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1. INTRODUCTION

In the study of nonlinear eigenvalue problems, an important role is played,
when it exists, by the linearization about zero of the problem under consideration,
i.e., its Fréchet derivative at the origin (cf. [4]). In this context of linearizability,
a nonlinear version of the classical results for linear Sturm-Liouville second
order ordinary differential equations has been given by Rabinowitz [7]. This
was shown (in [8, 9]) to be a consequence of a more general global bifurcation
theorem. An existence theorem for positive solutions of quasi-linear elliptic
partial differential equations was also derived, in the same spirit, in [8, 9], from
this global difurcation theorem.

The purpose of this paper is to study nonlinear Sturm~Liouville problems for
some second order ordinary differential equations and a class of quasi-linear
elliptic partial differential equations. The problems we consider need not have
any linearization at the origin, but still can be related to some linear problems.
The general idea is to approximate these equations by linearizable ones, for
which we apply the results of Rabinowitz. Then, we pass to the limit using a
priori bounds which are obtained with the aid of the Sturm comparison theorem,
or by a positivity argument in the partial differential equation case.

The main result for ordinary differential equations is proved in Section 2.
We consider the problem #u = lau + F(x, u, u', ) with separated boundary
conditions on [0, 7], where #Pu = dau is a classical linear Sturm—Liouville
second order ordinary differential equation. We assume that the nonlinear term
isof the form F = f 1-g, fand g being continuous, with g satisfyinga o(| u | +[#'])
condition (like the nonlinear term in [7, 81), and | f(%. %, 2", )| < M|ulina
neighborhood of # = #’ = 0, uniformly in x and in A. For such an equation,
we show the existence of two families of continua of solutions, €+ and %™,
corresponding to the usual nodal properties and bifurcating from the line of
trivial solutions. In general, one can only prove that bifurcation occurs in each
interval of a sequence of bounded intervals. Indeed, we give an example of an
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equation illustrating this fact, where all the points of an interval are actually
bifurcation points.

As a particular type of problem in the preceding class, we study in Section
3 “half-linear” equations, i.e., equations of the form Fu = Aau +r|u|. We
obtain the existence of two sequences of ‘‘half-eigenvalues” A+ and A,~, corre-
sponding to the usual nodal properties but differentiated according to the sign
of the eigenfunctions in a neighborhood of 0. It is also shown that for a problem
possessing different linearizations as # — 0t and # -— 0, these half-eigenvalues
correspond to bifurcation points in a global sense.

In the last section, we consider elliptic partial differential equations with a
nonlinear term F(x, #, Vu, A) satisfying assumptions analogous to that of Sec-
tion 2. In the same spirit, we show the existence of an unbounded continuum of
nontrivial positive solutions (i.e., (A, #) with # >> 0 and u == 0) bifurcating
from points which lie in a bounded interval of the line of trivial solutions.

In [11; 12, Theorems 2-6], Turner has proved an abstract theorem which is
related to the type of results we obtain. However, this general theorem does not
seem to yield the results presented here.

2. GLOBAL BIFURCATION FOR A CLAss OF NONLINEARIZABLE STURM-LIOUVILLE
ProsLEMS FOR SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS

Let % be the Sturm-Liouville differential operator defined by Fu =
—(pu’)’ + gu, where p is a positive, continuously differentiable function, and
g is a continuous function on [0, 7]. We denote by (b.c.) the set of separated
boundary conditions

bu(0) + c'(0) = 0,

b.c.
bau(r) + e () = 0, be)

where b; , ¢; are real numbers such that | 4, | + | ¢;| # 0,7 =0, 1.
Let a be a positive continuous function on [0, #]. It is a classical result
(cf. [2]) that the linear Sturm—Liouville problem

Pu = pau, in (0, =),

(b.c.) @1

possesses infinitely many eigenvalues p; < py << -+ << pg, << -+, all of which
are simple, and lim;_., p; = +o0. The zeros in [0, =] of any eigenfunction v,
corresponding to u; are nodes (i.e., points & where v;(€) = 0, v,/ (£) 5= 0), and
oy, has exactly & — 1 zeros in (0, ).

Let E be the Banach space of all continuously differentiable functions on
[0, #] which satisfy the conditions (b.c.). £ is equipped with its usual norm
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Nuiy =lally + 2 llp, where | #ily = Maxyego..1 | (%) S,* will denote the set
of functions # € E having exactly & — 1 zeros in (0, =), all zeros of u in [0, =]
being nodal, and which are positive in a deleted neighborhood of 0. The sets
S, S = —8; and S = S+ U S;~ are open sets in E. In the following,
we will denote by 7, " the unique eigenfunction of (2.1) associated to u; such that
ot €S, and || ot | = 1; we also let v~ = —u,+

We consider the equation

Lu = dau + F(x, u, v, ), for x€(0,m),

(2.2
(b.c.).

We assume that the nonlinear term F has the form F = f + g, where fand g are
continuous functions on [0, 7] X R, satisfying the conditions:

}&‘-’i‘;ﬁﬁ‘@w; Vre[0n]; VuseR, 0 <|u]<l,

(2.3)
[s] <1, and VAeR,
where M is a positive constant;
g(x, u,5,8) = o(lu| + | 5]), near (x, s) = (0, 0), uniformly in x € {0, =]
2.4

and in A € 4, for every bounded interval /.

Because of the presence of the term f, Eq. (2.2) does not in general have a
linearization about # = 0. For this reason, the set of bifurcation points for (2.2)
with respect to the line of trivial solutions need not be discrete {cf. the example
at the end of this section). Therefore, to investigate the question of bifurcation
for (2.2), one has to consider bifurcation from intervals rather than bifurcation
points. We say that bifurcation occurs from an interval if this interval contains
at least one bifurcation point. It is possible, in this framework, to extend the
results of Rabinowitz to Eq. (2.2).

We denote by & the closure in R X E of the set of nontrivial solutions of (2.2),
and by ¥ the closure in R X E of the set of all solutions (A, ) of (2.2) with
1 € Sy (v denotes 4 or —). Our main result for (2.2) is:

TreoREM 1. Let d = Mja,, where ay, = Ming,..3a(x), and let I, =
{ur —d, pp + d}, py, being the kth eigenvalue of (2.1). For every ke N and
v = -+ or —, the connected component &> of FrV (I, X {0}), coniaining
I, x {0} is unbounded and lies in (R x S) U (I, x {0}).

We first remark that the theorem shows in particular the existence for ke N
and v = + or —, of at least one unbounded continuum of &, €, bifurcating
from I, x {0}, ie., € N (I X {0}) @, and such that ¥, C(R X S v
(I >} {0}). €» C 2,7; however, it should be noted that one does not necessarily
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have €}’ = &,y N &} In fact, &} is the union of all such components €, and
of I, x {0}.
To prove Theorem 1, we introduce the approximate equation
Lu = dau + f(x,u | w4, ) + gz, u, ', X), x (0, w),
(b.c.).

The next lemma will provide uniform a priori bounds for the solutions of (2.5)
near the trivial solutions and will also ensure that %> N (R X {0}) C (I x {O}).

2.5)

Livma 1. Let e, , 0 < ¢, << 1, be a sequence converging to 0. If there exists
a sequence (A, , u,) € R X Sy7 such that (A, , u,) ts a solution of (2.5) corresponding
t0e = ¢, , and (A, , u,) converges to (A, 0} in R X E, thende I, .

In the proof of this lemma, we require the following very simple observation.

LemMA 2. Let § and k be integers, j = k = 2. Suppose there exist two families
of real numbers

L=0<H < b < "< Ga<&G=m
=0 <q < < -n Ly <y =2

Then, if £, < ny , there exist integers p and q having the same parity, 1 <p <k —1,
1 <q<j— 1 suchthat £, <y < gy < Epia -

The proof of Lemma 2 is by induction on j. The result is obvious for j =
£ = 2. Suppose the property holds up to the order j — 1, and consider two
families as in the lemma. If 5, <C &, , then the conclusion of the lemma is true
with p = ¢ = 1. We assume therefore £, << m,, and we define ¢, = fo =0,
fﬂ—gpﬂ"’]q—ﬂwlfor1<P<k“1 I<g<j—1 Smcegl M1
applying the induction hypothesis yields the result in general.

Proof of Lemma 1. Let w, = u,/ll u, |l; . Setting

8%, uy (%), (%), An)
” Uy Hl

gn(x) =

and

f ) = L6 52 | 1 ), M)

H Uy ”1

1Indeed, the intersection of ¥ and I X {0} need not be connected. In a similar
fashion, for the equation considered in Section 3, & has two distinct connected cornponents
bifurcating from I, X {0}, when A,* % X;; one half-line in {},¥} X S,* and one half-line
in {4} X S~ (cf. Section 3).
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w,, satisfies the equation

Lw, = Aaw, + folx) 4 &nl%)s x e (0, m),

(2.6}
(b.c.).

Since w,, is bounded in C?, £, is bounded in C° and g,, — 0 in C°, it follows from
(2.6) that w,, is bounded in C2 Therefore, by the Arzela-Ascoli theorem, we may
assume that w, — 2 in C, {|w|{; = 1. For all n, w, € S;7, hence w lies in the
closure of S}7. Let us prove that in fact w € S,

If w¢ .Sy, then » has at least one double zero in {0, #]. Hence there exists
7 & [0, 7] such that w,(r) — 0 and w,/(7) — 0, as # — 0. We may assume that
P, Il << 1 so that | fy(x)] < M | w,(x)|. From (2.6), one has

|y | < K(jwn |+ [wa’| +pa)s 27
where K is a positive constant and p,, = Max,[g..1 | £2(x)], i, pp, = 0. Let
Yn = (), with the norm in R? given by |y, | = |w, | + | @, |. From (2.7)
we have

L' | S (KA D(¥a | po) (2.8)

Letting 0, = | y,(?)| + (K + 1) mp,, , integration of (2.8) leads to
|9 < b+ K+ 1) | [ 1ty 4t | 2.9

Using Gronwall’s inequality, we conclude from (2.9) that | y,(») < K'6,,,
for all x &[0, #], where K’ denotes a positive constant. Since lim,,_ . 6, = 0,
this means that ,, — 0 in C*, which is a contradiction. Hence w e S,”.

To obtain the bound on A, we will now compare » and v;” in the spirit of the
Sturm comparison theorem (cf. Section 3, Lemma 3). Since f,, - w;! is not known
1o converge, this comparison is not readily derived from Lemma 3. Nevertheless,
the proof of this lemma can be adapted to the present situation. Let [¢, %] C [0, =].
Integrating by parts

n
f v Fw, — w, Lo,
¢

and taking the limit as # — c0, one has

% n
[plee(v) — viw)[} = £ (A — ) awoy’ + lim (5 fu®) vl (2.10)

v’ and w are both in Sy. Thus by Lemma 2, there are two intervals ({; , n;)
and (L, , ;) in (0, ) where @ and v, do not vanish and have the same sign and
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such that either () @({;) == w(n,) =0, or (B) £; = 0 and =(x,) = 0, or (y)
w({;) = 0and #; = =, or (8) §; = 0 and 7, = = (this case occurs when k == 1),
and the same for [, , 7,] with @ replaced by v;”. In all cases, one has

[p(e) — o) >0,
(2.11)
[p(er’y — o0 < O.

Assuming |j u, [, < 1, | fu(%)] << M | w,(x)|. Hence, if @ and v,” have the same
sign in (, ), one has

lim [ f,() o0

0->0

<M ’ wuL’.
~ J;; 4
From (210) and (211) we obtain

N2
ifA> L [\ — pa) @ — M]wo? <0,  hence A< py -+ d,
: 2.12)

A<, J;l[(/\—,uk)ao—l—ﬂf]ka” >0, hence A3 py— d.
. (2.13)

Thus Ael,.

Proof of Theorem 1. 9,7 is the connected component of %7 U (I, x {0})
containing I, X {0}. Let (), #) € & with u € 8S,’. Then u has at least one double
zero in [0, #]. Since from the equation one can find a constant K such that
lu" | < K(Jul|+|u']), it follows that . = 0. Thus (A, ») € #> N (R X {0}),
and by Lemma 1 (taking ¢, = 0, for all #), &> N (R x {0}) CI;, x {0}. Hence
2¢ C(R x S)v (I, x {0}).

To complete the proof, it remains to show that 2;” is unbounded in R x E.
Let us suppose that 2,7 is bounded. Then 2;” is compact in R X E since Eq.
(2.2) shows that solutions which are bounded in R X C* are also bounded in
R x €2 Following [8, Lemma 1-2], we can find a neighborhood & of 9;” such
that 20 N % = . Indeed, let % be a uniform neighborhood of Z,* in R x E.
Ifo% N & + &, since # N & is compact, it is possible to find (cf. [13]) two
disjoint compact subsets Ky, K, of % N & = K; U K, such that % N %> CK,
and & C K, . Define # > 0 to be the smallest of the distances in R X E
between K, and K, and between K; and 8%. Then @, the 7|2 uniform neighbor-
hood of K| is a neighborhood of 2, suchthato0 N &y = g . HoU N ¥y = &,
we just take O = ¥.

Fore > 0, f(x,u|ulss,A) and g(x, u, 5, A) are o(] u | 4 | s |) near (u,5) =
(0,0) in the uniform sense of condition (2.4). The linearization of (2.5) at
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# = 0 is given by (2.1). Hence by a theorem of Rabinowitz {7, 8], there exists
an unbounded continuum of solutions of (2.5), Z;, . such that

(1, 0) € D1, C (R X S¢) Y {(ps O)}-

D, . being connected, there exists (A, , u) € &}, . N 80 for all € > 0. Since € is
bounded in R X E, Eq. (2.5) shows that (., %) is bounded in R X C? inde-
pendently of e. Therefore, one can find a sequence ¢, 0 such that ()\En s e )
converges to a solution (A, %) of (2.2). u lies in the closure of Sy?. But if u € 85y,
then (as we have seen) u# = 0, and by Lemma 1, A€, , which is impossible
(0 is a neighborhood of I;, X {0}). Hence 80 N %7 % &, which contradicts the
assumnption that 2’ was bounded. Q.ED.

An Example of Bifurcation from a Whole Interval. It is actually possible for
an equation of type (2.2) to have a whole interval of bifurcation points. To
illustrate this situation, consider the equation

—u" = My + wusin(u® + u'2)"1/2 in (0, w),
u(O) = u('n') = (.

This equation possesses the family of solutions (A(y), u(y)) where #(y)(x) =
ysinx and Xy) = 1 —sin |y |7}, ¥ 5% 0. It is clear from the graph of Aly) =
1 —sin |y [, that all the points of [0,2] X {0} = I; X {0} are bifurcation
points for (2.14).

(2.14)

Remark. Aside from the case when the equation is linearizable or half-
linearizable (in the sense of Section 3), the structure of the set of bifurcation
points within I;, X {0} is not clear. The proof of Theorem 1 remains valid if
we choose to define M by

M —inf  Sup } UCLTON
>0 ael0,#] u !
o<lul+isl<n,2e®
It would be interesting to have more information about the set of bifurcation
points in I, X {0}, e.g,. under what conditions is this set finite ? Or when does
it contain an interval ?, etc.

3. A ParticuLAR CrLass OF NONLINEARIZABLE PROBLEMS: “HALF-LINEAR”
AND “HALF-LINEARIZABLE’ EQUATIONS

Let « and B be two continuous functions on [0, #]. We consider the “half-
linear”? problem
Fu = dau + ot + Pu-, in (0, ), 3.0)
(b.c.), >

2 Equation (3.1) is called half-linear because it is positively homogeneous and linear in
the cones u > Qand u < 0.
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where ut = Max(, 0), = = (—u)*, and &, 4, (b.c.) are as in Section 2. We say
that A is a “half-eigenvalue” of (3.1) if there exists a nontrivial solution (A, u,)
of (3.1). In this situation, {(a, fu,), ¢ > 0} is a half-line of nontrivial solutions
of (3.1). Ais said to be simple if all solutions (A, @) of (3.1), with v and #, having
the same sign on a deleted neighborhood of 0, are on this half-line. There may
exist another half-line of solutions {(, #z,), ¢ > 0}, but then we say that X is
simple if v, and #, have different signs on a deleted neighborhood of 0, and all
solutions (2, v) of (3.1) lie on these two half-lines. Equation (3.1) belongs to the
class of equations we have investigated in the preceding section. In the case of
this equation, Theorem 1 can be improved to give the following result.

THEOREM 2. There exist two sequences of simple half-eigenvalues for (3.1),
AT << AT < AT <<y and AT <Ay < s < Ay << - The corre-
sponding half-lines of solutions are in {\,*} X Syt and {},~} X Sy~ Furthermore,
astde from these solutions and the trivial ones, there are no other solutions of (3.1).

By Theorem 1, we know that there exists at least one solution of (3.1),
A w)eR x Sy, for every k= 1,2,...,v = + and v = —. The positive
homogeneity of (3.1) then implies that {(A;*, tu,*), ¢ > 0} are half-lines of solutions
in{A;”} x Sy To prove the remaining assertions, we recall the Sturm comparison
theorem.

Lemma 3. Let [£, 9] C [0, #] and wy, ws (2w, 5= 0) be two C? functions on
[€, m] satisfying

Ly = aywy)

Py, = ayw,)

in (f’ 7])7

where a, , ay are contindous on [£, ] and a, > a, on (£, n). Suppose, moreover,
that either

() wo(é) = win) =0, or
(i) owi(€) + o (§) = 0,7 = 1,2 and wy(n) = 0, or
(i) byew(n) + aw'(n) = 0,7 = 1, 2 and wy(€) = 0, or
@iv) bewi(€) + cew(§) =0,i = 1,2, and
bwi(n) + ¢w/(n) =0,i=1,2,

where | b; | + | ¢; | 5= 0,2 = 0, 1. Then there exisis { € (€, v) such that w,({) = 0.

Proof of Lemma 3 (cf. [2]). If the conclusion does not hold, we may assume
without loss of generality that w; > 0 and @, > 0 in (£, 5). But then we have

n n
J- we L, — w L, = f (ay — a3) wyzvy > 0.
¢
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On the other hand
N
L wypfwy — w Lwy = [plwywy’ — wywy )] -

The last expression is nonpositive in all the four cases, a contradiction.

Proof of Theovem 2. A nontrivial solution (A, %) of (3.1) is such that « has only
nodal zeros in [0, 7] by the uniqueness of the solution of the initial value problem
(the right-hand side of (3.1) being Lipschitz continuous in #). Hence u lies in
some S;”. Now suppose we have two solutions (A, #) and {u, v} of (3.1) with
u < Sy and v € S?. We may assume without loss of generality that the first zero
of uw to occur in (0, 7] is a zero of u. That is, there exists { (0, 7] such that
#({) = 0, # and v do not vanish and have the same sign in (0, {). By Lemma 3
applied to » and v in (0, {), one has p < A. On the other hand, by Lerma 2,
there must exist an interval [£, o] C [0, #] such that # and v do not vanish and
have the same sign in (&, 1), and either o(€) = v(n) = 0, or 9(§) = Oand n = =,
or £ = Qand 5 = { = = (the latter occurring when %2 = 1). Again by Lemma 3,
A < p; hence A = p. But then, the uniqueness in the initial value problem
implies the existence of a positive constant ¢ such that ¢ = cu. Thus the A, are
simple half-eigenvalues and aside from the trivial solutions and the half-lines
{(Ay, tuy?), t > 0}, there are no other solutions of (3.1).

To show that the sequences A)”, v = + or — are increasing, we observe that,
given solutions (A7, #) and (A7, v) with ue S, v& S/, and k < j, the first
zero of uv to occur in (0, 7) is a zero of v. Indeed, if this were not the case,
using the same argument as above, Lemma 2 (since £ < j) and Lemma 3 would
imply A7 = A%, which is impossible, since the half-eigenvalues were shown to be
simple. Therefore, by Lemma 3, A,* << Ay

The preceding result for Eq. (3.1) leads naturally to investigation of another
particular class of problems of type (2.2). We now consider equations which
possess “half-linearjzations” about # = 0. This occurs when F(x, u, #', ) =
au™ 4 Bu~ - g(x, u, w', A) and g satisfies condition (2.4) as in Section 2 (x and B
are continuous functions). Then (3.1) is a “half-linearization” of

Lu = Aau + out 4+ pu + g(x, u, v, A), xe(0,m)
2
(b.c.). (-2)
The next result describes the bifurcation structure for Eq. (3.2).
TaEOREM 3. For each ke N, v = + or v = —, (A}, 0) 1s a bifurcation point
Jor (3, 2). Moreover, there exists an unbounded continuum of sclutions of (3.2),

@y such that (A, 0) € 2, C (R X Sp) U {0, O)).

To derive this result from Theorem 1, one observes that the only possible

505/26/3-3
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bifurcation points for (3.2) are the points (4, 0). Indeed, let (A, , #,), #, = 0
be a sequence of solutions of (3.2) converging to (A, 0). Then dividing (3.2) by
Il #, |l , the equation shows that u,/|| %, ||; is bounded: in C2 Hence there exists
a subsequence of u,/|| u, |l; converging to # in C! and thus also in C? by the
equation. (A, #) is a solution of (3.1) with || # [|; = 1. By Theorem 2, A must be one
of the half-eigenvalues of (3.1). Furthermore if u,, € S;” for all #, then u is in the
closure of S,? and in fact u € S,?, whence A = A”. Denoting by %7 the closure in
R x E of the set of solutions (i, v) of (3.2) with »e .Sy, we have &N
(R x {0}) C {(A\, 0)}. If Z? is the component given by Theorem 1, we define
D,y = D,y N F2. It is then readily verified that £, is an unbounded component
of F and (A7, 0} e 2y C(R X S) v {(A2, 0)}.

4. EXISTENCE OF POSITIVE SOLUTIONS FOR NNONLINEARIZABLE ELLIPTIC PARTIAL
DirrEReNTIAL EQUATIONS

In this section we study nonlinear elliptic partial differential equations
corresponding to the Sturm-Liouville problems of Section 2. We extend the
result of Rabinowitz concerning the existence of a branch of positive solutions,
[8, 9], to this class of nonlinearizable equations. As in [8, 9], the positivity plays
here the same role as nodal properties in Section 2.

Let 2 be a bounded domain in RY with a smooth boundary 82 = I, and let
L be the divergence type differential operator in £2 defined by

Lu=— § 0/0x{a;(x)ou]0x;).

7,4=1

We assume that L is uniformly elliptic in £ and that the a;; are in CY(2). Let
a(x) be a continuous function on £2 such that a(x) > 0, for all » el.
We consider the nonlinear boundary value problem

Lu = dau + F(x, u, Vu, X), in 2,

u =0, on I @1

Here Vu = (8uf0x ..., ou/0xy), A is a real parameter, and the nonlinear
term F is of the form F = f + g, with fand g continuous functions on 2 X R x
R¥ x R such that

'&%f’—&l<M; Veed; VueR, 0<|u|<l;
VseRY, |s]<1; VAieR

@.2)
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(M is a positive constant);

g(x, 5, N) = o(| | + | s ]), near (u, s) = (0, 0), uniformly “3)

in x € 2 and in every bounded interval of A.

For ke N, and a e (0, 1), C**£2) denotes the Banach space of the functions
in C*(£2) having all their derivatives of order £ Holder continuous with exponent
«. WEr(Q) is the Sobolev space of functions u € L?(£) such that Dfu e L?(£),
VB, | B| < k (multiindex notation). It is well known (cf, e.g., [6]) that, when
p > N, there exists a constant x such that

|2 Hcl.l—N/m <yxllu “W“’ s Vue 1‘/’[,72,19(9)_

In the following, o < (0, 1) is given and p will denote a real number such that
p > Nand « << 1 — Njp. Thus W22(R) is compactly embedded in C1-%({2).

Let E = {ueC*();u =0 on I'}. E is equipped with the usual norm
I *llce,« - A couple (A, #) € R X E is said to be asolution of (4.1) if u € W2?(2) and
(A, u) satisfies (4.1). We define P* = {uc E;u > 0 in £, and oufov < Oon I},
where dufév is the outward normal derivative of # on I'. The sets P+, P~ = —P+
and P = P+ P~ are open sets in F. It is a classical consequence of 2 theorem
of Krein—Rutman [5], that the linear eigenvalue problem

Ly = Jav, in 2,

v =0, onl’ (*4)
possesses a smallest positive eigenvalue A, , which is simple, and such that the
corresponding eigenfunctions are in P. Let v; be the unique such eigenfunction
satisfying || o; i1, = 1 and 9, € P,

As in Section 2, we let ay = Min, g a(x), d = Mlayand I = [A, — d, A, -+ d].
We also let K» = P* — {0}, for v = + or —, P” being the closure of P in E.
The closure in R X E of the set of solutions (A, ) of (4.1) with u € K” is denoted
by .

We have the following result for Eq. (4.1).

Tueorem 4. The connected component €* of U (I x {0}) containing
I % {0} is unbounded and lies in (R X KU (I X {O}), for v = -+ and v = —.

To prove this theorem, we approximate (4.1) by a family of linearizable
equations, as in Section 2. However, with a view to applying the result of
Rabinowitz [9, 10], we need to approximate (4.1) by equations where all the
coefficients and the nonlinear terms are of class C1. In order to construct such
an approximation, we will first prove the following lemma.
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LEMMA 4. There exist two families of C' functions on Q X R x R¥ x R,
Jeand g, for 0 < e < 1, converging to f and g, respectively, as € “x 0, uniformly
on compact subsets of 2 X R X RY X R, and such that

WKM; Vel VueR, 0<|u|<y

?

VseRY, |s| <1 VAeR: (“.5)
Vee (0, 17;
o 0 ) = ol 45D e ) = OO wirmlyin

x €8, in ee(0, 1], and in every bounded interval of A

Furthermore, f. and g, are bounded independently of € on compact sets of X R X
R¥ x R.

The proof of Lemma 4 is by regularization and truncation.
We first construct f. under the stronger assumption on f:

ji@l‘{l’—"—ngM; Veel; VueR, 0<|u|<1;
VseRY;. VAeR

(i-e., condition (4.2) is satisfied for all s € RN).

(4.2015)

~ Define a function f by Flo, u, 5,0 = f(x, 4,5, N)/u, if xeQ, u+0, and
F(x, u, 5, \) = 0 otherwise. Under condition (4.2Ps), flies in L{,(R2V+2). Let w,
be a family of “mollifiers” in R?¥*2, For 0 < e < 1, w, is a C* function on
R2V+2 whose support lies in the ball {X € R?V*% | X | < ¢/2}, o, = 0, and
such that

J w(X)dX = 1.
R2N+2

Define

(X)) =u| ofX—Y)f(V)dy,
R2N+2

where X = (x,u,5,A) and ¥ = (3, 9,t, ). f. is a C function for all ¢,
0 < e < 1. It is easy to see that f, converges to f uniformly on compact subsets
of 2 X B X RY¥ x R. Furthermore, f. is bounded on compact sets of @ X R X
RY x Rindependentlyofe. Forxe@, |z#| < 3,seR%andAeR, | X — V| <
€/2 < } implies | v | < 1; hence | F(V)] < M and f. satisfies (4.5).

Consider now a function f as in the lemma, i.e., f satisfies condition (4.2).
Let £ be a continuous function on RY, 0 << { < 1, such that {(s) = 0 for
[s]>1,and {(s) = 1 for | s | < 2. We write f(X) = {(s) f(X) + (1 — {() f(X).
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The function(s)f (X)satisfies condition (4.2°%). Hence by the above construction,
there exists a family of C? functions 7, on £ x R X RY X R converging to
(s) £(X) uniformly on compact subsets of £ X R X R¥ x R. Furthermore, A,
satisfies condition (4.5). Let &, be a family of C* functions on 2 x R x RY x R
converging to the continuous function (1 — (s)) f(X), uniformly on compact
subsets of 2 X R X RY X R and such that %, is bounded on these subsets
independently of e. Let (s) be a C* function on RY such that n{s) = G for
Is] < %, and n(s) = 1 for | s| = £. Define f(X) = 2{X) -+ 7(s) £(X). Since
2l — &) = 1 — {, f. converges to f uniformly on compact subsets of 2 X R x
R¥ X Rand is bounded on compact subsets of @ X R X R¥ X R independently
of e. For { s | << &, f(X) = (X)), hence f satisfies (4.5).

‘The construction of g, is also by regularization. First extend g by setting
g(X) = 0if x ¢ Q. Then define

) = (e s [ wqx - 1) Sy

ngd

It is easily seen that g satisfies the requirements of the lemma.

Proof of Theorem 4. We first observe that if a set B of solutions of (4.1) is
bounded in R % E, then it is relatively compact in R X E. Indeed for (), ) € B,
the right-hand side of (4.1) is bounded in C%{2). Using the L? estimate (cf. [1}),
we obtain a bound for » in W22(Q). Since W2-7(£2) is compactly embedded in
Ch+({2), B is relatively compact. With the aid of this observation, the same
argument as in Section 2 applies here (cf. [8, 13]). To prove the theorem, it
suffices to show that for every bounded open neighborhood @ of I x {0} in
R X E, there is a solution (A, #) of (4.1) on 80 with u € K. We also must show
that 9% C (R x K*) U (I x {0}). These facts will be proved by approximation.

Let f, and g, be the functions given by Lemma 4 and let L¢ be the differential
operator defined by

N
Lu = — Y 8|ox(af(x)eulox;),

2,j=1

where a5; € C%(£2) and a§; converge to a;; in CY£2) as « 0. We may choose a;;
so that L is uniformly elliptic in £ with an ellipticity constant independent of
€0, 1] (we set L® = L). Let a, be a family of C! functions converging to g,
uniformly on Q and such that @, > 0 on 2.

We consider the approximate problem

Leuw = dag + f(x, u|uls, Vu, X) 4 glx, u, Vi, X) in 2,

1.7
u=20 on I #7)
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This equation possesses the linearization near # = 0:

Ly = dau in 2,

4.8
u=90 on I “8)

By Krein—Rutman’s theorem [5], the problem (4.8) has a least eigenvalue
A1, > 0 which is simple, and a unique eigenfunction v, . associated to A, . , such
that | o; . flci« = 1 and v, . € P+

Using the variational characterization of the first eigenvalue (cf. [3]),

A = ueg,l‘f(!z) (L ; 3—1 @i s;i 6x9/f )

where Hyl(2) = {ue WA£2), u = Qon I'}, one has lim ¢ A; . = A, . By the L?
estimate, [1], || vy llw.» is bounded. Hence, there exists a subsequence v .
converging weakly in W22(£) and strongly in C%*({2) to v. On the other hand,
for any such subsequence v = o, , since v must then satisfy

Ly = Ajav in 2,
=0 on I,

4.9)

and v e P, |2 lcr.e = 1. Therefore, as € ¢ 0, v, . converges to vy, weakly in
W2»(Q) and strongly in C1-%(8).

For Eq. (4.7), a result of Rabinowitz [8-10],3 applies. There exist two un-
bounded connected sets of solutions of (4.7), €., in R X E such that

(M, 0 C (R X P)U{(Ase, 0)-

Since @ is a given bounded open neighborhood of I x {0}in R x E, fore >0
small, (A ., 0)€@. Thus, €r N 8€ = 3. Let ¢, be a sequence converging to 0,
and let (A, , u,) € €% N 90. Since u, is bounded in C* (£2), the right-hand side
of (4.7), where we take € = ¢, and # = u,, is bounded in C%Q) hence in L?(&).
The L7 estimate [1] gives then a bound in W?-#(Q) for u, , independently of
€, = 0. Therefore, one can find a subsequence, denoted again by e,, €, X 0,
such that A, — A, u, — uin E and u,, — u in W22(Q). Clearly (), u) is a solution

of (4.1) (by Lebesgue’s dominated convergence theorem) and # € P. It suffices
now to prove that u = 0.

3 The result of Rabinowitz we use here was proved in [8, 9] under some additional
hypotheses on the nonlinear term. However, it remains valid without these assumptions:
In [10, Section VIIL.7], the existence of one unbounded continuum in R X P is proved
in general. It is not difficult then to obtain two unbounded subcontinua, corresponding
to P* and P-, using [10, Lemma VIIL.10] and an argument similar to [8, Corollary 2.13].
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Suppose 4 = 0, and let w,, = u,/|| #, licr.x,

fe,.(x» (%) [ (%), Vitn(x), Ap)

H Uy, Hcl.cx

and
8e, (%, Un(%), Vity (), As)

H Uy, “cl-oa

g'n(”) =
Thus (4.7) divided by || #,, !lc1,« gives

L, = Mo ton + fol®) + Bul®)y 02,
{4.10)
w, = 0, on T (4.10)

The terms f, , §, are bounded in C($2) and || @, |ic1,. = 1. Again by the L?
estimate, w,, is bounded in W2#%(Q). Hence, after extraction of a subsequence,
we may assume that w, — @ in E with || @ ||c1,. = 1. Since L¢ is self-adjoint, one
has

f Vy,e, L0y — w Lm0y =0,
Iy

which gives
J;} (A — )\1,6,,) e, WpU1.¢, 'i'"fn(x) Uy, T Eal(x) U1, = 0; 4.1
&, converges to 0 in C%({2). Letting 7 — co, (4.11) yields
0 = f (A — A awvy + lim [ fo(x) ., - (4.12)
0 R Jo
For n large enough, || #,, llc,e << 4, so that
| )] < M | (). (4.13)

Using (4.13) and the fact that w € K*, the same discussion as in Section 2 for
(4.12) (cf. (2.12) and (2.13)), shows that A € I. But this is a contradiction, since
(A, 0) € 0. Hence u 7= 0 and u € K*.

Finally, we observe that taking e, = 0 for all n, in (4.10), the preceding
argument also shows that &* C (R x KU (I x {0}). QED

From Theorem 4, we see in particular that there exist two unbounded con-
tinua @+, 2, of solutions of (4.1) in R x E, bifurcating from I x {0}, i.e.,
NI x{0)#*gand P CIF forv=+andv = —.

Remark. As in the result of Rabinowitz [8-10], we only obtain the existence
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of one branch of positive solutions and one branch of negative solutions, since
we cannot exploit nodal properties. It would be of interest to know whether the
results of Section 3 can be generalized to the analogous type of nonlinear eigen-
value problems for elliptic partial differential equation. For instance, does the
equation

—du =M+ |ul, in 2

4.14
u =0, on Tl ( )

possess infinitely many half-eigenvalues ?
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