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LENA (Low Energy Neutrino Astronomy) has been proposed as a next generation 50 kt liquid scintillator 
detector. The large target mass allows a high precision measurement of the solar 8B neutrino spectrum, 
with an unprecedented energy threshold of 2 MeV. Hence, it can probe the MSW-LMA prediction for the 
electron neutrino survival probability in the transition region between vacuum and matter-dominated 
neutrino oscillations. Based on Monte Carlo simulations of the solar neutrino and the corresponding 
background spectra, it was found that the predicted upturn of the solar 8B neutrino spectrum can be 
detected with 5σ significance after 5 years.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The MSW-LMA prediction for the survival probability of so-
lar electron neutrinos Pee(Eν) has been confirmed in the energy 
region of vacuum (Eν � 1 MeV) [1–3] and matter dominated oscil-
lations (Eν � 5 MeV) [4–6]. Nevertheless, the predicted low energy 
upturn of the electron neutrino survival probability (Pee) in the 
transition region between vacuum and matter dominated oscilla-
tions could not be detected, as Water–Čerenkov detectors (WCDs) 
have a too high energy threshold and current liquid scintillator 
detectors (LSDs) are too small. A test of the MSW-LMA predic-
tion in the transition region is important as new physics, like 
non-standard neutrino interactions [7,8] or light sterile neutrinos 
(mν1 < mν0 < mν2 , where the sterile neutrino νs is mainly present 
in the mass eigenstate ν0) [9], could influence Pee in this region.

Compared to current solar neutrino detectors, the advantage 
of the proposed LENA detector [10] is the combination of a 
∼ 200 keV energy threshold and a huge target mass. Thus, the 
external gamma background, which currently prevents a measure-
ment of the solar 8B spectrum below 3 MeV in Borexino [4], can be 
suppressed by self-shielding. This enables the measurement of the 
8B spectrum with an unprecedented threshold of 2 MeV. Hence, 
LENA can probe the MSW-LMA prediction over a large part of the 
transition region.

The present work discusses the sensitivity of LENA to detect 
the predicted upturn of Pee at low energies by measuring the so-
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lar 8B spectrum. In Section 2 the planned detector setup is briefly 
presented. The simulation of the expected solar neutrino and back-
ground spectra is discussed in Section 3 and Section 4. The analysis 
of the simulated data is presented in Section 5. Finally, the de-
tection potential for the low energy upturn of Pee is discussed in 
Section 6.

2. The LENA detector

The neutrino target consists of ∼ 50 kt of liquid scintillator 
based on linear-akyl-benzene (LAB), that is enclosed in a cylin-
der with 14 m radius and 96 m height [11]. The emitted light is 
detected by photomultiplier tubes (PMTs) that are mounted with 
non-imaging light concentrators (LCs) inside individual pressure 
encapsulations that are filled with a non-scintillating buffer liquid. 
The apertures of these optical modules are located at the bound-
ary of the target volume at a radius of 14 m. The corresponding 
effective optical coverage is ∼30%. The radius of the cylindrical 
concrete tank is 16 m, so that the target volume is shielded by 
2 m of liquid scintillator. A muon veto formed by gas detectors is 
placed above the detector tank and provides auxiliary information 
for the reconstruction of cosmic muon tracks. In order to iden-
tify and reconstruct inclined muon tracks, an instrumented water 
volume surrounding the tank serves as an active Water–Čerenkov 
muon veto and shields the target volume from fast neutrons.

The preferred location for the detector is the Pyhäsalmi mine in 
Finland. The detector cavern is shielded by 1400 m of rock cover-
age, corresponding to ∼ 4000 m water equivalent (w.e.). Hence, the 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. The simulated visible energy spectra for solar neutrinos with Pee(Eν ) ac-
cording to the MSW-LMA prediction for the ES channel. The spectral shapes of the 
neutrino fluxes were taken from [18–21]. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

cosmic muon flux will be reduced to ∼ 0.2 m−2h−1 [12], which is 
about five times less than in Borexino.

3. Simulation of the solar neutrino spectra

There are two possible detection channels for solar 8B neutrinos 
in LENA. The elastic neutrino electron scattering (ES) channel and 
charged current reactions of νe’s on 13C (13C channel) [13,14].

3.1. Elastic neutrino electron scattering

In the ES channel, a neutrino scatters elastically off an elec-
tron, which is subsequently detected. As the energy of the re-
coil electron depends on the scattering angle, the measured recoil 
spectrum is a convolution of the solar neutrino spectrum and the 
electron recoil spectrum at a given neutrino energy.

The simulation of the electron recoil spectra was split into two 
parts. First of all, the differential events rates for neutrinos from 
different reactions were calculated according to the BS05(AGS, OP) 
standard solar model [15]. Using these differential events rates, 106

electron events were simulated with a GEANT4 [16] based Monte 
Carlo (MC) simulation of the LENA detector [17]. The events were 
homogeneously distributed over the target volume, so that possible 
position dependent effects are considered. Afterwards, the visible 
energy was reconstructed from the event position and the number 
of detected photons [17]. The energy resolution is governed by the 
number of detected photons and amounts to 6.2% · √E/MeV.

Fig. 1 shows the resulting electron recoil spectra. At low ener-
gies, the 7Be and the pep neutrinos have the largest event rate, 
preventing a detection of 8B neutrinos below ∼ 1.4 MeV. Above 
∼ 1.4 MeV, the 8B spectrum is dominant and surpasses the hep 
spectrum by more than two orders of magnitude.

3.2. Charged current reaction on 13C

The charged current reaction of electron neutrinos on 13C 
(νe + 13C → 13N + e−) has a threshold of 2.2 MeV. Thus, it is 
another possible detection channel for solar 8B neutrinos. Due to 
the kinematics of the reaction, the recoiling 13N nucleus has only 
a few keV kinetic energy. Hence, the neutrino energy can be re-
constructed on an event-by-event basis by measuring the electron 
energy, taking into account the small effect of the energy resolu-
tion of the detector. The subsequent β+ decay of the 13N nucleus 
Table 1
The gamma rates above 250 keV of the different detector components.

40K 238U chain 232Th chain

Tank 13 MBq 1.1 GBq 178 MBg
PMTs 14 kBq 229 kBq 24 kBg
LCs 0.86 kBq 13 kBq 41 kBg

(τ = 862 s) causes a delayed coincidence signal, which can be used 
to distinguish signal from background events. Hence, 13C events 
will be selected by the spatial and timing coincidence between 
prompt and delayed signals. Although the cross section is about 
10 times larger than the cross section of the ES channel [14], the 
event rate is almost two orders of magnitude lower due to the low 
isotopic abundance of 13C (1.07%). Nevertheless, the measurement 
of the unconvoluted shape of the solar 8B neutrino spectrum1 with 
the 13C channel allows an energy dependent measurement of Pee, 
as the unoscillated solar 8B flux is known from the NC measure-
ments of the SNO experiment [22].

4. Simulation of the background spectra

There are three different types of background present in the 
ES channel: external gamma rays that are emitted by the tank, 
the PMTs and the LCs, cosmogenic radioisotopes produced in-situ 
by traversing muons and intrinsic radioactive background. A back-
ground for the 13C channel is caused by the accidental coinci-
dences of these backgrounds and of ES interactions of solar neutri-
nos.

Based on the assumed radiopurity of the tank [11], PMTs and 
LCs [23] (see Table 1), the external gamma ray background was 
simulated with the GEANT4-based LENA Monte Carlo simulation 
[17]. It was found that no external gamma background is present 
above 3.5 MeV. For lower energies, the rate can be reduced to a 
negligible level by applying a fiducial volume cut. The correspond-
ing fiducial volume is 48 kt above and 19 kt below 3.5 MeV.

Cosmogenic radioisotopes are produced inside the target vol-
ume by spallation reactions of cosmic muons on carbon nuclei. The 
majority of the produced radioisotopes have a lifetime of less than 
∼ 1 s [4,24]. Hence, the decays can easily be identified by the time 
coincidence to the parent muon, without introducing a large dead 
time. The remaining cosmogenic isotopes with a longer lifetime 
are 11C (β+), 10C (β+) and 11Be (β−) (see Table 2). The spectral 
shapes of these isotopes were obtained from the GEANT4-based 
LENA Monte Carlo simulation. Afterwards, the measured rates of 
the Borexino experiment [4,1] have been scaled to the Pyhäsalmi 
location, using the muon flux of the two sites.2 Below 2 MeV, 
the 11C background is about two orders of magnitude larger than 
the solar 8B neutrino signal. Hence, the end of the 11C spectrum 
defines the energy threshold for the detection of solar 8B neutri-
nos. As 10C and 11Be have a much shorter lifetime than 11C, it is 
possible to reduce the background from these isotopes by veto-
ing a cylinder with 2 m radius around each traversing muon for 
�t = 4 · τ (10C) = 111.2 s. As the muon rate in the fiducial volume 
is ∼ 135 h−1, the introduced dead time amounts to about 10% of 
the total exposure, which is still acceptable.

Besides cosmogenic isotopes, there is also a background from 
intrinsic radioimpurities in the scintillator. As the amount of ra-
dioimpurities in the LENA detector is not known at the moment, 
it was assumed in the following that the radiopurity levels of 

1 The spectrum is of course still convoluted with the energy resolution of the 
detector.

2 Note that no scaling for the slightly different mean muon energy was applied.
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Table 2
List of the cosmogenic radioisotopes with life times above 2 s.

Isotope Q-value Life time Rate [cpd/kt]
11C 2.0 MeV 29.4 min 54
10C 3.7 MeV 27.8 s 1.0
11Be 11.5 MeV 19.9 s 6.4 · 10−2

Fig. 2. The simulated visible energy spectra of the cosmogenic and intrinsic radioac-
tive background. A spacial and time cut around each muon was applied to reduce 
the cosmogenic background and the external gamma background was suppressed to 
a negligible level by a fiducial volume cut. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

the Borexino experiment3 (c(232Th) = (6.5 ± 1.5) · 10−18g/g) [4]
are reached. The only intrinsic beta-emitting4 radioisotopes in the 
Borexino detector with a Q-value above 2 MeV are 214Bi (238U 
chain, Q = 3.3 MeV) and 208Tl (232Th chain, Q = 5.0 MeV) [4]. 214Bi 
can be tagged by the subsequent decay of 214Po and is thus ne-
glected in the following [4]. 208Tl is produced by the alpha decay 
of 212Bi which also decays into 212Po (τ = 0.4 μs) with 64% branch-
ing ratio. Hence, the amount of 208Tl can be determined from the 
observed number of 212Bi–212Po coincidences. Fig. 2 shows the re-
sulting cosmogenic and intrinsic radioactive background spectra.

Based on these spectra, the accidental background for the 13C 
channel has been calculated (see Fig. 3) for a fiducial volume of 
30 kt. Due to the relatively long life time of the 13N nucleus, a 
large amount of background is present below 5 MeV reconstructed 
neutrino energy. The dominant part of the accidental background 
is due to external gamma rays5 and cosmogenic 11C events. Above 
5 MeV, the accidental background is at least one order of magni-
tude below the solar 8B signal. Thus, the energy threshold for the 
13C channel is set to 5 MeV neutrino energy.

5. Analysis procedure

In order to determine the sensitivity for the detection of the 
low energy upturn of Pee, the potential to distinguish the MSW-
LMA prediction from a simple test model with Pee(Eν) = const was 
investigated. Using the previously simulated neutrino and back-

3 Note that the radiopurity levels of the first data taking phase of Borexino are 
used and that the current radioactive background rates in Borexino have been sub-
stantially improved by several purification campaigns.

4 Alpha emitters above 2 MeV do not pose a background as their light emission 
is quenched in a liquid scintillator.

5 Reducing the external gamma background by using a smaller fiducial volume 
would result in a lower sensitivity to the low energy upturn of Pee, due to the 
smaller statistics.
Fig. 3. The accidental background spectrum for the 13C channel, using a fiducial 
volume with 11 m radius. Furthermore, the expected 8B spectrum is shown for 
comparison. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 4. The measured electron neutrino survival probability after 5 years, using the 
13C channel. Furthermore, a fit with the MSW-LMA prediction (depicted in green) 
and with Pee = const (depicted in red) is shown. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this 
article.)

ground spectra, 105 five year long measurements of the 8B neu-
trino spectrum were simulated with the ROOT package [25]. Af-
terwards, the MC data sets were analyzed independently for the 
13C channel and the ES channel. The accidental background was 
subtracted from the 13C channel to retrieve the oscillated solar 
8B spectrum. Afterwards, this spectrum was divided by the un-
oscillated solar 8B spectrum to determine Pee(Eν). Note that the 
accidental background spectrum can be precisely determined from 
the measured total spectrum of the ES channel. Finally, Pee(Eν) was 
fitted with the MSW-LMA prediction and with the Pee(Eν) = const
model, using a χ2 minimization. The normalization was treated 
as a free nuisance parameter in both cases. Hence, this analysis 
is only sensitive to the shape of Pee(Eν) and is thus unaffected 
by the uncertainty of the solar 8B flux. Fig. 4 shows the result for 
one example measurement. While the MSW-LMA prediction is pre-
ferred one, the statistical significance is not enough to exclude the 
Pee(Eν) = const model. Overall, the average exclusion significance 
in the 13C channel is below 1σ .

For the ES channel, it is not possible to directly calculate Pee
from the measured 8B spectrum, as the neutrino energy cannot
be reconstructed on an event-by-event basis. Thus, the simulated 
spectrum was fitted with the expected spectrum according to the 
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Fig. 5. The total spectrum for the ES channel after 5 years measuring time. Furthermore, a fit according to the MSW-LMA prediction (depicted in green) and according to 
Pee = const (depicted in red) is shown. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
MSW-LMA prediction and the Pee(Eν) = const hypothesis, using 
a χ2 minimization with free parameters for the solar neutrino 
and the corresponding background rates. In order to maximize the 
statistics, the full 48 kt fiducial volume was used above 3.5 MeV, as 
no external gamma background is present at these energies, while 
the 19 kt fiducial volume was used below 3.5 MeV. As the con-
tributions of the cosmogenic and intrinsic radioactive background 
can be measured independently, penalty-terms were added to the 
χ2 function to maximize the sensitivity [26]:

χ2
tot = χ2 + χ2

pen, χ2
pen =

k∑

j=1

(λ j − μ j)
2

σ 2
j

, (1)

where k is the number of parameters with prior information, λ j
is the fit value of the parameter j and μ j is the expected value 
of the parameter j, with σ j uncertainty. The uncertainty for the 
cosmogenic backgrounds was taken from the KamLAND (10C and 
11Be) [24] and the Borexino experiment (11C) [1], while the uncer-
tainty for the 208Tl rate was estimated from the expected number 
of 212Bi–212Po coincidences. Fig. 5 shows the results of the fit for 
one example measurement. Above ∼ 3 MeV visible energy, the 
data is consistent with both the MSW-LMA prediction and with the 
Pee = const hypothesis. But below ∼ 3 MeV, the MSW-LMA predic-
tion is clearly favored, which shows the importance of measuring 
the 8B spectrum below 3 MeV, which is not possible with current 
WC and LS detectors.

In the last step, the results from the 13C and the ES chan-
nel were combined by adding the χ2 values of the correspond-
ing fits. Using these values and the number of degrees of free-
dom, the probability that the MC data sample is consistent with 
the MSW-LMA prediction or the Pee(Eν) = const model was cal-
culated. In order to suppress statistical fluctuations, this process 
was repeated for each data sample. Finally, the probability that 
the Pee(Eν) = const model can be excluded with 5σ significance, 
which is equivalent to a detection of the low energy upturn of Pee, 
was calculated, assuming that the MSW-LMA prediction is correct.
Table 3
The probability to detect the low energy upturn of Pee, for mea-
suring times ranging from 2 years to 5 years.

Measuring time Prob. for a 5σ det.

2 years 43.4%
3 years 92.5%
4 years 99.8%
5 years > 99.9%

6. Results

Table 3 shows the probability for a 5σ detection of the low 
energy upturn of Pee, as a function of the measurement time. After 
2 years, the upturn can be detected at 5σ significance for over 
40% of all MC data sets, assuming that the MSW-LMA prediction is 
correct. After 5 years, the upturn was detected for each data set. 
Hence, in case that the upturn is not detected after 5 years, the 
MSW-LMA prediction would be ruled out and new physics must 
be present that reduce Pee(Eν) in the transition region. Comparing 
the two detection channels, it was found that the sensitivity of the 
ES channel is much larger than the 13C channel, due to the larger 
statistics. Nevertheless, the 13C channel still provides an important 
cross check of the results.

While the amount of cosmogenic background can be precisely 
estimated for the assumed rock coverage, it is much harder to esti-
mate the intrinsic radioactive background. Hence, the analysis was 
repeated for a 100 times larger intrinsic radioactive background 
than in Borexino. Table 4 shows the detection potential for the low 
energy upturn of Pee in this pessimistic scenario. While the detec-
tion potential is of course decreased, the effect of the increased 
background is not very strong and the upturn can still be detected 
at 5σ significance after 5 years. The reason for this behavior is that 
the important energy region below 3 MeV is not affected by the 
larger 208Tl background. Hence, a precision test of the MSW-LMA 
prediction is possible with LENA even if radiopurity conditions are 
substantially worse than in Borexino.
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Table 4
The probability to detect the low energy upturn of Pee, for measur-
ing times between 2 years and 5 years and for a 100 times larger 
intrinsic radioactive background than in Borexino.

Measuring time Prob. for a 5σ det.

2 years 34.6%
3 years 86.7%
4 years 99.4%
5 years > 99.9%

7. Conclusions

Present-day experiments lack the capability for a precision 
measurement of the electron neutrino survival probability Pee in 
the transition region between vacuum and matter dominated os-
cillations (1 MeV � Eν � 5 MeV). LENA will offer an excellent 
opportunity to close this gap in the determination of Pee by a high-
statistics, low-energy-threshold measurement of the solar 8B neu-
trino spectrum. Due to its large target mass, the external gamma 
background, that currently prevents a measurement below 3 MeV 
electron recoil energy in Borexino, can be efficiently suppressed by 
a stringent fiducial volume cut. This allows a measurement of the 
solar 8B neutrino spectrum with an unprecedented energy thresh-
old of 2 MeV.

In the present work, the detection potential for the low en-
ergy upturn of Pee that is predicted by the MSW-LMA solution 
was analyzed. It was found that the upturn can be detected at 5σ
significance after 5 years measuring time, even if the intrinsic ra-
diopurity level of the scintillator is two orders of magnitude worse 
than achieved in Borexino. In case that the low energy upturn of 
Pee is not found, the measurement would rule out the MSW-LMA 
prediction and show that new physics decrease Pee in the transi-
tion region between vacuum and matter dominated oscillations.
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