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Abstract

We prove the existence and uniqueness of a viscosity solution of the parabolic variational inequality
(PVI) with a mixed nonlinear multivalued Neumann—Dirichlet boundary condition:

au(att D Lot + 0o (ut.2)) 3 £ (1%, u(t, %), (Vuo)t.0), 1>0,xeD,
Bu;t’;x) + 09 (e, 0) 3 gt x,u0, ), 1> 0,x € BAD),

u(0,x) =h(x), xeD,

where d¢ and 91 are subdifferential operators and L, is a second-differential operator given by

Lo =L 3 oy
v = - oo ™);i(t,
vt 2 A 0x;0x ox;

ij=1

d
(X? + Zbi(t,x)av(x).
J i=1

The result is obtained by a stochastic approach. First we study the following backward stochastic general-
ized variational inequality:

{dYt + F(t,Y,Z)dt + G (t,Yy)dA; € 3(/) (Yy)dr + 81# (Yy)dA; + Z;,dW,, 0<t<T,
Yr =§,
where (At);>( is a continuous one-dimensional increasing measurable process, and then we obtain a

Feynman—Kag¢ representation formula for the viscosity solution of the PVI problem.
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1. Introduction

Viscosity solutions were introduced by Crandall and Lions in [1], and then developed in
the classical work of Crandall, Ishii, and Lions [2], where several equivalent formulations are
presented. The framework of this theory allows for merely continuous functions to be the
solutions of fully nonlinear equations of second order which provides very general existence
and uniqueness theorems.

In 1992 Pardoux and Peng [10] introduced backward stochastic differential equations (BSDE)
and supplied probabilistic formulas for the viscosity solutions of semilinear partial differential
equations, both of parabolic and elliptic type in the whole space. Elliptic equations with Dirichlet
boundary conditions have been treated by Darling and Pardoux in [3] and with a homogeneous
Neumann boundary condition by Hu in [4].

The parabolic (and elliptic) systems of partial differential equations (PVI without the
subdifferential operator) with nonlinear Neumann boundary conditions were the subject of
the paper Pardoux and Zhang [11]. The case of systems of variational inequalities for partial
differential equations in the whole space was studied by Maticiuc, Pardoux, Rédscanu and
Zalinescu in [7].

The main idea for proving the existence of the viscosity solutions for PDE and PVI is
the stochastic approach. Using a suitable BSDE, or backward stochastic variational inequality
(BSVI) for the PVI case, one can obtain a generalization of the Feynman—Kac¢ formula (i.e. a
stochastic representation formula of the viscosity solution for deterministic problems).

The origin of our study comes from the PDE

ou

— —Lu=1f t>0,xeD,

o7 u = f >0,x

0

—u:g, t>0,x € Bd(D),
on

u(0,x) = h(x), xeD,

which is a mathematical model for the evolution of a state u (¢, x) € R of a diffusion dynamical
system with sources f acting in the interior of the domain D and g on the boundary of D.

In certain applications it is called upon to maintain the state u (¢, x) in an interval I C R for all
x € D and in an interval J C R for all x € Bd (D). Practically, these can be realized by adding
the supplementary sources o1y (u (¢, x)) and a1y (u (¢, x)) to the system. These sources produce
“inward pushes” that would keep the state process

u(,x)inl, VxeD and u(t,x)inJ, Vx € Bd (D)

and do this in a minimal way (i.e. only when u(¢, x) arrives on the boundary of I and respectively
J). Hence 01y (u (¢, x)) and 91y (u (¢, x)) represent perfect feedback flux controls.

The aim of this paper is to treat the more general case of a parabolic variational inequality with
mixed nonlinear multivalued Neumann—Dirichlet boundary condition. This requires the presence
of new terms in the associated BSVI under consideration, namely an integral with respect to a
continuous increasing process.
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The scalar BSDE with one-sided reflection, which provides a probabilistic representation
for the unique viscosity solution of an obstacle problem for a nonlinear parabolic PDE, was
considered by El Karoui, Kapoudjian, Pardoux, Peng, Quenez in [5]. Pardoux and Rigcanu in [8]
(and [9] for the Hilbert spaces framework) studied the case of BSVI and obtained probabilistic
representation for the solution of PVI in the whole space. We note that the stochastic results from
our article are generalizations of those from [8].

The differences between our paper and [8], are as follows: the backward stochastic variational
inequality studied in [8] does not allow us to obtain the representation formula for the solution
of the deterministic multivalued Neumann—Dirichlet problem considered here; the multivalued
BSDEs presented here generalize the result from [8] by adding a Stieltjes integral which
comes from stochastic variational inequalities. Naturally, the additional assumptions are for the
supplementary (Stieltjes) term.

The paper is organized as follows: In Section 2 we formulate the Neumann—Dirichlet PVI
problem; we present the main results and we prove the uniqueness theorem. For the existence
theorem we first study in Section 3 a certain BSVI. The solution of this backward equation
gives us, via the Feynman—Kag representation formula, a viscosity solution for the deterministic
multivalued partial differential equation as shown in Section 4.

2. Main results
Let D be a open connected bounded subset of R of the form
D:{xeRd:Z(x)<O}, Bd(D):{xeRd;g(x):o},

where ¢ € C} (RY), |V¢ (x)| = 1, for all x € Bd (D).
We define the outward normal derivative by

) Lo (x) B (x)

on o ox; 0x;j

=(Vl(x),Vv(x)), forallx € Bd(D).

The aim of this paper is to study the existence and uniqueness of a viscosity solution for the
following parabolic variational inequality (PVI) with a mixed nonlinear multivalued Neumann—
Dirichlet boundary condition:

a”(att D Lo (tx) + 09 (u(t. ) 5 £t x. ult, x). (Vuo)(t, x)).
t>0, xeD,

du(t, x) ()
o + aw(u(t,x)) > g(t,x, u(t,x)), t >0, x e Bd(D),

u(0, x) = h(x), xeD,

where the operator £; is given by

Livx) = %Tr[a(t, x)o*(t, x)Dzv(x)] + (b(t, x), Vv(x))

1 ¢ P2vx) & dv(x)
== (00™)ij(t, x) + ) bi(t,x) ,
2 i,jX::I H 3)6,' j ; ! Xi

0x 0

forv € C2 (Rd) .
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We will make the following assumptions:
(I) Functions
b:[0,00) x R — R?,
o : [0, 00) x R — R4*x4,
£:10,00) x Dx R x RY > R, )
g:[0,00) x Bd (D) x R — R,
h:D — R are continuous.

We assume that for all 7 > 0O there exist « € R and L, B, ¥ > 0 (which can depend on T)
such that Vr € [0, T, Vx, % € RY,

|b(t,x)=bt,X)|+ o, x)—0c @) <L|x—x|, 3)
andVr € [0,T],Vx € D,u € Bd (D), y,5 € R, z,Z € R¢,

i O-N(ft.x.y.2— ft.x.5.2) <aly—7%

(11) |f(t1x1yaz)_f(t7x$y32)|Sﬂ'Z_EL

(i) £, x, 3,0 <y (1+1yl), “4)

V) =9 (gt,u,y) —gt,u, ) <aly — 5,
V) gt u, »I < y(1+1yl).

In fact, conditions ((4)-i and iv) mean that, for all 7 € [0, T'], x € D, u € Bd (D), z € R?,

y>ay— f({,x,y,2): R—>R,
y—>ay—g((t,u,y):R—->R

are increasing functions.
(II) With respect to the functions ¢ and ¥ we assume

1) ¢,¥ : R — (—o00, +oco]are proper convex l.s.c. functions,

. 5

i) ¢M2g©®=0 and Yy (=P =0, VyeR, ©)
and there exists a positive constant M such that

i |e(hx))| <M, VxeD, ©)

(i) |v(h(x))| <M, VxeBd(D).

Remark 1. Condition ((5)-ii) is generally realized by changing problem (1) into an equivalent
form. For instance, if (1o, u}}) € d¢ we can replace ¢ (1) by ¢ (u + ug) — ¢ (uo) — (uf, u); a
similar transformation can be made for .

We define

Dom (¢) ={u e R: ¢ (u) < oo},
8<p(u)={u*E]R:u*(v—u)+(p(u)§<p(v),VveR},
Dom (0p) = {u € R: d¢p (u) # 0},

(u,u*) €0¢p & uc Domdp, u*cdpu)

(for the function v we have similar notation).
In every point y € Dom (¢) we have

dp(y) =RN [ (), 0L (M].

where ¢’ (y) and ¢/, (y) are the left derivative and, respectively, the right derivative at point y.
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(IIT) We introduce compatibility assumptions: foralle > 0,¢ > 0,x € Bd (D), X € D,y € R
and z € RY,

() Ve Mgt x,y) <[V e, x, 0],
(i) Ve () f (.52 < [Vee ) f ¢, 5,9, 2],

where a™ = max {0, a} and Vg, (y), Vi (y) are the unique solutions U and V, respec-
tively, of equations

dp(y —eU)> U and dy(y—eV)> V.

(7

Remark 2. (A) Clearly, using the monotonicity of V., Vi, we see that, if
y-g(t,x,y) <0 and y-f(t,x,y,2) <0,

forallt > 0,x € Bd (D), x € D, yeRandz € R4, then the compatibility assumptions (7) are
satisfied.
B)If ¢, ¥ : R — (—o0, +00] are convex indicator functions
_ _ o, if y € [a, 00),
‘P()’)—I[a,oo) ()’)— {+OO, ifyg[a,oo),

and

0, ifye(—o0,bl

V() =l—00p) (V) = {—}—oo, if y & (—o00, b],

where a < 0 < b, then

1 _ 1
Voe () =—- (G —a) and Ve (y) = SO b)*
and the compatibility assumptions become

g(t,x,y)>0, fory<a, and
f@, xy,2) <0, fory>b.

We shall define now the notion of viscosity solution in the language of subjets and superjets;
see [2]. SR?*? will denote below the set of d x d symmetric non-negative real matrices.

Definition 3. Let u : [0, 00) X D — R be a continuous function, and let us have (7, x) €
[0, o0) x D. We denote by P2+u(t, x) (the parabolic superjet of u at (¢, x)) the set of triples
(p,q,X) € RxR? x SR¥*? such that for all (s, y) € [0, 00) x Dina neighbourhood of (¢, x),

1
u(s,y) < u(t,x)+p(s—t)+<q,y—x>+E(X(y—X),y—x>
+0(|s —t+ 1y —x|2).

Similarly, P2=u(t, x) (the parabolic subjet of u at (7,x)) is defined as the set of triples
(p,q,X) € R x R? x SR?*4 gyuch that for all (s, y) € [0,00) x D in a neighbourhood of
(t, x),

1
u(s,y) = u(t,x)+p(s—t)+<q,y—X>+E(X(y—X),y—x>

+o(ls — 1l + 1y — x[%),
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where r — o (r) is the Landau function, i.e. o : [0, o[ — R is a continuous function such that
lim 22 = 0.
r—0 "

We can give now the definition of a viscosity solution of the parabolic variational inequality
(1). We define first

e 1
Vit x,pqg,X) d:fp — ETr((Ua*)(t, x)X) —(b(t,x),q) — f(t,x, u(t, x), qo(t, x)).

Definition 4. Let u : [0,00) x D — R be a continuous function, which satisfies u0,x) =
h(x),VxeD.
(a) We say that u is a viscosity subsolution of (1) if

u(t,x) € Dom (¢), Y(t,x) € (0,00) x D,
u(t,x) € Dom (¥), V(t,x) e (0,00) x Bd (D),

and, at any point (¢, x) € (0, 00) x D, for any (p,q, X) € P2*+u(t, x),
V(t,x,p.q. X)+¢ (u(t,x)) <0 ifxeD,
min{V (1, x, p. g, X) + ¢/ (u(t, ), (V€ (), q) — g(t, x, u(t, ) ®)
+w’,(u(t,x))} <0 ifxeBd(D).
(b) The viscosity supersolution of (1) is defined in a similar manner to above, with P2t replaced
by P>, the left derivative replaced by the right derivative, min by max, and the inequalities <
by >.

(c) A continuous function u : [0, 00) x D is a viscosity solution of (1) if it is both a viscosity
subsolution and a viscosity supersolution.

We now present the main results

Theorem 5 (Existence). Let assumptions (2)—(7) be satisfied. Then PVI (1) has a viscosity
solution.

For the proof of the existence we shall study a certain backward stochastic generalized
variational inequality (then we use a nonlinear representation Feynman—Kag type of formula).
We present this approach in the following section and finally the proof of Theorem 5 in Section 4.

Theorem 6 (Uniqueness). Let the assumptions of Theorem 5 be satisfied. If the function
r — g(t,x,r) isdecreasing fort >0, x € Bd (D), )
and there exists a continuous function m : [0, o0) — [0, 00), m (0) = 0, such that
|f@t.x,r,p)— ft,y.r.p)l <m(lx =y (L+pD), V=0, x,yeD, peR’ (10)
then the viscosity solution is unique.

Proof. It is sufficient to prove the uniqueness on a fixed arbitrary interval [0, T'] .
Also, it suffices to prove that if u is a subsolution and v is a supersolution such that
u(0,x) =v(0,x) =h(x),x € D, thenu < v.
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Firstly, from the definition of D, there exists a function leC 2 (]Rd ) such that ¢ (x) >0on D
with V{ (x) = V£ (x) for x € Bd (D) (for example € (x) = £ (x) + sup, . 1€ (V)
For A = ||+ 1andé, e, c > 0let

A, x)=e"u(t,x)—80(x)—c
b(t,x) =eMv(t,x) +80(x)+c+e/t.

Define
ft, x,r,q, X) = ir — %Tr[(aa*) (t, x)X] — (b(t,x), q)

My e Mgo (1, x)) (11)

—eM (t,x,e”
and
gt,x,r)=eMg(t,x, e r).

Clearly r — f(t, x,r, ¢, X) is an increasing function for all (¢, x, ¢, X) € [0, T] x R? x R4 x
SR4*d Moreover, since

M= sup {IE@+ DI +ID2 @) |+ b 0|+ o, 0] < o,

(t.x)€[0,T]xD
then we can choose ¢ = ¢ (8, M) > 0 such that for & = i (¢, x) and £ = 7 (x),
7 (t, x, i, Dil, Dzﬁ) < F(t,x,ii + 80 + ¢, Dii + 8DT, D2ii + 5 D).

Using these properties, assumption (9), and the fact that the left and right derivative of ¢,y are
increasing, we infer that the function u satisfies in the viscosity sense

% @, x)+ f(t,x, a(t,x),Di(t,x), D% (t,x))
+eMyl (e7Miar,x)) <0 ifx eD,
min{z—? (,x) + f(t x, a4 (t,x), Di(t,x), D% (t. 1)) "

+eMgl (e Mt x)), (VZ (x). Di (t, x)> +8

—&(t, x,i(t, x)) +e“1p’_(e—“ﬁ(t,x))} <0 ifx e Bd (D).
Analogously we see that v satisfies in the viscosity sense
Bh ~ } _ )
E(t,x)+f(t,x,v(t,x),Dv(t,x),D v (1, x))
+eMol (e7Mu(t,x)) —e/t* >0 ifx eD,
v ~ B} _ )
max E(r,x)—l—f(t,x,v(t,x),Dv (t,x), D*0 (1, x)) (13)

+eMgl (M, x)) — /1%, <v12 x), D¥ (1, x)> )

—&(t,x, 0(t, x)) +e“1//+(e“ﬁ(t,x))} >0 ifx e Bd(D).

For simplicity of notation we continue to write u, v for i, v respectively.
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We assume now, to the contrary, that

max (u—v)" > 0. (14)
[0,71xD

Exactly as in Theorem 4.2 in [8], we have (7, X) € [0, T]x Bd (D), where (£, X) is the maximum
point, i.e.

u(t, ) —v(, %)= max (u—v)t>0.
[0,T]xD

We put now (see also the proof of the Theorem 7.5 in Crandall, Ishii, and Lions [2])
G, (t,x,y) =u(t,x)—v(t,y) —pu(t,x,y), with (t,x,y) €[0,T] x D x D,
where
n ~ /A A A A ~ A A4
Pn (t,an) = 5 |-x _y|2+g( vxau(t’x))<vg(x)v-x _y>+ i'x _'x|
=il = Myl (M u 2) (VE(E)x - y). (15)

Let (¢, x5, y») be a point of maximum of &,.
We observe that u (1, x) — v (£, x) — |x — )2|4 — |t —£]* has in (7, £) a unique maximum point.
Then, by Proposition 3.7 in Crandall, Ishii, and Lions [2], we have, as n — o0,

ty, — 1, an—iﬁe, Yn — X, 7£|}fn_Yn|2_>0’ (16)
u (ty, xp) = u(t, x), v (ty, X)) = v(1, X).

But domain D verifies the uniform exterior sphere condition
3rg > 0 suchthat S(x +roVE (x), 7o) ND =9, forx e Bd (D),

where S (x, rg) denotes the closed ball of radius ry centered at x.

Then

‘y —Xx — r()VZ(x))2 > rg, forx € Bd (D), y € D,

or equivalently
<Vf(x),y—x><2—i0|y—x|2 forx € Bd (D), y € D. a7

If we define
B(t,X,r»Q) =<VZ(X)7Q)_(§(I,X7"),

then, if x,, € Bd (D), we have, using the form of p, given by (15) and (17), that
B(tns Xyt (s %0) s D s X, 3)) = B (1 s 4 (s 20) 0 (i = )
+3(F. 2w, D)VE(R) + 4wy — 2 (0 — £) — Myl (e THuld, ) VE (7))
> _ ziro i =l + 8, 2, @, 9) (VE(2), VE @) = &1, 20, 1 G, 1)

+4x, — £ <w7 (Xn) + Xn — x> — My (eMui, %)) (VZ (%).vi (x,,)>.
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Then (16) implies for x,, € Bd (D)
i in] B (i . 4 (s 0) 2 D (s Xy ) + 8+ 7 (7wt ) | > 0.
Analogously if y, € Bd (D) we infer
li;?l)sol:)p[B (tns Yns 0 (tns Yn) s =Dy (tns Xns yn)) — 8 + ey, (e v (1, xn))] <0
Then from (12), (13) we conclude that
P+ ftns Xno 1t (tn, Xn) . Do (b X ) X) + € (e u(ty, x)) <0,

for (p, Dxpn (tn, Xn, yn) » X) 65 " u(ty, xn), (18)
and
- &
p+ f(tn, Yns U (s Yn) s =Dy pn (tn, Xn, Yn) Y) + CM” (C M"U(l‘n, yn)) l‘2 ,
-2 —
for (P, =Dy pp (tn, xn»yn)»Y) €P v(tn, yn)- (19)
From Theorem 8.3 in Crandall, Ishii, and Lions [2] (apply, with k = 2, O; = Oy = D, Uy =u,
uy = —v, by = p, by = —p) we deduce that there exists
(p, X, Y) € R x SR™*? x sRI*4,
such that
=2+
(p’ Dy pn (tn, Xn, )’n),X) €P ulty, xp),
_2’_
(p» =Dy pn (tn, Xn, yn),Y) € P v(tu, yn),
and

1
— 1+ 4D ((’) ‘}) < (’5 _2) <A+ 20)

where A = Dg’y,on (tn, Xn, yn). From (15) we have
I -1 a2
Azn(_l 1>+0(|xn—x| ),
A2—2n2<1 _1>+0(n |x —)?|2+|x —)?|4)
- _I I n n )

where |O (h)| < C |h| (the Landau symbol). Then (20) becomes

~onan (o )= (5 S) = (L ) (o 9). @1

where «,, — 0. Now from (18) and (19),
& —
t2 = f(tl’H Yns U (s Yn) s —Dypn (tn, Xns Yn) s Y) + eMn ( an(tm yn))

- f(tn» Xpy U (tny Xn)  Dyxpn (tn, Xny Yn) X) M"Ql) ( Mn”(tn» xn))-
By (14) and (16) there exists N > 1 such that

M(t}’l’-xn) > U(tn, yn)a Vn Z N7
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and consequently
Mgl (e Multy, x2)) = Mgl (€™ v(tn, yu))
and
St Yns tt (tn, X0) . =Dy (ta, X, ¥n) . Y)
> f(tns Yns v (tas Yn) . =Dy (ta, Xn, yn) . ¥).

Then, by definition (11) of f and assumption (10), we have
&

5 = Hinf] F (Y1 (s 60) . =Dy (i 0, 30) )

- f(lns Xpy U (tny Xn) 5 Dxpn (tn, Xn, Yn) X)]

1
< ETr[(aa*) (th, xp) X — (00*) (tns ))n)Y]~
But from (21), Vg, § € RY,
(Xq.q) —(Y3.q) <3nlg —q1* + (Ig1* + 1G1*)kn.
Hence

Tr[(UU*) (tn, xp) X — (00*) (tn, )’n)Y]
d
= Z(Xo’(tn, Xp)ei, o(ty,, x,,)ei) - (YU([n» Yn)ei, o (tn, yn)ei)
i=1

< 3C nlxy = yul® + (10 (tus x) > + 10 s y0) )i,
and consequently

8<0
p_a

which is a contradiction.
Then

ut,x)y<v(t,x), Y@, x)el0,T]xD. A

3. Backward stochastic variational inequalities

Let {W, : t > 0} be a d-dimensional standard Brownian motion defined on some complete
probability space (2, F,P). We denote by {F; :t > 0} the natural filtration generated by
{W, : t > 0} and augmented by N, the set of P-null events of F:

Fi=0c{W,:0<r<t}v»N.

Let t : 2 — [0, 00) be an a.s. F;-stopping time and let {A; : + > 0} be a continuous one-
dimensional increasing progressively measurable stochastic process (p.m.s.p.) satisfying Ag = 0.

We shall study the existence and uniqueness of a solution (Y, Z) of the following backward
stochastic variational inequality (BSVI):

dY; + F (t,Y:, Z)dt + G (¢, Y;) dA; € dp (Y;) dt + 3y (Y;)dA; + Z,dW;,

0<t<r, (22)
Y, = &.
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3.1. Assumptions and results

Let i, u > 0.
Let

As+uAs

Hy' C L2Ry x 2,67 110,11 (5) ds @ dP; R¥)

be the Hilbert space of p.m.s.p. f : £2 x [0, c0) — R¥ such that

T As+pA 1/2
||f||H=[E(fO ¢ If(s)lzds)} < o0,

and

As+uAs

' L2Ry x 2,6 11,1 (5) dAs ® dP; R¥)

the Hilbert space of p.m.s.p. f : £2 x [0, o) — RF such that

T As+pA 1/2
||f||ﬂ=[E(/O e If(S)IZdAsﬂ < 0.

We also introduce the notation S,i““ for the Banach space of p.m.s.p. f : 2 x [0, 00) — R¥
such that

1/2
Iflls = [E( sup et If(t)|2>] < oo,

0<t<t
With respect to BSVI (22) we formulate the following assumptions:

o F: 02 x[0,00) x R x RF*d 5 RE G 1 2 x [0, 00) x RE — Rk satisfy that there exist
o, € R,L >0andn,y : [0,00) x 2 — [0,00) a p.m.s.p. such that for all r > 0,
v,y e RK 7,7/ e Rkxd,

i F(,-,y,z) Iispms.p.,

(i) y— F(w,t,y,2): RF - Rf s continuous, a.s.

Giy (y—y, F,y,0—F(y.2)<aly—y[, as (23)

(v) |F(t.y.2)—F(t.y.2)| <=L |z—7

) |F @y, 2l <n+L(Iyl+llzll), as.

, as.

and
®» G,y ispms.p.,

i) y— G(w,t,y): R¥ — R¥ s continuous, a.s. ”
Giy (y—y. G,y —G(LY)<Bly—y|. as %)
iv) 1GE I <v+Llyl, as.

e The terminal datum & is an R¥-valued F,-measurable random variable such that there exist
A>20+2L%+1, 0 >28+1,

M (t) & BTHHA (52 + o (£) + ¥ (8))

T
+E / A [, ds + |2 dAs] < oo. 2
0
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e Let ¢, ¥ be such that

1 e, v Rf — (—o00, +00] are proper convex l.s.c. functions,
i) @) =¢0) =0, v () =¥ (0)=0.
The subdifferentials are defined by

(26)

do @) =[veR oy - +o ) 90, Yy e R
and similarly for .

The existence result for (22) will be obtained via Yosida approximations. Define for ¢ > 0 the
convex C'-function ¢, via

1
¥e (¥) =inf{£|y—v|2+<p(v) TV eRk}
(and similarly for ).

Define

—J
Jey = +0p)"' (y) and Vg, (y) = 21—

Hence y — Vg, (y) is a monotone Lipschitz function and

1
6 ()= - Iy = Sy + 0 (Uey)
(and analogously for ;).

e We introduce now compatibility assumptions:
foralle > 0,r >0,y € R* and 7 € R¥>4,

@O (Ve (y), Ve () 20,
(i) (Ve (), G (6, y) < (Ve (3), G (6, )™, 27)
(i) (Ve (), F (1,5,2) < (Ve (), F (1,5, 0) 7.

Definition 7. (Y, Z, U, V) will be called a solution of BSVI (22) if

(@ YeSnHI N, ZeH ),
b UeH™, — VeH™

© E/r exs+;LAS ((p (Yy)ds + v (Yy) dAS) < 00,
0

@ (LUpedp. PUo)@d,  (nV)edy., PUo)@Aw.d) (g
ae.on {2 x [0, 7],
T T T
(e Y +/ Usds +/ VidAg =& +/ F (s, Y, Zs)ds
t_[/\t INT T IAT

+/ G (s, Yy)dA; —/ Z,dW;, forallt > 0a.s.

INT INT

In all that follows, C denotes a constant, which may depend only on u, «, 8 and L, which
may vary from line to line.
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Pr0p051t10n8 Let assumptions (23), (24) and (26) be satisfied. If (Y, Z,U, V) and (Y Z,
U, V) are solutions corresponding to & and & which satisfy (25), then

T
B [t 1Y - TP @+ dA) + 12 - ZoPes]
0 B - N -5 29)
+E sup by, — 7P < CE[erredne 2]

0<t<t

Proof. From Itd’s formula we have
T

HNHAN Y, o — Yinel? + f P Yy — Fi? (hds + pdAy)

INT

T T
+2f eAS—HLAS(YS — Y, Ug — Us)ds + 2/ e}LH—MAS(Ys — Y, Vi — V)dA;
INT

INT

T
+ / M Zy — Zg)%ds
t

AT

T
— eA.TJ'_l/"A’['E _é’lz +2f

INT

rHA (Y, — By F (s, Y5, Z0) = Fis, ¥y, Z9)) ds
T
+2 / A (Y, 7, G (s, Y9) = Gls, 7)) da,
IAT

T
-2 / ehstids (YS — Y, (Zs — Zs)dWs>.
INT

Since

(Yo =Y, Us = Ugdds =0, (¥ — ¥y, Vs — Vi)dA; > 0,

21y = o F 5. ¥,, 20 = Fis. Ty, 20) = Qa 4207 4 DIYy = B 4 312, — 2P
and

2<YS ¥, G (5, Ys) — G, ﬁ.)> < QB+ DY, — T2,
then (using also the Burkholder—Davis—Gundy inequality), inequality (29) follows. W

The main result of this section is given by:

Theorem 9. Let assumptions (23)—(27) be satisfied. Then there exists a unique solution (Y, Z,
U, V) for (22).

3.2. BSVI—proof of the existence

Consider the approximating equation

T

T T
Yf+/ Ve (YE) ds~|—/ Ve (Y7) dAg =§+/ F (s, Y, Z)ds
t

AT INT INT
T T

+/ G (s, X)) dAS—/ ZEdW,, Vit >0, P-as. (30)
INT INT

Since V., Vi, : R¥ — R* are Lipschitz functions then, by a standard argument (the Banach
fixed point theorem when y — F (¢, y,z) and y — G (¢, y) are uniformly Lipschitz functions
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and Lipschitz approximations when y — oy — F (¢, y, z) and y — By — G (¢, y) are continuous
monotone functions; see also [11]), Eq. (30) has a unique solution

(V9 2°) € (SP N HE" ) x H,

Proposition 10. Let assumptions (23)—(26) be satisfied. Then

E[ Sup e)\.t+ltA[ |Yt5}2 + /re)»erll-Ax(
0

0<t<t

Vi [ 2] ) as

T hst+udAs 2
+/ e ¢ dAs] <CM(). GD
0

Proof. 1td’s formula for e 141 |y¢ ]2 yields

T

YE|? (hds + pdAy) + / POy

INT

Z ||2ds

T
MIAT)+1LA e |2 As+LAs
e AT |Yt/\‘[ | + e X
AT

T
+2 / M tHAs [(Yf, Ve (YE)) rds 4+ (YE, Ve (Yf))udAs] = A g2
t

AT

T T
+2/ eMSHHA(YE F (s, YE, ZE))ds +2/ e THA(YE G (s, YE))dA,
t

AT INT

T
—2/ et tHAs (YE ZEdW,).
t

AT

But from Schwartz’s inequality and assumptions (23)—(25) we obtain

2(Yy, F (s, Y5, Zg)) < 20 |Ysl> + 2L Y| 1 Zy ]| 4+ 2 1¥S] |F (s, 0,0)]

< (za+zL2+1) |Ys|2+%||zs||2+ |F (s,0,0)[7
and
2(Y. G (s. Y5, Zy)) < 2B Y5> +21¥] G (5. 0)| < 2B + D |Y,[* +1G (5. 0).
Hence, using also that (y, Vg, (y)) > 0 and (y, Vi (y)) > 0,

T
AEAT)+1A e |2 As+LA,
e INT Yt/\'r| + e s
INT

YE[P (0 — 20 — 212 — 1)ds

T T
+ / ehsHHAs |Y§|2 (w—2B—1)dA, + %/ et | ze ||2ds < rTHrA g2
INT

INT

T

T
+ / 4 (1F (5,0,007ds + G (s, 0)2dA, ) =2 / M (YE, ZEdW).
INT

INT

which clearly yields (for A > 2« + 2L +land u > 28+ 1)

T
AS+pA
E / e ’ [
0

YE[* (s + dAy) + | 28| ds] < € M (v).
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Since, by the Burkholder—Davis—Gundy inequality,

T
§3E</ e
0

T
< 1B sup N v 4 CR / & 2 P ds.

0<t<t

E sup

0<r<t

12
e,z as)

T
/ M tHds (ye zEdw,)
INT

then it follows that
E sup eMtrar |Yf|2 <CM(7).

0<t<t

The proof is complete. W

Proposition 11. Let assumptions (23)—(27) be satisfied. Then there exists a positive constant C
such that for any stopping time 6 € [0, t],

(a) E/ )LS‘-‘rlLA (
OT

(b) IE/ H s (p(Je (¥7))ds + w(Jg (¥:))dA,) = C M (o),
0

(© Eertudo(|ye — g, (ve)* + fg(Yg)( JsecM@,
A B4 (o(J, (YE)) + v (e (yg))) <CM®).

()P ds + [Vye (1) aay) = € M (),

(32)

Proof. Essential for the proof is the stochastic subdifferential inequality introduced by Pardoux
and Rigcanu in [8], 1998. We will use this inequality for our purpose. First we write the
subdifferential inequality
e)‘S+MA‘g05 (Yf) > (eks+qu —eMJ'_MA’)(p ( )+eAr+uA ©e (Yrs)
+ekr+MAr (V(pg (Yrs) , Y;‘ _ Yrs) ,
fors =tiy AT, r =t At,wheret =tg <t) <thh <---<tAtTandtiy] —t = %,then
summing up over i, and passing to the limit as n — oo, we deduce

e)‘ﬁ_“A’(Dg &) > e)L(IAT)"I‘MAzAr(p (YfAr) +/~T s THAs (V(p ( ) dYE)
t

AT

T
[ rae,
t

AT

We have similar inequalities for the function ;.
If we sum and we use Eq. (30), we infer that for all # > 0,

T

AT LA AT ((,0 ( t/\r) + Y ( t/\r)) / e THAs |V1ﬁ8 (YSE)|2dAs
IAT

T

+ f e )

IAT

+/ e HrAs (Voo (Y7), Vipe (Y1) (ds + dAy)

AT

ve (V7

N

> ds + / A (g (YE) + e (YF)) (Mds + pdAy)
tAT

< T )+ @)+ [P (Vg (1) F (5.7 Z0) s

INT
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T
o [ e ) 60
t

AT

AT

n /t e HHA VY, (YE), F (s, YE, ZE))ds
(¥7)

T
+/ eMTHA (T, (YE), G (s, YE))dA,
t

N
AT

T
_ f M (Vg (YE) + Ve (YE), ZEAW).
t

AT

The result follows by combining this with (31), assumptions (27) and the following inequalities:

1 5 1 - 2
=Ll e 5 =dho| =veo.
€ 2¢

o(Je M) <@,  ¥(O) =¥ (),
0 ) <@ &), Ve (E) <Y (5),

1
(Vo ), F (5,5,2) < 7 [V WP +3(n2 + L2 1y> + L*|IzI1%),

1
(V¥e (). G (5. 7)) < 3 IV9e 0 4257 + L7 yPP).
(Ve (). F (5.9.2)) < (Ve (). F (s.y, )"

IA

1
71V WP 4302 + L2 [y> + L*|1zI1%),
(Vo (), G (s,9)) < (Ve (3), G (s, )T

Ve I +2(y2 + L y)?). |

IA

1

4

Proposition 12. Let assumptions (23)—(27) be satisfied. Then
T

E/O Y (|ve = YO (ds +dAy) + |28 — 22| ds)

+E sup A |yE — VP < Ce+8) M(x). 33)

0<t<t

Proof. By It6’s formula

Ye = ¥3|* (Ads + pdAy)

T
AIAT)+HRA € s |2 As+ A
€ " |Yt/\r - Yt/\t| + € ’
INT

T
+2/ e)\s+/l,AS (YSE) _ YSB’ Vgos (Yss) — Vgﬂ&(yj))ds
t

AT

T
“/ MTRA(YE — y3 Vi (YE) — Vs (YD) dA,
t

AT

T
= 2/ et (YE YO F (s, Y, ZE) — F(s, Y0, Z))ds
t

AT

T
_{_2/; ehsHiAs (YSS — YS‘S, G (s, Yf) -G, Yss))dAS

AT

T T
- / et | ze _ 78| % g5 — 2/ MHHAs (ye _ y8 (ZE — Z5)dw).
INT

INT
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‘We have moreover,

2005 = Y0 F (5. Y8, Z5) = FGs. Y2 ZD) = (20 +2L7) [vf = v) " + % |ze - 7))

2{¥ — ¥2.G (5. ) — Gls. YD) <28 [¥E — ¥I [
But from the definition of ¢, and the monotonicity of operator d¢ we have

0 < (Ve (Y7) — Vos(YD), Jo (YE) — Js (YD)

= (Vo (¥7) = Vs (v)), ¥ = ¥2) = e [Vo. (v)[* = 8| Ves ()|
+ (e +8) (Vo (Y1) . Vs (Y))).

Then

(Ve (Y7) = Vs (Y0, YE = ¥0) = — (e + 8) (Ve (YF) . Ves (YD)
and in the same manner

(Ve (Y7) = Vs (X)), Y = Y7) = — (e +8) (Ve (Y)) . VYs(Y)),
and consequently

T
et RAine e v |12 4 / eMTHA | YE — YO2 (1 — 2o — 2L%)ds

INT

T ) 1 T
+ / M THA | YE 812 (1 —2B) dA; + Ef M THAs| ZE — 79)2ds
INT

INT

T
<2(e+9) / A (V. (¥7), Vs (V) ds
INT

+ (Ve (7)., VWS(Y;S))dAs] -2 / JECTT (v& —v8,(z: - Z5dwy).  (34)
t

AT

Now, from ((32)-a),

2(8+8)E/

INT

HSHiAS [(V% (Y5). Vos(¥)))ds

+ (Ve (1), Vs (D)) dA, ] < € e+ M (@)
and clearly by standard calculus, inequality (33) follows. W
We give now the proof of Theorem 9.

Proof. Uniqueness is a consequence of Proposition 8. The existence of the solution (Y, Z, U, V)
is obtained as the limit of (Y7, ZZ, Vg (YE), Ve (YE)).
From Proposition 12 we have

AL A v/ A
3y e S NH, AﬂHk ; EI?AEHkXd,
imYs=Y inS *nH*nH Y,

0 k k k
. o
;I\I‘I(l) Z¢ =27 inH;,.
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Also, from ((32)-a) and ((32)-c) we have
lim Jo(Y) =Y inH", lim Jo(Y®) =Y inH",
£\0 eN\o0

2 .
| =0, lim Ee*0+HAs

N 2
J.ve —Y’ —0,
N0 a( (-)) 0

21\1‘1(1) Ee* 4o | 1.(Y5) — Yo

for any stopping time 6, 0 <6 <.
Using Fatou’s Lemma, from ((32)-b), ((32)-d) and the fact that ¢ is 1.s.c. we obtained ((28)-c).
Defining U® = Vo (Y?), V& = V. (Y?), from ((32)-a) it follows that

T
E [/ et (jUf2ds + |V8|2dAs)} <CM 7).
%

Hence there exists U € H,);’“ and V € 7%2“ such that for a subsequence &, \, 0
U® — U, weakly in Hilbert space Hz’“,
Ve —~ V., weakly in Hilbert space 7:(2’“,

and then

T
E [/ P TRAS <|U|2ds + IVIZdAX)}
%

T
< liminfE |:/ et THAs (lUE"lzds + |VS”|2dA.g)] <CM®,1).
0

n—oo

Passing now to lim in (30) we obtain ((28)-e).
Letu € Hy", v e Hy ™. Since Vo, (Yf) € d9(Jo(YD)) and Vi, (Y7) € a9 (Je (YD), Ve >
0, then as signed measures on {2 x [0, 7],

HHANUL us — T, (Y])) P (do) @ ds + "4 (J, (¥])) P (do) © ds
< M9 uy) P (do) ® ds
and
HAVE vy = (¥])) P do) ® A (@, ds) + €4y (J, (1)) P (do) @ A (w, ds)
< MY () P (dw) ® A (v, ds) .

Taking the lim inf in these last two inequalities we obtain ((28)-d). The proof is complete. W
4. PVI — proof of the existence theorem

It follows from a result in [6] that for each (f,x) € Ry x D there exists a unique pair
of continuous ﬂ—p.m.s.p. (X5* Aé’x)szo, with values in D x R, a solution of the reflected
stochastic differential equation

sVt sVt sVt
X0¥ =x+ / b(r, Xt")dr + / o (r, X)W, — / VE(XEF)dALY,
t t t

t’x . . .
s> Al is increasing, (35)

sVt
Lx _ t,x
Al _/, 1yt caipy AL,
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where
Frl=0c{W,—W,:t<r<s}VN.
Since D is a bounded set, then

sup | X0 <M (36)

s>0

and with calculus similar to that in [11] we ha_ve that for all i, T, p > 0, there exists a positive
constant C such thatV¢, ¢t €[0,T], x,x € D,

E sup [X0¥—X"¥1P < C(lx —x'1P + 1t — 1)), (37)
s€[0,T]
and
At,x
E[e"?T | < oc0. (38)

Let T > 0 be arbitrary and fixed. Under assumptions (2)—(7), it follows from Theorem 9
with t replaced by T that for each (¢, x) € [0, T] x D there exists a unique solution (Y, Z'*,
U™, V¥ of the p.m.s.p.

Y™ e SP NI NHPE,
Z' e MM, U™ e HIH, V¥ e HpH,

with ¥/ = v/*, zI* =0, U =0, V" =0, forall s € [0, ], a solution of the BSDE
T T T
Yot +/ U;»Xdr+/ v/ rdALt =h(X’T’x)+/ Ly () f (n Xp% Y00, Z0) dr
) S S

T T
+ / L7y () g (r, X2%, YY) dALY —/ ZLXdW,, foralls € [0, T] a.s.
N N
such that (Y¥", U{"™") € dg, P(dw) ® dr, (Yy", Vi) € 3y, P(dw) ® A (w,dr), ae. on
2 x[t,T].
We observe that functions f, g depend on w only via function X%,

Proposition 13. Under assumptions (2)—(7), we have

E sup eMTHAs|yl*12 < C(T) (39)
s€[0,T]
and
! ! Y 2
E sup Myt -y R < BlebTHAr n(xs) — hxp)
s€l0,T]
T " 2
+ fo MR () f O XE Y ZE) = Ly () f (r X0, Y, 209 dr
’ Ar4-uA "x’ 2
+/ M A () g (r, X, YY) — Ly (r)g(r, XE5, YY) dAQX]. (40)
0

Proof. Inequality (39) follows from Theorem 9 using also (36), (38). Inequality (40) follows
from (29) in Proposition 8. W
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We define
u(t,x) = Y,’x, (t,x) € [0, T] x D, 41

which is a determinist quantity since Y/* is ! = N -measurable.
From the Markov property we have

u(s, Xty = v*. (42)

Corollary 14. Under assumptions (2)—(7), the function u satisfies

(@ u(t,x) e Dom(¢), V(t,x)el0,T]xD,
(b) u(t,x) € Dom (y), V(t,x)e[0,T]x Bd (D), (43)
(©) uecC(0,T]x D).

Proof. Using ((28)-c) we have <p(u(t,x)) = ]E(p(Y,tx) < —+o00 and similarly for . Hence
((43)-a,b) follows. Let (t,, x,) — (¢, x). Then

lu(tn, xn) —u(t, )* = E|Y"™ —Y/*|* <2E sup |Y™ —y*1? +2E|Y}* — v/*|2
s€[0,T]

Using (40) and (36)—(38) we obtain u(t,, x,) — u(t, x) as (t,, x,) = (t,x). W
We present now the proof of Theorem 5 (existence of the viscosity solutions).

Proof. It suffices to show the existence of the solution of PVI (1) on an arbitrary fixed interval
[0, T']. Setting

u(,x)y=u(T —t,x)
then the existence of a solution for (1) is equivalent to the existence of a solution for (44):

aﬂ(at,’ D 4 Zii ) + F(tx, @ %), (Vio) o, 1) € dp(at, 1)),
t€(,T), xeD,

) (44)
i (t, x) +g(r, x,u(t,x)) € oy (a(t,x)), t€(,T), x € Bd(D),

on —
u(T,x)=hx), xeD,
where
f,xu,2)=f (T —t,x,u,z2), gt,x,u)y=g(T —t,x,u),
o, x)=0(T —t,x), b(t,x)=b(T —t,x)
and

~ 1 & .y 9% (x) d . av (x
Lov@) =5 D G600 5——+ bilt,)— =
ij=1 =l '

We define also
~ def 1 s ~
V(t,x,p,q,X) & -p— ETr((aa*)(t, 0X)— <b(t, x), q>

— f(t.x. (. x), g6 (¢, x)).
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In the sequel, for simplicity we keep the notation b, o, u, f, g, L, V instead of l;, o,u, f , 8, £~, 1%
and we shall prove that function u defined by (41) is a viscosity solution of parabolic variational
inequality (44). We show only that « is a viscosity subsolution of (44) (the supersolution case is
similar).

Let (£, x) € [0, T] x D and (p, ¢, X) € P>tu(t, x).

1. The proof for the case x € D is similar of that from [8].
2. Let x € Bd (D). Suppose, contrary to our claim, that

min{V (t.x, p.q. X) +¢_(u(t, x)),

(Ve (x),q) —g(t, x, u(t, x)) + 1//_(u(t,x))} >0

and we will find a contradiction.
It follows by continuity of f, g, u, b, o, £, left continuity and monotonicity of ¢’ and v/ that
there exists ¢ > 0,8 > O such thatforall |[s —¢| <4, |y — x| <4,

1
—(pt+e)— ETY ((00™) (s, y) (X +€I)) — (b(s,y).q + (X +&l) (y — X))
— f(s.y.uls,y), (g + X +eD) (y —x)o(s, y) +¢_(u(s, y)) >0, ifx € D (45)
and

(Ve g+ X +eD)(y—x))—g(s, y,uls, y)) + ¥ (u(s, y)) >0,
if x € Bd (D). (46)

Now since (p, g, X) € P2Fu(r, x) there exists 0 < 8’ < § such that
u(s, y) < i(s, y),
foralls € [0, T],s # ¢,y €D,y xsuchthat|s — ] <&, |y — x| <&, where

ﬁ(S,y)=M(f,x)+(P+8)(S—l)+(61,y—x>+%((X-FSI)()’—X),)’—X)-
Let

vdéfinf{s >t | X0 —x| =8},
We note that

Y ZyYy = (Y, Z), t<s<(t+8)Av
solves the BSDE

Pt = (o X5+ [ X B 2 - upar— [ Zeaw,
5 s

%
+ [ (g0 XI5 70D = VIY)dAL,

N
(Y5, UNY) € 09, P (do) ® dr, (Y, Vi) € 0y, P (do) ® A (v, dr),
ae.on 2x[t,T].

Moreover, it follows from It6’s formula that

(P, 200 = (s, XY, (Vio) (s X'Y), t<s<t+6
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satisfies
. N Vean(r, X0 . v,
P = a, Xf;x)—/ [—( = )y L, Xﬁ’x)]dr—/ ZE5dW,
N N

v
+ / (Vi (r, X2¥), VE(XEY))dALY.
N
Let (Yy*, Zy™) = (V5" — Y%, 24" — Z4).
We have

%
Yee = [a, X5 —u (v, X5)] +/ [
s

v
— S Xi’)‘jf’*,ii”‘)JrUf’x]dr —/ ZL5aw,

N

aar, X4

S = L X))

%
+ / [(Vxﬁ(r, XI5), VX)) — g(r, XI5, TE5) + V,”x]dAﬁ’x.
N

Let
By = Lsii(s, X05) + f(s, X0¥, V1%, Z09),
Bs = Lsii(s, X2%) + f(s, XL, YEY, Z09).
Since |/§S - Bs| =C |2§’x~— 75|, there exists a bounded d-dimensional p.m.s.p. {£;; 0 < s < v}

such that B; — By = (&g, Z1).
Now

an(r, X1

v
7t = [ X5 — e ] + [ [0
N

+ (&rs Z;{’x> - ﬁr + U:’x]dr

% v
+/ [(Vxﬁ(r, X1, VE (XEY)) = g (r, XI5, T%) + v}»X]dAi»X —/ ZL5dw,.
N N

It is easy to see that, for the process

I'' =ex LN T '
s — €Xp [&r17dr + (&r, dWi) |,
2 1

we have, from It6’s formula,
S
th = Ftt"'/ Frl (é-radWr)
t
and so
(s, Xg™) N
at
+ TE[ [Vt (1 X)L VEGKE) + 05, XE7, T = VI AL,

e =17 By — UL |ds + THZE" + T, dW)

Then

X _ t (A t,x t,x ! t 8’2("’ Xﬁ’x) 5 t,x
7 = B[ (i, X0 — u (v, X59) ] - F,[T + By - UpFar
t

vV
—E[/ F,’(- (Vedt (r, X25), VE(X5)) 4 g, XI5, 71%) — Vr’”‘)dAﬁ”‘]. 47)
t
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We first note that (Y, U;) € d¢ and (Y;, V;) € 0y imply that
ol (u(s, Xp))ds < U ds, ol (u(s, X§9))dALY < VI¥dALY.
Moreover, the choice of 8’ and v implies that
u(v, X0%) < i@, X0).
From (45) and (46) it follows that
—(p+6) — B+ (uls, X)) >0, ifxeD
and
i (s, Xéx)
on
All these inequalities and Eq. (47) imply that )7,” > (0 and equivalently

— (s, XP Y + ¢ (u(s, XEY) >0, ifx € Bd(D).

u(t,x)>u(,x),
which is a contradiction with the definition of . Hence we have
min{V t.x,p.q. X)+¢_ (ut,x)), (VL&) q) —g(t,x,u(t,x)) + ¢ (u(t, x))} <0.

This proves that u is a viscosity subsolution of (44). Symmetric arguments show that u is also a
supersolution; hence u is a viscosity solution of PVI (44). W

Remark 15. If b, o, f and g do not depend on ¢ then we have a directly a representation formula
for the viscosity solution u of PVI (1):

u(t,x) = Y(())’x;',

where (Y051, z0xt ydxit y0xty s a solution of the BSVI
t t t
yoxt 4 / Udstdr + / vOsTgA%Y = p(x™) + / FXLx yoxt z0xnyqy
N S N
t t
+ / g(x0%, y0xinyqa0r f z%%1dw,, foralls € [0, T] ass.
S N
and (X2, A% )o<s<; solves the SDE

N s K
X0 = x4 f b(X*%)dr + / o (X0%)dw, — / Ve(XO)dA%Y,
0 0 0

s —> A% is increasing,

S
0,x _ 0,x
A _/0 1o puoydA%".

Corollary 16. We have
u(t,x) € Dom (dp), V(t,x)€[0,T]xD.

Proof. Let (z, x) be fixed. We have two cases:

(1) Dom (3¢) = Dom (¢), and so, from ((43)-a), u(t, x) € Dom (d¢).
(2) Dom (0¢) # Dom (¢). Letb € Dom ¢ \ Dom (3¢).
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Then b = sup(Dom @) or b = inf Dom¢. If b = sup(Dom ¢) and u(t,x) = b, then
(0,0,0) € P>t u(t, x) since

u(s, y) < ult,x) +o(ls —t| + |y — x[?)

and from (8) it follows that ¢’ (b) = ¢’ (u(t, x)) < oo and consequently b € Dom (9¢), a
contradiction which shows that u (¢, x) < b. And similarly for b = inf(Dom ¢). W
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