times stiffer than typical Cowden till from the east coast of the UK), at least for the lower strain range (Long and Menkiti, 2007; O’Kelly, 2014). Further details on the geotechnical properties and behavior of the DBC deposit have been reported by Farrell et al. (1995) and Long and Menkiti (2007). The results of interface shear tests on a novel geogrid in DBC backfill material have also been reported by O’Kelly and Naughton (2008).

The BrDBC material is characterized as stiff to very stiff, slightly sandy slightly gravelly silt/clay of low plasticity, with typical liquid limit and plastic limit values of 29% and 16%, respectively (Long and Menkiti, 2007), and a high bulk unit weight of 22 kN/m\(^3\) (Kovacevic et al., 2008). Borehole logs for the test site indicated that the near saturated BrDBC stratum at this location was ~1.8 m in depth, with a relatively high stone content (i.e. particle size > 20 mm) of typically 5–15% over this depth. A very clayey/silty gravel layer was encountered in some of the boreholes at a depth of ~0.8 m below ground surface level (bgl). The standing groundwater table at the site was located at between 1.8 and 2.0 m bgl.

Fig. 2 shows strength against depth data determined for the test area using a 20 t cone penetration test (CPT) rig and...
meters were formed using clay cutter tools. It was found that in rig. Boreholes of 150 mm (GA7) and 200 mm (GA3) dia-
line of boreholes formed using a light cable-percussion drilling 2.2. Anchor installation

the CPT trace is explained by the material layer and was adopted in the present study. The spiky nature of the remolded undrained shear strength (q_{ur}) corresponding to ground surface level and was determined from Fig. 2 that $q_{ur} = 64$ kPa and $m = 12.5$ kPa/m. forming holes greater than 0.5 m in depth for the other GA installations, the adhesion/friction generated between the fall-
cutter tool and sidewalls of the holes was excessive, necessitating the installation of temporary steel casings for these holes. This had the effect of producing slightly larger bores with smooth sidewalls. With the casing removed, the bore diameter was the same as the casing’s outer diameter; i.e. 168 and 219 mm for hole diameters of nominally 150 and 200 mm. Into each of these boreholes was placed an M12 threaded rod (i.e. tendon) with a steel base-plate attachment, 148 and 196 mm in diameters for bores of nominally 150 and 200 mm, respectively. The base plate was secured at the lower end of the tendon using M12 nuts, one threaded from above the base plate and two threaded from below. The granular columns were constructed by backfilling uniformly graded sub-angular limestone gravel into the boreholes, with compac-
tion to achieve maximum density using the method described by Sivakumar et al. (2013). The grading of the gravel (10 mm nominal particle size) satisfied the minimum recommended ratio between the nominal particle size and column diameter of 1:15.

2.3. Pullout tests

Pullout forces were applied to the top ends of the anchor tendons using a hydraulic jack supported above the strong cross-beam of a reaction frame. For each GA installation, the load against displacement response of the ground-anchor system was measured using a load cell and a displacement transducer; the latter was mounted on an independent reference beam. The vertical displacement of the ground surface was measured by a second displacement transducer located at a distance of 300 mm from the anchor centerline; i.e. between 190 and 225 mm (0.87D_o–1.5D_o) radially from the sidewalls of the gravel columns for the different GA installations. The displacement response of the ground surface in this region would be an indicator of the anchor’s likely failure mechanism, in that significant heave would be expected for block type failures or failure in shaft capacity whereas negligible heave would be expected for GAs failing in end bulging. A single measure-
ment within this zone was deemed sufficient for this purpose.

Table 1
Anchor installation details.

<table>
<thead>
<tr>
<th>Anchor number</th>
<th>Temporary casing required</th>
<th>Borehole diameter, D_o (m)</th>
<th>Anchor length, L (m)</th>
<th>Anchor aspect ratio, L/D_o</th>
<th>Ultimate field pullout capacity (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GA1</td>
<td>Yes</td>
<td>0.219</td>
<td>1.20</td>
<td>5.5</td>
<td>51.0</td>
</tr>
<tr>
<td>GA2</td>
<td>Yes</td>
<td>0.219</td>
<td>0.96</td>
<td>4.4</td>
<td>43.0</td>
</tr>
<tr>
<td>GA3</td>
<td>No</td>
<td>0.200</td>
<td>0.50</td>
<td>2.5</td>
<td>19.1</td>
</tr>
<tr>
<td>GA4</td>
<td>Yes</td>
<td>0.219</td>
<td>1.00</td>
<td>4.6</td>
<td>47.0</td>
</tr>
<tr>
<td>GA5</td>
<td>Yes</td>
<td>0.168</td>
<td>1.47</td>
<td>8.7</td>
<td>42.5</td>
</tr>
<tr>
<td>GA6</td>
<td>Yes</td>
<td>0.168</td>
<td>0.80</td>
<td>4.8</td>
<td>33.0</td>
</tr>
<tr>
<td>GA7</td>
<td>No</td>
<td>0.150</td>
<td>0.45</td>
<td>3.0</td>
<td>12.8</td>
</tr>
<tr>
<td>GA8</td>
<td>Yes</td>
<td>0.168</td>
<td>1.62</td>
<td>9.6</td>
<td>42.0</td>
</tr>
</tbody>
</table>
The experimental load-displacement and ground heave response data are modelled in the second part of this study to better understand the GAs performance under pullout loading and associated failure modes. Similar experimental studies performed in the future could consider measuring the ground heave response at two or more radial distances (each a function of the GA’s diameter) to provide more experimental data for validation of the modelling. During application of the pullout load, observations were made of the relative vertical movements between the tops of the gravel columns and the surrounding ground surface. The rate of loading was such that the anchor’s ultimate pullout capacity was mobilized within a period of 15 min.

3. Experimental results

The measured pullout forces and heave of the ground surface at 0.3 m from the anchor centerline are plotted against axial displacement of the anchor tendon (base plate) in Fig. 3. Visual observations for anchors GA3 and GA7 having \(L \leq 3D_o \) (Fig. 3(a)) indicated that substantial heave of the surrounding ground occurred on approaching the pullout capacity, with the top surfaces of the gravel columns protruding above the raised ground surface at ultimate pullout capacity. As expected, a larger column length and/or diameter produced greater pullout capacity. For longer columns, the ultimate pullout capacity was generally mobilized for anchor displacements of \(~D_o/2\); e.g. \(~85\) and \(~110\) mm for GA5 \((D_o=0.168 \text{ m})\) and GA2 \((D_o=0.219 \text{ m})\), respectively. Even though displacements of up to \(145\) mm were required to mobilize the ultimate pullout capacity of the longest anchors (Fig. 3(b)), negligible ground heave (i.e. \(<2\) mm) was measured at 0.3 m from the anchor centerline. This suggested that these anchors had failed in localized bulging near the base of the gravel columns. This was supported by the observation that at ultimate pullout capacity, the tops of the gravel columns had not moved, remaining level with the surrounding ground surface.

4. Experimental analyses

For conventional concrete/steel tension piles, relative displacements between the anchor and surrounding ground of \(\sim0.5\% \ D_o\) are typically required to mobilize the full shaft capacity. The much larger relative displacements of typically \(\sim50\% \ D_o\) required to mobilize the ultimate pullout capacities of the GAs suggested that there were significant differences between the respective load resistance mechanisms. In particular, one aspect to consider was the significant increase in lateral confinement pressure induced on the granular column during pullout loading on account of the dilation of the dense gravel.

An undrained analysis was justified for the surrounding soil considering: (a) intact BrDBC material has a (horizontal) permeability coefficient value of the order of \(10^{-9}\) m/s (Long and Menkiti, 2007); and (b) the GAs’ ultimate capacities were mobilized within 15 min of starting the pullout tests. Note that for the experimental setup described, a vacuum cannot develop in the cavity that forms directly beneath the base plate during pullout on account of the open pore structure of the gravel column.

Analogous to the analysis of tension piles, for short GAs failing in shaft capacity, the ultimate pullout load \(P_{\text{shaft}}\) is given by the summation of the shear resistance mobilized over the shaft area and the self-weight of the gravel column (Fig. 4(a):

\[
P_{\text{shaft}} = \pi D_o L \tau_{\text{ur}} + \pi D_o^2 L \gamma_g
\]

where \(\alpha\) is an adhesion factor; \(L\) and \(D_o\) are the installed (initial) column length and diameter respectively; \(\tau_{\text{ur}}\) is the mean remolded undrained strength over the column length and \(\gamma_g\) is the unit weight of gravel forming the granular column.

From Eq. (1) and Fig. 2, \(\tau_{\text{ur}} = 67-74\) kPa for the 8 GAs reported in the present study. As described earlier in the paper, the borehole formation process generally required a temporary steel casing which had the effect of produced a smooth bore sidewall. Under vertical loading, confined compression of the gravel column and dilation of the dense gravel accompanying...
the large relative displacements between the GA and surrounding soil produced significant increases in the normal stresses acting at the soil–column interface. Under these conditions, some embedment of the gravel particles into the bore sidewall was inevitable. Hence, at ultimate pullout capacity, the rupture surface occurs within the soil next to the column shaft. Significant remolding occurs within this zone on account of the borehole formation process and the large relative displacements occurring between the column shaft and surrounding soil during pullout loading. Under these circumstances, an α value of unity is appropriate, as demonstrated by Sivakumar et al. (2013) from back analysis of the field performance of GAs installed in aged made ground deposits.

For longer GAs, an increasing uplift force applied by the anchor tendon to the base plate is first resisted in shaft resistance over the lower section of the gravel column (Fig. 4(b)). The relative movements between the column and surrounding soil mean that the shaft resistance initiates from the column base and develops upwards along the column length. As the applied force increases further, shaft resistance is mobilized over an increasing distance from the column base (Fig. 4(c)), up to a point when structural failure of the gravel column occurs by localized end bulging because of a lack of sufficient lateral confinement in the immediate vicinity of the highly stressed column base (Fig. 4(d)). With the buildup in end bulging resistance of the column (accompanied by large localized strains), the mobilized shaft resistance reduces back. In other words, the dominant failure mode is governed by the column’s L/D_o ratio.

For GAs failing in end bulging, Sivakumar et al. (2013) suggested that the ultimate capacity P_{base} can be determined by adapting the method presented by Hughes et al. (1975) for calculating the ultimate capacity of stone columns under compression (Eq. (3)). Localized bulging for stone columns under compression loading and long GAs under pullout loading occurs because of lack of sufficient lateral confinement at the top and bottom ends, respectively, of the granular columns.

$$P_{\text{base}} = \frac{\pi D^2 \sigma_{v,\text{base}}}{4}$$

where D is the diameter of the column bulge; $\sigma_{v,\text{base}}$ is the bearing pressure at the column base which is estimated by $\sigma_{v,\text{base}} = [1 + \sin \phi'_g/(1 - \sin \phi'_g)] [\sigma_r + N^*_{\text{sur,base}}]$, in which ϕ'_g is the gravel’s effective friction angle; σ_r is the overburden factor considering local shear failure; $\sigma_{v,\text{base}}$ is the overburden pressure provided by the surrounding ground and $s_{\text{sur,base}}$ is the remolded undrained strength in the bulging zone.

The local bearing capacity factor is given by Gibson and Anderson (1961):

$$N_e^* = 1 + \log \frac{G_d}{s_{\text{sur,base}}}$$

where G_d is the undrained shear modulus.

The overburden pressure is given by $\sigma_r = \gamma_s L'$, where γ_s is the bulk unit weight of the surrounding soil and L' is the overburden depth to the mid-height of the bulge zone. Sivakumar et al. (2013) suggested that a localized enlargement of approximately 10% in the column diameter occurred on nearing failure in end bulging; i.e. in Eq. (3), $D \approx 1.1D_o$. Assuming no significant movement of the gravel material occurs above the bulging zone and conservation of volume for the dense gravel, it can be determined that the predicted length of the bulge zone at pullout failure (typically occurring for axial displacements of $\sim D_o/2$) is $\sim 2.5D_o$. Hence the mid-height of the bulge zone at ultimate pullout capacity occurs for an overburden depth of $L' \approx L - (D_o + 2.5D_o)/2 = L - 1.75D_o$ (see Fig. 4(d)).
The ultimate pullout load in shaft capacity increases proportionally with, and is strongly sensitive to, the column’s \(L/D \) ratio. Above a critical aspect ratio \((L/D)_c\), failure in end bulging is the dominant mechanism, with the GA’s capacity dependent on \(G/s_{\text{surbase}} \), \(\phi' \) and its \(L/D \) ratio (see Eq. (3)). As shown later in the paper, for a given column diameter, the ultimate pullout capacity for failure in end bulging increases only marginally with increasing \(L/D \) ratio.

Fig. 5 shows the experimental ultimate pullout capacity values for the 8 GAs, expressed in the non-dimensional form of \(P^s = 4P_{\text{measured}}/\pi D_o^2 s_{\text{sur}} \), plotted against the columns’ \(L/D \) ratios. Also included in this figure are envelopes of ultimate resistance in shaft capacity and in end bulging predicted using Eqs. (2) and (3), respectively, but expressed in the form of \(P_{\text{shaft}} = 4L/L_o + \xi_L / s_{\text{sur}} \) and \(P_{\text{base}} = \pi \sigma_{\text{surbase}} / s_{\text{surbase}} \). An \(\alpha \) value of unity (Sivakumar et al., 2013) was used in computing the shaft capacity values. The supposed transition between the different failure modes for the specific ground conditions encountered at the test site occurred for \((L/D)_c \approx 6.2\). The pertinent soil parameter values used in these calculations are listed in Table 2.

Since the GAs had been quickly loaded to failure, with the surrounding soil remaining in an undrained condition, the BrDBC’s shear modulus value for computing the local bearing-capacity factor \(N^c \) in Eq. (4) could be estimated using elastic theory, with an undrained Poisson’s ratio \(\nu_u \) value of 0.5. However good-quality undisturbed sampling of the BrDBC layer was not possible on account of its high stone content. Hence, in the present investigation, a single ‘operational’ \(G_u \) value of 3.0 MPa was assumed for the BrDBC layer, and based on the mean \(s_{\text{surbase}} \) value of \(\sim 77 \) kPa determined for the 8 GAs tested, an \(N^c \) value of 4.7 is obtained using Eq. (4).

Deviations between the experimental and predicted pullout capacity values presented in Fig. 5 most likely occurred on account of the inherent variability/strength heterogeneity of the BrDBC layer at the test site. For instance, a very clayey/silty gravel layer had been confirmed from the borehole risings for a depth of 0.8–0.9 m bgl at the location of anchor GA6. Its presence can also be inferred from the significantly higher CPT cone-tip resistance values mobilized over this depth range (see Fig. 2). This would explain why the measured ultimate pullout capacity of GA6 was greater than its shaft capacity predicted using the representative soil property values, reported in Table 2. All four anchors of 200 mm nominal diameter had \(L/D \leq 5.5 \) (see Table 1), indicating that they had failed in shaft capacity. By contrast, anchors GA5 and GA8 \((L/D) \) of 8.7 and 9.6, respectively) failed in end bulging. The hypothesis was substantiated by the insignificant heave \((\leq 0.15 \text{ mm}, \text{ Fig. 3(b)) of the ground surface measured at 0.3 m from the centerline of these two anchors at ultimate pullout capacity.

5. Numerical analyses

The numerical analyses were performed using a commercially available finite-element program (PLAXIS 2D 2010 (Brinkgreve et al., 2010)), employing 15 node triangular elements and invoking axisymmetry. The BrDBC material was modeled using a total stress approach \((s_u, \phi_u = 0\)), consistent with the experimental conditions. Furthermore, all of the soil parameter values measured were for the undrained condition. The gravel columns were modeled using an effective stress approach. A Mohr–Coulomb model was used for the BrDBC and gravel materials, with consideration of the increase in undrained strength and stiffness with depth. The use of the Mohr–Coulomb model for the BrDBC layer was justified since this material is highly overconsolidated, with reported overconsolidation ratio values ranging 15–30. A typical apparent pre-consolidation (yield) stress value of \(\sim 1.0 \) MPa was estimated from the corrected CPT cone-tip resistance \(q_c \) data using the method after Kulhawy and Mayne (1990). This apparent pre-consolidation stress for the test site is in general agreement with the value of 750 kPa for BrDBC determined from in-situ dilatometer tests reported by Lawler et al. (2011).

Table 2

<table>
<thead>
<tr>
<th>Material parameter values.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
</tr>
<tr>
<td>Surrounding soil</td>
</tr>
<tr>
<td>Bulk unit weight, (\gamma_s) (kN/m³)</td>
</tr>
<tr>
<td>Remolded undrained strength at ground surface level, (s_{\text{sur}}) (kPa)</td>
</tr>
<tr>
<td>Rate of increase in undrained strength with depth, (m) (kPa/m)</td>
</tr>
<tr>
<td>Undrained Young’s modulus at ground surface, (E_u) (MPa)</td>
</tr>
<tr>
<td>Rate of increase of Young’s modulus with depth, (\Delta E_u) (MPa/m)</td>
</tr>
<tr>
<td>Undrained Poisson’s ratio, (\nu_u)</td>
</tr>
<tr>
<td>Coefficient of earth pressure at rest, (K_o)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gravel column</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulk unit weight, (\gamma_s) (kN/m³)</td>
<td>20</td>
</tr>
<tr>
<td>Apparent cohesion, (c') (kPa)</td>
<td>0.2</td>
</tr>
<tr>
<td>Effective friction angle, (\phi') (degree)</td>
<td>42</td>
</tr>
<tr>
<td>Dilatancy angle, (\psi') (degree)</td>
<td>10</td>
</tr>
<tr>
<td>Drained Young’s modulus at ground surface level (MPa)</td>
<td>4.5</td>
</tr>
<tr>
<td>Rate of increase in Young’s modulus with depth (MPa/m)</td>
<td>30</td>
</tr>
<tr>
<td>Drained Poisson’s ratio, (\nu')</td>
<td>0.3</td>
</tr>
</tbody>
</table>
The Young’s modulus values adopted in the numerical analyses required special attention. When using a constant stiffness modulus to represent soil behavior (as in the Mohr–Coulomb model), one should choose a value that is consistent with the stress level and stress path development. The pertinent input parameters are values of undrained (secant) Young’s modulus at 50% shear strength determined from the measured stress–strain curves. The values of $E_{uo50} = 7.0$ MPa and $\Delta E_{uo50} = 1.4$ MPa/m depth were deduced from regression analysis of the stiffness values at 50% shear strength plotted against depth for the 12 triaxial specimens. It is acknowledged that this approach cannot reproduce the inherent structure of the ground and may result in (significantly) lower values of soil stiffness, especially at small strains. With mean values of $L \approx 1.0$ and $s_{surf} \approx 77$ kPa for the 8 GAs tested, these stiffness values indicate $G_a \approx 2.8$ MPa (from $G_a = E_u/3$), which is consistent with the value of 3.0 MPa adopted for the BrDBC layer in the experimental analyses. For the drained Poisson’s ratio of 0.2 reported for BrDBC (Kovacevic et al., 2008), the E_{uo50} and ΔE_{uo50} values used in the numerical analyses correspond to drained modulus values of 5.6 MPa and 1.1 MPa/m depth, respectively.

Considering the very low confinement pressure, a relatively low drained Young’s modulus of 4.5 MPa was adopted at ground surface level for the dense gravel column. Its value was considered to increase significantly and proportionately with depth. The ψ' value of 42° adopted is consistent with reported peak values for dense sub-angular gravel.

The Mohr–Coulomb model applied in PLAXIS 2D (2010) does not allow for dilatancy cutoff; i.e. end of dilatancy occurs when the soil reaches the critical state. The effect of dilatancy angle ψ' was investigated by running simulations with input ψ' values of 10° and then 5°; i.e. moving towards the critical state $\psi' = 0$° value. The interactions between the gravel and BrDBC materials in contact with the top and bottom surfaces, respectively, of the base plate were modeled using an interface friction coefficient value of 0.67.

Long and Menkiti (2006, 2007) and Lawler et al. (2011) reported an average coefficient of earth pressure at-rest (K_0) value of 1.5 for the BrDBC layer, determined from high quality in-situ dilatometer tests. In previous finite element analyses, values of $K_0 = 1.5$ (Menkiti et al., 2004; Kovacevic et al., 2008) and 3.0 (Lawler et al., 2011) have been adopted for the BrDBC layer. In the absence of data, engineers in Dublin have assumed K_0 values for the BrDBC layer ranging 1.0–1.5 in design (Long and Menkiti, 2007). Based on this evidence, a constant K_0 value of 1.5 with depth was adopted in the present study. For numerical reasons, an undrained Poisson’s ratio value of 0.495 was employed along with an apparent cohesion c' value of 0.2 kPa for the gravel.

An axisymmetric model with standard fixities and dimensions of 2.5 m in radius and 2.5 m in depth was used for all of the simulations. This placed the outer boundary at a distance of at least $11D_a$ from the sidewall of the gravel column and allowed freedom for any of a number of possibly mechanisms to develop in the BrDBC material, without significant influence from the outer boundary. As for the in-situ condition, the phreatic level was set at 1.8 m bgl.

The calculation scheme was performed in three stages: (a) the initial stresses were generated in the 2.5 m thick BrDBC layer using the K_0 procedure; (b) the GA’s gravel column was ‘wished-in-place’; (c) the operation of the anchor during pullout loading (i.e. uniform upward movement of its rigid base plate) was simulated by means of an upward prescribed-displacement condition acting over the base of the gravel column. The horizontal dimension (width) of the prescribed displacement was set equal to that of the base plates used in the field tests, simulating the initial gap of ~10 mm present between the outer rim of the base plate and the bore sidewall. A tension cutoff value of 0 kPa was specified throughout the BrDBC layer; i.e. vacuum cannot develop in the cavity that forms directly beneath the base plate during pullout. A number of simulations performed for different mesh densities indicated that coarse meshing (with approximately 1100 elements) was adequate, with pullout failure typically achieved within 5000 steps.

Simulations were also performed for a modified base-plate arrangement that allowed suction of up to one atmosphere to develop in the cavity formed beneath the base plate during pullout. This condition could occur for (near) saturated, low permeability soils under relatively quick applied loading. Such an anchor arrangement could involve an inverted cup (bucket) attachment at the bottom end of the tendon, which would be driven (embedded) into the base of the borehole (Fig. 6(a)). This scenario was modeled by specifying a tension cutoff value of 100 kPa for the BrDBC material. Such an arrangement could also mitigate against the tendency for plastic flow of soil from the bulge zone into the cavity forming at the column base by the upward movement of the anchor (Fig. 6(b)).

6. Numerical results

Fig. 7 shows predicted GA pullout resistances along with ground heave responses at 0.3 m from the anchor centerlines. Good overall agreement was achieved between the measured and predicted values of ultimate pullout capacity and the corresponding anchor (base plate) displacements. Deviations between the measured and predicted pullout forces arose due to the inherent variability/strength heterogeneity of the BrDBC layer over the test area, with the simulations performed using
representative soil parameter values. Another factor was the material model adopted, with the Mohr–Coulomb (linear-elastic perfectly plastic) representation used for the gravel column and surrounding soil predicting a stiffer response for the ground–anchor system and substantially overestimating the ground heave, particularly for experimental GAs having $L/D \leq 5.5$ [i.e. $< (L/D)_{cr}$]. For GA5 and GA8 ($L/D \geq 8.7$), the measured and predicted ground heave responses were in reasonable agreement, significantly smaller in magnitude and approximately increased in proportion with the anchor displacements. Again, the distinctly different ground heave responses for experimental anchors having $L/D \geq 5.5D_o$ and $Z \geq 8.7D_o$ indicated different failure mechanisms were at play.

Fig. 8 shows the extent of the plastic zones predicted in the soil surrounding the GAs at ultimate capacity. From these, the different failure mechanisms occurring predominantly in shaft capacity (Fig. 8(a–c)) or in end bulging (Fig. 8(d)) can be deduced and are dependent on the column L/D ratio. The enlarged plastic zone formed near the base of anchor GA8 ($L/D=9.6$, Fig. 8(d)) is indicative of failure in end bulging, consistent with measured and predicted ground heave movements and also with the experimental analyses presented earlier. For all GAs tested having $L \leq 5.5D_o$, plastic zones developed over the full column length in the soil next to the soil–column interface (confirmed by contours of displacement plots), indicative of failure in shaft capacity. The extent of the tension zones at the ground surface extended to ~ 1.5 m ($\sim 7D_o$) from the anchor centerline.

Fig. 9 shows contours of normal (radial) stress predicted over the column length at ultimate pullout capacity for GA4 and GA8 (L/D of 4.6 and 9.6, respectively). For GA8 (Fig. 9(b)), no increase in normal stress was predicted over the upper half of the column length. This can be explained by referring to Fig. 4(b–d). Under upward displacement of the base plate caused by increasing pullout load, confined compression of the gravel column and dilation of the dense gravel produces some embedment of the gravel particles into the bore sidewall and a buildup in normal stress that propagates upwards from the column base. The pullout load is resisted in shaft capacity mobilized over this lower section of the column until such point that the normal stresses become too great, resulting in localized end-bulging failure. In this scenario, no increase in normal stress or relative movement (and hence shaft resistance development) occurs over the upper section of the column length. By contrast, for GA4 (Fig. 9(b)), the normal stresses increased and relative movements occurred at the interface for the full column length, indicative of full mobilization of the shaft capacity.

Fig. 10 shows the radial expansion of the bore sidewall predicted for different depths (characterized by values of z/D_o, where z is the distance measured from the column base) along the lower section of the gravel column. Fig. 10(a and b) shows negligible radial expansion of the gravel columns was predicted for GAs having $L/D \leq 3.0$. Radial strains ε_r (computed as the radial expansion expressed as a percentage of the GA’s initial column radius) of less than 2.1% were predicted for the anchor displacements (~ 45 mm, Fig. 3(a)) corresponding to the field ultimate pullout capacity. However, for GA5 and GA8 ($L/D \geq 8.7$, Fig. 10(g and h)), significant bulging of the columns was predicted over a length of $\sim 2-3D_o$ from the

Fig. 6. Outline of modified base-plate arrangement for improved GA performance. (a) Proposed installation. (b) At pullout failure in shaft capacity.
column base, with \(\varepsilon_r \) values of \(\sim 35\% \) predicted for the much larger anchor displacements of at least 100 mm require to mobilize field ultimate pullout capacity (Fig. 3(b)). For intermediate \(L/D \) values, some radial expansion of the gravel column was also predicted to occur within 2–3\(D_o \) from the column base; e.g. \(\varepsilon_r = 8–14\% \) for the anchor displacements corresponding to the field ultimate pullout capacity of GAs 1, 2 and 4. However, this \(\varepsilon_r \) range is not enough to develop sufficient bulging resistance for failure to occur in end bulging.

6.1. Length of the bulge zone

For GAs failing predominantly in end bulging at the test site (i.e. \(L/D \geq 6.2 \)), the predicted bulge length of \(\sim 2–3D_o \) is consistent with the value of \(\sim 2.5D_o \) determined earlier using assumptions reported by Sivakumar et al. (2013) regarding end bulge formation. Some bulging of the gravel columns was also predicted at distances of up to \(\sim 8D_o \) from the column base, although its amount reduced significantly with decreasing depth over this zone.

The \(\varepsilon_r \) values of \(\sim 35\% \) and predicted for the anchor displacements corresponding to the field ultimate pullout capacities of GA5 and GA8 were significantly greater than the value of \(\varepsilon_r \approx 10\% \) postulated by Sivakumar et al. (2013) for failure of the gravel column in end bulging. This is most likely explained by the overestimation of the dilatancy for the gravel in the numerical predictions (which were based on a constant \(\psi = 10^\circ \)), whereas \(\psi = 0^\circ \) at critical state. In other words, in the numerical analyses, the ultimate pullout capacity and corresponding ground heave movements for these anchors were overestimated. This is confirmed by comparing Figs. 10(g and h) and 11(a and b), with predicted \(\varepsilon_r \) values reducing by \(\sim 12\% \) when the input dilatancy angle (which remains fixed throughout the numerical simulation) was reduced from 10° to 5°.

Fig. 12 shows non-dimensional ultimate pullout capacity (\(P^* \)) predictions for the 8 GAs plotted against column \(L/D \) ratio. The predicted \(P^* \) values for GAs failing in shaft capacity (i.e. \(L/D < 6.2 \)) were in good agreement with the trend line given by Eq. (2), but expressed in non-dimensional form. However, for anchors GA5 and GA8 failing in end bulging (\(L/D \geq 8.7 \)), the predicted bulging capacities overestimated the bulge trend line given by Eq. (3), expressed in non-dimensional form. This can be explained by the constant \(\psi \) value of 10° used in these numerical simulations. Since the dilatancy angle is not explicitly considered in Eq. (3), the agreement between the experimental data and the bulge trend

Fig. 7. Predictions of pullout resistance and ground heave at 0.3 m from the anchor centreline plotted against anchor displacement, with the plots ordered by increasing column \(L/D \) ratio. Unless otherwise stated, simulations are for a constant \(\psi = 10^\circ \). (a) GA7 (\(L/D = 3.0 \)), (b) GA2 (\(L/D = 4.4 \)), (c) GA1 (\(L/D = 5.5 \)), (d) GA8 (\(L/D = 9.6 \)).
line was good (Fig. 5). In practice, however, with large localized deformations occurring during column end-bulging, the ψ_0 value for the gravel reduces towards the critical state $\psi_0 = 0^\circ$ value. In order to validate this hypothesis, a number of the simulations were repeated using a lower (constant) ψ_0 value of 5° (e.g. see Fig. 7(c and d)), which was found to produce much better agreement with Eq. (3) trendline (see Fig. 12).

6.2. Modified anchor base-plate for improved pullout capacity

Fig. 12 demonstrates the effect of developing suction of one atmosphere in the cavity that forms directly beneath the base plate during pullout loading (see ‘With suction cup’ data in figure). The predicted improvement in ultimate pullout capacity was found to decay exponentially with the column L/D ratio (Fig. 13). From the numerical analyses, the proposed modification of the base-plate arrangement produced significant increases in the undrained ultimate pullout capacity for short GAs; e.g. between $\sim 30\%$ ($L=2.5D_o$) and 6% ($L=6.2D_o$) for GAs failing in shaft capacity. However the benefit achieved for GAs failing in end bulging was minor, with negligible improvement achieved for $L/D \geq 10$. Further investigations and validation using experimental field trials are necessary to confirm these findings.

7. Discussion

Using experimental and numerical means, this paper has confirmed that failure of GAs predominantly occurs in shaft capacity or in end bulging, depending on the column’s L/D ratio. Setting $P_{\text{shaft}} = P_{\text{base}}$ (Eqs. (2) and (3), respectively) and disregarding the small contribution of the column’s self-weight component (i.e. second term in Eq. (2)), the transition between failure in shaft capacity and in end bulging occurs for

$$\frac{L_{cr}}{D_o} = \frac{D_o \sigma_{\text{base}}}{4 \alpha s_{\text{sur}}}$$

with σ_{base} and hence L_{cr}/D_o dependent on ϕ'_g, s_{sur} and Gt. Note that the value of L_{cr}/D_o increases significantly with ϕ'_g, but only marginally with the Gt/s_{sur} ratio.
However, once the column is fully encased for depths greater than \(\sim 6D_o \), the hoop resistance provided will prevent localized bulging failure from occurring. Hence, under increasing applied pullout loading, the shaft resistance can continue to develop upwards to the top of the gravel column (Fig. 4(e)), with failure eventually occurring exclusively in shaft capacity. The numerical analysis has shown that the undrained ultimate pullout capacity can be significantly increased for short GAs installed in (near) saturated, low permeability soils by using an inverted cup (bucket) in place of the conventional flat anchor base plate.

Finally, all of the field tests and numerical simulations presented in this paper relate to the pullout capacity mobilized for the undrained condition. Hence the potential for some softening/swelling of the soil in the vicinity of the column base/bulge zone (e.g. as a result of the groundwater regime or surface water entering down the column shaft) could cause some reduction in the ultimate pullout capacity, particularly for over-consolidated clays.

8. Conclusions

Using experimental and numerical means, this paper has confirmed that the undrained pullout capacity of granular anchors (GAs) is mobilized in shaft capacity or in end bulging, depending on the columns’ \(L/D \) ratio. During pullout loading, confined compression of the column and dilation of the dense gravel under the large relative displacements occurring at the soil–column interface produce significant increases in the normal stresses and hence some embedment of the gravel particles into the sidewall of the soil bore. For GAs failing in shaft capacity, the rupture surface occurs within the remolded soil next to the column shaft, with the ultimate pullout capacity increasing strongly and proportionally with the column \(L/D \) ratio. At the ground surface, the extent of the tension zone in the surrounding soil extends a distance of \(\sim 7D_o \) from the anchor centreline. Above a critical column aspect ratio \((L/D_o)_{cr} \) value, at ultimate pullout capacity the column fails structurally by bulging over its lower end (concentrated at \(\sim 2–3D_o \) from the column base), with its capacity dependent on \(G_{a/utw_{sur}} \), \(\phi'_b \) and the column \(L/D \) ratio. The field ultimate pullout capacity for end bulging failure was substantially mobilized for anchor displacements of \(\sim D_o/2 \) and increases only marginally in value with increasing \(L/D \) ratio. For the particular ground (intact lodgement till) at the tests site and granular backfill material used to form the columns, the transition between the two failure modes occurred for \((L/D_o)_{cr} \approx 6.2 \). The value of \((L/D_o)_{cr} \) increases significantly with \(\phi'_b \) and marginally with \(G_{a/utw_{sur}} \). Numerical analyses also showed that the undrained ultimate pullout capacity can be increased (significantly for short GAs) by using an inverted cup/bucket in place of the flat base-plate arrangement used in previous GA setups. The benefit of the proposed modification decayed exponentially with increasing \(L/D \) ratio, with no significant gain achieved for \(L \geq 10D_o \).

For the particular soil conditions at the test site, the transition between the two failure modes occurred for \((L/D_o)_{cr} \approx 6.2 \). This value is consistent with experimental observations from other full-scale pullout tests reported for GAs by O’Kelly et al. (2013) and Sivakumar et al. (2013). Numerical predictions of the bulge formation, concentrated within a region extending to \(2–3D_o \) from the column base, are also consistent with assumptions reported by Sivakumar et al. (2013).

Several researchers (e.g. Phani Kumar and Ramachandra Rao (2000) and Sharma et al. (2004)) have reported that end bulging failure of long GAs can be contained by encasing the lower section of the gravel column with geotextile (geofabric tube/sock), thereby providing better performance; i.e. ultimate pullout capacity increases and tendon displacements under pullout loading decrease. The encasement of the lower section of the gravel column would tend to push the zone of bulging higher up the column, where the confining stresses are lower.
Fig. 10. Predicted radial expansion of gravel column for different z/D, where z is the distance from the column base. Unless otherwise stated, simulations are for a constant $\psi' = 10^1$. (a) GA3 ($L/D = 2.5$). (b) GA7 ($L/D = 3.0$). (c) GA2 ($L/D = 4.4$). (d) GA4 ($L/D = 4.6$). (e) GA6 ($L/D = 4.8$). (f) GA1 ($L/D = 5.5$). (g) GA5 ($L/D = 8.7$). (h) GA8 ($L/D = 9.6$).
References

Trinity College Dublin) for assistance in performing the field and laboratory tests presented in this paper. The numerical analyses part of the paper was performed by the lead author at PLAXIS bv, The Netherlands, during a period of sabbatical leave from Trinity College Dublin. This element of the research was performed under the Marie Curie IAPP project NOTES (Grant no. PIAP-GA-2008-230663).

Acknowledgements

The authors thank Martin Carney and Eoin Dunne (Department of Civil, Structural and Environmental Engineering, TCD for assistance in performing the field and laboratory tests presented in this paper. The numerical analyses part of the paper was performed by the lead author at PLAXIS bv, The Netherlands, during a period of sabbatical leave from Trinity College Dublin. This element of the research was performed under the Marie Curie IAPP project NOTES (Grant no. PIAP-GA-2008-230663).

References

Fig. 11. Predicted radial expansion of gravel column for a constant $\psi' = 5^\circ$. (a) GAS $L/D = 8.7$. (b) GAS $L/D = 9.6$.

Fig. 12. P^* predictions against column L/D ratio.

Fig. 13. Predicted increase in ultimate pullout capacity for suction of one atmosphere developed beneath the anchor base plate (assuming constant $\psi' = 10^\circ$ for gravel column).
B.C. O’Kelly et al. / Soils and Foundations 54 (2014) 1145–1158

