
Expo. Math. 28 (2010) 179–185
www.elsevier.de/exmath

Real-variables characterization of generalized Stieltjes
functions

Alan D. Sokal∗,1
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Abstract

We obtain a characterization of generalized Stieltjes functions of any order �> 0 in terms of in-
equalities for their derivatives on (0, ∞). When � = 1, this provides a new and simple proof of a
characterization of Stieltjes functions first obtained by Widder in 1938.
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A real-valued function f defined on an open interval I ⊆ R is said to be completely
monotone if it is C∞ and satisfies (−1)n f (n)(x) � 0 for all x ∈ I and all n � 0. The most
important case is I =(0, ∞), where the Bernstein–Hausdorff–Widder theorem [4,8,9,17,20]
states that f is completely monotone on (0, ∞) if and only if it can be written as the Laplace
transform of a nonnegative measure supported on [0, ∞), i.e.

f (x) =
∫

[0,∞)
e−t x d�(t) (1)
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with � � 0 and the integral convergent for all x > 0.2 Clearly, any such f has an analytic
continuation to the right half-plane Re x > 0.

A real-valued function f defined on (0, ∞) is said to be a Stieltjes function [15] if it can
be written as a nonnegative constant plus the Stieltjes transform [19,20] of a nonnegative
measure supported on [0, ∞), i.e.

f (x) = C +
∫

[0,∞)

d�(t)

x + t
(2)

with C � 0, � � 0 and the integral convergent for some (hence all) x > 0. More information
on Stieltjes functions can be found in [1, pp. 126–128; 2,3] and the references cited therein.
Clearly, every Stieltjes function is completely monotone on (0, ∞), but not every completely
monotone function is Stieltjes. It is thus of interest to obtain a characterization of Stieltjes
functions in terms of inequalities for the derivatives of f on (0, ∞), analogous to but stronger
than the inequalities defining complete monotonicity. Such a characterization was obtained
by Widder [19] in 1938 (see also [20, Chapter VIII]), who proved (here D = d/dx):

Theorem 1. Let f be a real-valued function defined on (0, ∞). Then the following are
equivalent:

(a) f is a Stieltjes function.
(b) f is C∞, and the quantities

Fn,k(x) = (−1)n
k∑

j=0

(
k

j

)
(n + k)!

(n + j)!
x j f (n+ j)(x) (3a)

= (−1)n x−n Dk xn+k Dn f (x) (3b)

= (−1)n Dn+k xk f (x) (3c)

are nonnegative for all n, k � 0 and all x > 0.
(c) f is C∞, and we have F0,0(x) � 0 and Fk−1,k(x) � 0 for all k � 1 and all x > 0.

Since Fn,0 = (−1)n f (n), condition (b) is manifestly a strengthening of complete mono-
tonicity. The equivalence of the three formulae for Fn,k is a straightforward computation.

From (3c) we see that the nonnegativity of Fn,k for all n, k � 0 is equivalent to the
assertion that all the functions F0,k = Dk xk f are completely monotone on (0, ∞).

It is fairly easy to see that (a) �⇒ (b), while (b) �⇒ (c) is trivial. Widder’s proof of (c)
�⇒ (a) was, by contrast, fairly long, and was based on explicit construction of a differential

2 The book of Widder [20] gives several different proofs of the Bernstein–Hausdorff–Widder theorem: one
based on the Hausdorff moment problem and Carlson’s theorem on analytic functions (pp. 160–161); one based
on the Hausdorff moment problem and its uniqueness (pp. 162–163); one based on Laguerre polynomials (pp.
168–177); and one based on a real inversion formula for the Laplace transform (pp. 310–312). See also [7, Chapter
I] for a proof based on Newtonian interpolation polynomials, and [6] [12, Chapter 2] for beautiful proofs based
on Choquet theory.
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operator Lk,t that provides a real inversion formula for the Stieltjes transform. Along the
way he also gave [19, Lemma 12.52] a direct real-variables proof of (c) �⇒ (b), but he
used this only for technical purposes, to guarantee the complete monotonicity and hence
the real-analyticity of f on (0, ∞) [19, p. 48].3

In addition, Widder [18, Theorem 10.1] proved, two years earlier, a slight variant of
Theorem 1(a) ⇐⇒ (b) – treating the case in which the measure � is required to be finite – by
applying the Bernstein–Hausdorff–Widder theorem to the functions F0,k and then analyzing
the relationship between the representing measures �k .

In this paper I would like to give an extremely short and simple proof of Theorem 1, which
moreover extends to provide a new characterization of the generalized Stieltjes functions
of any order �> 0 (see Theorem 2 below). The key idea is to use the well-known solubility
conditions for the Hausdorff moment problem to prove (b) �⇒ (a); we then rely on [19,
Lemma 12.52] for (c) �⇒ (b). Let us recall that a sequence c = (cn)∞n=0 is said to be a
Hausdorff moment sequence if there exists a finite nonnegative measure � on [0, 1] such
that

cn =
∫

[0,1]
tnd�(t) for all n � 0 (4)

and it is said to be completely monotone if

(−1)k(�kc)n ≡
k∑

j=0

(−1) j
(

k

j

)
cn+ j � 0 for all n, k � 0. (5)

Hausdorff [8] proved in 1921 that a sequence c = (cn)∞n=0 is a Hausdorff moment se-
quence if and only if it is completely monotone; furthermore, the representing measure � is
unique.4 This is obviously a discrete analogue of the Bernstein–Hausdorff–Widder
theorem.

Our method also handles, with no extra work, the generalized Stieltjes transform in
which the kernel 1/(x + t) is replaced by 1/(x + t)� for some exponent � > 0 [19, Section
8;13,16,5,10,11]. Let us say that a real-valued function f on (0, ∞) is a generalized Stieltjes
function of order � (and write f ∈ S�) if it can be written in the form

f (x) = C +
∫

[0,∞)

d�(t)

(x + t)�
(6)

with C � 0, � � 0 and the integral convergent for some (hence all) x > 0. Since

1

(x + t)�
= �(�′)

�(�)�(�′ − �)

∫ ∞

0
u�′−�−1 1

(x + t + u)�
′ du (7)

whenever � < �′, it follows that S� ⊆ S�′ whenever � � �′. It is also suggestive that
representation (6) tends formally as � ↑ ∞ to representation (1) characteristic of complete
monotonicity, in the sense that lim�↑∞ (�t)�/(x + �t)� = e−x/t .

3 See [20, Chapter VIII] for a slightly different proof that does not make use of [19, Lemma 12.52].
4 See also [14, pp. 8–9], [20, pp. 60–61 and 100–109] or [1, pp. 74–76]. “Only if” is quite easy; proving “if”

takes more work.
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We shall prove the following real-variables characterization of the generalized Stieltjes
functions of order �:

Theorem 2. Let �> 0, and let f be a real-valued function defined on (0, ∞). Then the
following are equivalent:

(a) f is a generalized Stieltjes function of order �.
(b) f is C∞, and the quantities

F [�]
n,k(x) = (−1)n

k∑
j=0

(
k

j

)
�(n + k + �)

�(n + j + �)
x j f (n+ j)(x) (8a)

= (−1)n x−(n+�−1) Dk xn+k+�−1 Dn f (x) (8b)

are nonnegative for all n, k � 0 and all x > 0.

When � = 1 this reduces to Theorem 1(a,b).
Since F [�]

n,0 = (−1)n f (n), condition (b) is manifestly a strengthening of complete mono-

tonicity. Furthermore, F [�]
n,k(x) is a polynomial in � of degree k, with leading coefficient

lim
�→∞

F [�]
n,k(x)

�k
= (−1)n f (n)(x). (9)

So condition (b) tends formally as � ↑ ∞ to the definition of complete monotonicity,
and Theorem 2 tends formally to the Bernstein–Hausdorff–Widder theorem. At the other
extreme, we have

lim
�→0

F [�]
0,1(x) = x f ′(x), (10a)

lim
�→0

F [�]
1,0(x) = − f ′(x) (10b)

so that the only functions that are generalized Stieltjes of all orders � > 0 are the nonnegative
constants.

Remarks.

1. The equivalence of the two formulae for F [�]
n,k in (8a)/(8b) is a straightforward computa-

tion. However, for � � 1 we do not know any simple rewriting of F [�]
n,k(x) analogous to the

third formula (3c), nor do we know (except possibly for integer values of �, see below)
any characterization of the generalized Stieltjes functions in terms of a proper subset of
the {F [�]

n,k} analogous to Theorem 1(c). Even when �=1, it is an interesting open question

to find other proper subsets of the {F [�]
n,k}, besides the one given in Theorem 1(c), whose

nonnegativity is equivalent to that of the whole set.
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2. It would also be interesting to show directly that conditions (b) get weaker as � grows. The

most obvious approach would be to write all the derivatives (��
/���)F [�]

n,k as nonnegative

linear combinations of {F [�]
n′,k′ }.

3. Some of Widder’s results [19, Theorems 8.2 and 8.3] may imply an alternative character-
ization of the generalized Stieltjes functions of order � that generalizes that of Theorem
1(c). When � is an integer, this characterization will apparently involve the condition that
F [�]

k−�,k(x) � 0 for all k � � and all x > 0, probably together with the nonnegativity of a

few other F [�]
n,k (e.g. F [�]

0,0). When � is noninteger, however, this characterization will be
nonlocal, involving convolution as well as differentiation.

Proof of Theorem 2. (a) �⇒ (b): Suppose that

f (x) = C +
∫

[0,∞)

d�(t)

(x + t)�
(11)

with C � 0, � � 0 and
∫

d�(t)/(1 + t)� < ∞. Then f is infinitely differentiable on (0, ∞),
with

f (n)(x) = C�n,0 + (−1)n �(n + �)

�(�)

∫
[0,∞)

d�(t)

(x + t)n+�
for all n � 0. (12)

It follows that

f [�]
n (x) ≡ (−1)n �(�)

�(n + �)
xn f (n)(x) =

∫
[0,1]

und�x (u), (13)

where d�x (u) is the image of the measure d�(t)/(x + t)� under the map u = (1 + t/x)−1

together with a point mass C at u = 0. In other words, for each x > 0 the sequence f[�](x) =
( f [�]

n (x))∞n=0 is a Hausdorff moment sequence; therefore, by (the easy half of) Hausdorff’s

theorem, the sequence f[�](x) is completely monotone, i.e. the functions

f [�]
n,k (x) ≡ (−1)k[�kf[�](x)]n = (−1)n xn

k∑
j=0

(
k

j

)
�(�)

�(n + j + �)
x j f (n+ j)(x) (14)

are nonnegative for all n, k � 0 and all x > 0. The same is therefore true of the functions

F [�]
n,k(x) ≡ �(n + k + �)

�(�)

f [�]
n,k (x)

xn
. (15)

This proves (a) �⇒ (b).
(b) �⇒ (a): Now we use the sufficiency half of Hausdorff’s theorem: it follows that, for

each x > 0, there exists a finite nonnegative measure �x on [0, 1] such that

(−1)n �(�)

�(n + �)
xn f (n)(x) =

∫
[0,1]

und�x (u) for all n � 0. (16)
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Changing variables back to t = x(u−1 − 1), we see that there exists a nonnegative measure
�x on [0, ∞) satisfying

∫
d�x (t)/(x + t)� < ∞, and a constant Cx � 0, such that

f (n)(x) = Cx�n,0 + (−1)n �(n + �)

�(�)

∫
[0,∞)

d�x (t)

(x + t)n+�
for all n � 0 (17)

[namely, d�x (t) = (x + t)�d	x (�x )(t) where 	x (u) = x(u−1 − 1), and Cx = �x ({0})]. We
now use the fact that (b) implies the complete monotonicity of f , hence the existence of an
analytic continuation of f to the right half-plane; in particular, the Taylor series for f or
any of its derivatives around the point x must have radius of convergence at least x . So let
us take (17) with n replaced by n + k, multiply it by 
k/k!, and sum over k � 0: for |
| < x
the series is absolutely convergent, and we obtain

f (n)(x + 
) = Cx�n,0 + (−1)n �(n + �)

�(�)

∫
[0,∞)

d�x (t)

(x + 
 + t)n+�
for all n � 0 (18)

whenever 
 ∈ (−x, x), or in other words

f (n)(y) = Cx�n,0 + (−1)n �(n + �)

�(�)

∫
[0,∞)

d�x (t)

(y + t)n+�
for all n � 0 (19)

whenever y ∈ (0, 2x), or equivalently

(−1)n �(�)

�(n + �)
yn f (n)(y) =

∫
[0,1]

und�′
x,y(u) for all n � 0, (20)

where d�′
x,y(u) is the image of the measure d�x (t)/(y + t)� under the map u = (1 + t/y)−1

together with a point mass Cx at u = 0. On the other hand, we already know from (16) that

(−1)n �(�)

�(n + �)
yn f (n)(y) =

∫
[0,1]

und�y(u) for all n � 0. (21)

Comparing (20)/(21), we see that the measures �′
x,y and �y have the same moments whenever

0 < y < 2x ; so by the uniqueness in the Hausdorff moment problem, we conclude that
�′

x,y = �y and hence Cx = Cy and �x =�y whenever 0 < y < 2x . In particular, Cx = Cy and
�x = �y whenever 0 < y < x and this implies, using the symmetry x ↔ y, that Cx = Cy

and �x = �y for all x, y > 0. This proves (b) �⇒ (a). �

Remark. Here is an alternate proof of (a) �⇒ (b): since [10, p. 299]

(−1)n x−(n+�−1) dk

dxk
xn+k+�−1 dn

dxn
1

(x + t)�
= �(n + k + �)

�(�)

tk

(x + t)n+k+�
(22)

representation (11) implies that

F [�]
n,k(x) = �(n + k + �)

�(�)

[
C�n,0 +

∫
[0,∞)

tk

(x + t)n+k+�
d�(t)

]
� 0. � (23)

Let us conclude by remarking that the Stieltjes functions also have a beautiful complex-
analysis characterization: a function f : (0, ∞) → R is Stieltjes if and only if it is the
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restriction to (0, ∞) of an analytic function on the cut plane C\(−∞, 0] satisfying f (z) � 0
for z > 0 and Im f (z) � 0 for Im z > 0. See e.g. [1, p. 127] or [3]. It would be interesting
to know whether the generalized Stieltjes functions of order � have an analogous complex-
analysis characterization for some (or all) � � 1.
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