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This problem deals with the thermo-visco-elastic interaction due to step input of temper-
ature on the stress free boundaries of a homogeneous visco-elastic isotropic spherical shell
in the context of generalized theories of thermo-elasticity. Using the Laplace transforma-
tion the fundamental equations have been expressed in the form of vector–matrix differ-
ential equation which is then solved by eigen value approach. The inverse of the
transformed solution is carried out by applying a method of Bellman et al. [R. Bellman,
R.E. Kolaba, J.A. Lockette, Numerical Inversion of the Laplace Transform, American Elsevier
Publishing Company, New York, 1966]. The stresses are computed numerically and pre-
sented graphically in a number of figures for copper material. A comparison of the results
for different theories (TEWED (GN-III), three-phase-lag method) is presented. When the
body is elastic and the outer radius of the shell tends to infinity, the corresponding results
agree with the result of existing literature.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The classical theory of thermo-elasticity involving infinite speed of propagation of thermal signals, contradicts the phys-
ical facts. During the last three decades, non-classical theories involving finite speed of heat transportation in elastic solids
have been developed to remove this paradox. In contrast to the conventional coupled thermo-elasticity theory [1], which
involves a parabolic-type heat transport equation, these generalized theories involving a hyperbolic-type heat transport
equation are supported by experiments exhibiting the actual occurrence of wave-type heat transport in solids, called second
sound effect. The extended thermo-elasticity theory (ETE) proposed by Lord and Shulman [1], incorporates a flux-rate term
into Fourier’s law of heat conduction, and formulates a generalized form that involves a hyperbolic-type heat transport equa-
tion admitting finite speed of thermal signals. Green and Lindsay [2] developed temperature-rate-dependent thermo-elas-
ticity (TRDTE) theory by introducing relaxation time factors that does not violate the classical Fourier law of heat
conduction and this theory also predicts a finite speed for heat propagation. The closed-form solutions for thermo-elastic
problems in generalized theory of thermo-elasticity have been obtained by [3]. Hetnarski and Ignaczak [4] studied the re-
sponse of semi-space to a short laser pulse in the context of generalized thermo-elasticity.

Most engineering materials such as metals possess a relatively high rate of thermal damping and thus are not suitable for
use in experiments concerning second sound propagation. But, given the state of recent advances in material science, it may
be possible in the foreseeable future to identify (or even manufacture for laboratory purposes) an idealized material for the
purpose of studying the propagation of thermal waves at finite speed. The relevant theoretical developments on the subject
are due to Green and Naghdi [5–7], and provide sufficient basic modifications in the constitutive equations that permit
. All rights reserved.
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treatment of a much wider class of heat flow problems, labelled as types I–III. The natures of these three types of constitutive
equations are such that when the respective theories are linearized, type-I is the same as the classical heat equation (based
on Fourier’s law), whereas the linearized versions of types-II and -III theories permit propagation of thermal waves at finite
speed. The entropy flux vector in types-II and -III ( i.e. thermo-elasticity without energy dissipation (TEWOED) and thermo-
elasticity with energy dissipation (TEWED)) models are determined in terms of the potential that also determines stresses.
When Fourier conductivity is dominant the temperature equation reduces to classical Fourier law of heat conduction and
when the effect of conductivity is negligible the equation has undamped thermal wave solutions without energy dissipation.
Kar and Kanoria [8] investigated thermo-elastic stress wave propagation in an unbounded body with a spherical hole follow-
ing the theories developed in [2,7]. Several investigations relating to generalized thermo-elasticity theories (TEWOED(GN-II)
and TEWED(GN-III)) have been presented by [8–16].

Tzou [17] have developed a new model called dual-phase-lag model for heat transport mechanism by considering micro-
structural effects into the delayed response in time in the macroscopic formulation by taking into account that increase of
the lattice temperature is delayed due to phonon–electron interactions on the macroscopic level. Tzou [17] introduced two-
phase-lags to both the heat flux vector and the temperature gradient. According to this model, classical Fourier’s law
q!¼ �Kr!T has been replaced by q!ðP; t þ sqÞ ¼ �Kr!TðP; t þ sTÞ, where the temperature gradient r!T at a point P of the
material at time t þ sT corresponds to the heat flux vector q! at the same point at time t þ sq. Here, K is the thermal conduc-
tivity of the material. The delay time sT is interpreted as that caused by the microstructural interactions and is called the
phase-lag of the temperature gradient. The other delay time sq is interpreted as the relaxation time due to the fast transient
effects of thermal inertia and is called the phase-lag of the heat flux. For sq ¼ sT ¼ 0, this is identical with classical Fourier’s
law. If sq ¼ s and sT ¼ 0, Tzou [18] refers to the model as single-phase-lag model.

The most recent and relevant development in themo-elasticity theory is three-phase-lag model [19]. Roychoudhuri estab-
lished this model by introducing three-phase-lags in the heat flux vector, the temperature gradient and the displacement
gradient. According to this model q!ðP; t þ sqÞ ¼ �½Kr

!
TðP; t þ sTÞ þ K�r!mðP; t þ smÞ�, where r!m ( _m ¼ T) is the thermal dis-

placement gradient and K� is the additional material constant. To study some practical relevant problems and have found
that in heat transfer problems involving very short time intervals and in the problems of very high heat fluxes, the hyperbolic
equation gives significantly different results than the parabolic equation. According to this phenomenon the lagging behavior
in the heat conduction in solid should not be ignored particularly when the elapsed times during a transient process are very
small, say about 10�7 second or the heat flux is very much high. Three-phase-lag model is very useful in the problems of
nuclear boiling, exothermic catalytic reactions, phonon–electron interactions, phonon-scattering etc., where the delay time
sq captures the thermal wave behavior (a small scale response in time), the phase-lag sT captures the effect of phonon–elec-
tron interactions (a microscopic response in space), the other delay time sm is effective since, in the three-phase-lag model,
the thermal displacement gradient is considered as a constitutive variable whereas in the conventional thermo-elasticity
theory temperature gradient is considered as a constitutive variable.

The study of viscoelastic behavior is of interest in several contexts. First, materials used in engineering applications may
exhibit viscoelastic behavior as an unintentional side effect. Second, the mathematics underlying visco-elasticity theory is of
interest within the applied mathematics community. Third, visco-elasticity is of interest in some branches of material sci-
ence, metallurgy and solid-state-physics. Fourth, the causal links between visco-elasticity and microstructure is exploited
in the use of viscoelastic tests as an inspection tools. In reality all materials deviate from Hooke’s law in various ways, for
example, by exhibiting viscous-like as well as elastic characteristics. Viscoelastic materials are those for which the relation-
ship between stress and strain depends on time. All materials exhibit some viscoelastic response. In common metals such as
steel, aluminum, copper etc. at room temperature and small strain, the behavior does not deviate much from linear elasticity.
Synthetic polymer, wood as well as metals at high temperature display significant viscoelastic effects.

The Kelvin–Voigt model is one of the macroscopic mechanical models often used to describe the viscoelastic behavior of
material. This model represents the delayed elastic response subjected to stress where the deformation is time-dependent.
Mishra [20] studied magneto–thermo–mechanical interaction in an aeolotropic viscoelastic cylinder subject to periodic load-
ing considering Kelvin–Voigt model of linear viscoelasticity. Several investigations relating to thermo-visco-elasticity theory
have been presented by [21–24,28].

The main object of the present paper is to study the thermo-visco-elastic stresses in an isotropic visco-elastic homoge-
neous spherical shell due to step input of temperatures on the stress free boundaries of the shell in the context of TEWED
(GN-III) [6] and three-phase-lag model [19] of generalized thermo-visco-elasticity. Using the Laplace transformation the fun-
damental equations have been expressed in the form of vector–matrix differential equation which is then solved by eigen
value approach. The inversion of Laplace transform is done following [25]. The results obtained theoretically have been com-
puted numerically and are presented graphically for Copper material. A complete and comprehensive analysis and compar-
ison of results of the above theories are presented.
2. Basic equations and constitutive relations

We consider a homogeneous isotropic thermo-visco-elastic spherical shell of inner radius a and outer radius b in an
undisturbed state and initially at uniform temperature T0. We introduce spherical polar co-ordinates (r; h;/) with the centre
of the cavity as the origin.
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In the present problem (due to spherical symmetry) the displacement and temperature are assumed to be functions of r
and time t only. The stress–strain–temperature relation in the present problem are (Kelvin–Voigt type [26])
sij ¼ k 1þ t0
@

@t

� �
Ddij þ 2l 1þ t0

@

@t

� �
eij � cTdij; ð1Þ
and generalized heat conduction equation in three-phase-lag model is
K�r2T þ s�mr2 _T þ KsTr2€T ¼ 1þ sq
@

@t
þ 1

2
s2

q
@2

@t2

 !
ðqCe

€T þ cT0
€DÞ; ð2Þ
where sij(i; j ¼ r; hÞ is the stress tensor, D is the dilatation, T is the temperature increase over the reference temperature T0,
c ¼ ð3kþ 2lÞat , k and l are the Lame’s constants, at is the coefficient of linear thermal expansion of the material, K is the
coefficient of thermal conductivity, K� is the additional material constant, q is the mass density, Ce is the specific heat of the
solid at constant strain, t0, sT and sq are the mechanical relaxation time, the phase-lag of temperature gradient and the
phase-lag of heat flux, respectively. Also s�m ¼ K þ smK�, where sm is the phase-lag of thermal displacement gradient and dij

is the Kronecker delta.
Eqs. (1) and (2), when sT ¼ sq ¼ sm ¼ 0; reduce to the equations of thermo-elasticity with energy dissipation (TEWED

(GN-III)) for the viscous case.
If u
�
¼ ½uðr; tÞ;0; 0� be the displacement vector, then
err ¼
@u
@r
; ehh ¼ e// ¼

u
r
: ð3Þ
The stress equation of motion in spherical polar co-ordinates is given by
@srr

@r
þ 2

r
srr � shhð Þ ¼ q

@2u
@t2 : ð4Þ
Introducing the following dimensionless quantities:
U ¼ ðkþ 2lÞu
acT0

; ðR; SÞ ¼ r
a
;
b
a

� �
; ðrR;rhÞ ¼

1
cT0
ðsrr; shhÞ; H ¼ T

T0
; g ¼ Gt

a
; G2 ¼ kþ 2l

q
;

Eqs. (1), (2) and (4) become
rR ¼ 1þ t0G
a

@

@g

� �
@U
@R
þ 2 k1 þ k2

@

@g

� �
U
R
�H; ð5Þ

rh ¼ 1þ t0G
a

@

@g

� �
U
R
þ k1 þ k2

@

@g

� �
@U
@R
þ U

R

� �
�H; ð6Þ

a0 þ a1
@

@g
þ a2

@2

@g2

" #
@2H

@R2 þ
2
R
@H
@R

 !
¼ 1þ b1

@

@g
þ 1

2
b2

1
@2

@g2

( )
@2H
@g2 þ �

@2

@g2

@U
@R
þ 2U

R

� �" #
; ð7Þ
and
1þ t0G
a

@

@g

� �
@2U

@R2 þ
2
R
@U
@R
� 2U

R2

" #
¼ @H
@R
þ @

2U
@g2 ; ð8Þ
where k1 ¼ k
kþ2l ; k2 ¼ k1t0G

a ; a0 ¼ K�

qCeG2 ; a1 ¼ s�m
aqCeG ; a2 ¼ sT K

a2qCe
; b1 ¼ sqG

a and � ¼ c2T0
qCeðkþ2lÞ are dimensionless constants. � being

the thermo-elastic coupling constant.
The boundary conditions are given by
rR ¼ 0 on R ¼ 1; S g P 0; ð9Þ
H ¼ v1HðgÞ; on R ¼ 1; g > 0; ð10Þ
¼ v2HðgÞ on R ¼ S; g > 0; ð11Þ
where v1 and v2 are dimensionless constants and HðgÞ is the Heaviside unit step function. The above conditions indicate that
for time g 6 0 there is no temperature (H ¼ 0). Thermal shocks are given on the boundaries of the shell (R ¼ 1; S) immedi-
ately after time g ¼ 0. Thermal stresses in the elastic medium due to the application of these thermal shocks are calculated.
We assume that the medium is at rest and undisturbed initially. The initial and regularity conditions can be written as
U ¼ @U
@g
¼ @

2U
@g2 ¼ 0 and H ¼ @H

@g
¼ @

2H
@g2 ¼ 0 at g ¼ 0; R P 1; ð12Þ

U ¼ H ¼ @U
@g
¼ @H
@g
¼ 0 when R!1: ð13Þ
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3. Method of solution

Let
UðR; pÞ;HðR; pÞ
� �

¼
Z 1

0
UðR;gÞ;HðR;gÞf ge�pgdg;
with ReðpÞ > 0 denote the Laplace transform of U and H, respectively.
On taking Laplace transform, Eqs. (7) and (8) reduce to
d2H

dR2 þ
2
R

dH
dR
¼ a3 Hþ � dU

dR
þ 2U

R

 !" #
; ð14Þ
and
d2U

dR2 þ
2
R

dU
dR
� 2U

R2 ¼ a4
dH
dR
þ p2U

� �
; ð15Þ
where a3 ¼
p2ð1þb1pþ1

2b2
1p2Þ

a0þa1pþa2p2 and a4 ¼ a
aþt0pG :

Differentiating Eq. (14) with respect to R and using Eq. (15) we get
d2

dR2

dH
dR

� �
þ 2

R
d

dR
dH
dR

� �
� 2

R2

dH
dR

� �
¼ a3 �p2a4U þ ð1þ �a4Þ

dH
dR

� �
: ð16Þ
Eqs. (15) and (16) can be written in the form
LðUÞ ¼ a4p2U þ a4
dH
dR

; ð17Þ
and
L
dH
dR

� �
¼ �a3a4p2U þ a3ð1þ �a4Þ

dH
dR

; ð18Þ
where � is the thermo-elastic coupling constant and
L � d2

dR2 þ
2
R

d
dR
� 2

R2 : ð19Þ
From Eqs. (17) and (18) we have the vector–matrix differential equation as follows:
LeV ¼ eA eV ; ð20Þ
where
eV ¼ U;
dH
dR

� �T

; eA ¼ C11 C12

C21 C22

� �
ð21Þ
and C11 ¼ a4p2; C12 ¼ a4;C21 ¼ �a3a4p2;C22 ¼ a3ð1þ �a4Þ:

4. Solution of the vector–matrix differential equation

Let
 eV ¼ eXðmÞxðR;mÞ; ð22Þ
where m is a scalar, eX is a vector independent of R and xðR;mÞ is a non-trivial solution of the scalar differential equation
Lx ¼ m2x: ð23Þ
Let x ¼ R�1=2x1: Therefore, from Eq. (23) we have
d2x1

dR2 þ
1
R

dx1

dR
� 9

4R2 þm2
� �

x1 ¼ 0: ð24Þ
The solution of the Eq. (23) is
x ¼ ½A1I3=2ðmRÞ þ A2K3=2ðmRÞ�=pR: ð25Þ
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Using Eqs. (22) and (23) into Eq. (20) we get
eAeX ¼ m2eX ; ð26Þ
where eXðmÞ is the eigenvector corresponding to the eigenvalue m2. The characteristic equation corresponding to eA can be
written as
m4 � ðC11 þ C22Þm2 þ ðC11C22 � C12c21Þ ¼ 0: ð27Þ
The roots of the characteristic Eq. (27) are of the form m2 ¼ m2
1 and m2 ¼ m2

2, where
m2
1 þm2

2 ¼ C11 þ C22; m2
1m2

2 ¼ C11C22 � C12C21: ð28Þ
The eigenvectors XðmjÞ, j ¼ 1;2 corresponding to eigenvalues m2
j ; j ¼ 1;2 can be calculated as
eXðmjÞ ¼
X1ðmjÞ
X2ðmjÞ

� �
¼

C12

�ðC11 �m2
j Þ

" #
; j ¼ 1;2: ð29Þ
Therefore, the Eq. (22) can be written as
eV ¼ eXðmjÞ½A1I3=2ðm1RÞ þ B1K3=2ðm1RÞ�=pRþ eXðmjÞ½A1I3=2ðm2RÞ þ B1K3=2ðm2RÞ�=pR; j ¼ 1;2: ð30Þ
From equations in (21) we can write
U ¼
X
i¼1;2

C12½AiI3=2ðmiRÞ þ BiK3=2ðmiRÞ�=
p

R; ð31Þ
and
dH
dR
¼ �

X
i¼1;2

ðC11 �m2
i Þ½AiI3=2ðmiRÞ þ BiK3=2ðmiRÞ�=

p
R; ð32Þ
where I3=2ðmiRÞ and K3=2ðmiRÞ are the modified Bessel functions of order 3/2 of first and second kind, respectively. Ai’s and Bi’s
i ¼ 1;2 are independent of R but depend on p and are to be determined from the boundary conditions.

Using the recurrence relations of modified Bessel functions [27] we obtain, from the Eq. (32)
H ¼
X
i¼1;2

ðC11 �m2
i Þ

mi
½AiI1=2ðmiRÞ þ BiK1=2ðmiRÞ�=

p
R; ð33Þ
since
1
R1=2 P3=2ðmRÞ ¼ � d

dR
P1=2ðmRÞ

mR1=2

� �
; ð34Þ
where P ¼ I;K: Taking Laplace transform of the Eqs. (5) and (6) we get
�rR ¼
X
i¼1;2

Ai a5I3=2ðmiRÞ �
a4p2

mi
RI1=2ðmiRÞ

� ��
R3=2 þ

X
i¼1;2

Bi a5K3=2ðmiRÞ �
a4p2

mi
RK1=2ðmiRÞ

� ��
R3=2; ð35Þ
and
�rH ¼
X
i¼1;2

Ai a6I3=2ðmiRÞ � a7mi þ
a4p2 �m2

i

mi

	 

RI1=2ðmiRÞ

� ��
R3=2

þ
X
i¼1;2

Bi a6K3=2ðmiRÞ � a7mi þ
a4p2 �m2

i

mi

	 

RK1=2ðmiRÞ

� ��
R3=2 ð36Þ
where a5 ¼ 2a4 k1 þ k2p� t0pG
a � 1

� �
; a6 ¼ ðk1 þ k2pÞð1� 2a4Þ þ 1

a4

n o
; a7 ¼ ðk1 þ k2pÞa4. Using the boundary conditions �rR ¼ 0

on R ¼ 1, R ¼ S and H ¼ v1
p on R ¼ 1, H ¼ v2

p on R ¼ S: and using the recurrence relations [27] from Eqs. (33) and (34) we
obtain
A1W11 þ A2W12 þ B1W13 þ B2W14 ¼ 0;
A1W21 þ A2W22 þ B1W23 þ B2W24 ¼ 0;

A1W31 þ A2W32 þ B1W33 þ B2W34 ¼
v1

p
; ð37Þ

A1W41 þ A2W42 þ B1W43 þ B2W44 ¼
v2

p
;
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where
W1i ¼ a5P3=2ðmjÞ �
a4p2

mj
P1=2ðmjÞ;

W2i ¼ a5P3=2ðmjSÞ �
a4p2

mj
P1=2ðmjSÞ;

W3i ¼
a4p2 �m2

j

mj
P1=2ðmjÞ;

W4i ¼
a4p2 �m2

j

mjS
1=2 P1=2ðmjSÞ; ð38Þ
where P ¼ I for i ¼ j ¼ 1;2; P ¼ K for i ¼ 3, j ¼ 1 and i ¼ 4, j ¼ 2:
From (37) the values of A1, A2, B1 and B2 are given as
A1

A2

B1

B2

0BBB@
1CCCA ¼

W11 W12 W13 W14

W21 W22 W23 W24

W31 W32 W33 W34

W41 W42 W43 W44

0BBB@
1CCCA
�1 0

0
v1
p
v2
p

0BBBB@
1CCCCA: ð39Þ
Eq. (27) can be written as
m4 � ða3 þ a4p2 þ �a3a4Þm2 þ a3a4p2 ¼ 0: ð40Þ
Therefore, the positive roots of Eq. (40) are
m1;m2 ¼
1
2

ffiffiffi
a
p
�

ffiffiffi
b

p� �
; ð41Þ
where
a;b ¼
ffiffiffi
a
p

3 �
ffiffiffi
a
p

4p
� �2 þ �a3a4: ð42Þ
Therefore, m1 and m2 are real and positive quantities.

5. Special case (when the body is non-viscous and infinite)

For non-viscous material t0 ¼ 0, i.e., k2 ¼ 0 and a4 ¼ 0. Therefore, a5 ¼ � 4l
kþ2l, a6 ¼ 2l

kþ2l, and a7 ¼ k
kþ2l. Hence, Eqs. (35) and

(36) reduce to
�rR ¼
X
i¼1;2

Ai �
4l

kþ 2l
I3=2ðmiRÞ �

p2

mi
RI1=2ðmiRÞ

� ��
R3=2 þ

X
i¼1;2

Bi �
4l

kþ 2l
K3=2ðmiRÞ �

p2

mi
RK1=2ðmiRÞ

� ��
R3=2; ð43Þ
and
�rH ¼
X
i¼1;2

Ai
2l

kþ 2l
I3=2ðmiRÞ �

km2
i þ ðkþ 2lÞðp2 �m2

i Þ
ðkþ 2lÞmi

RI1=2ðmiRÞ
� ��

R3=2

þ
X
i¼1;2

Bi
2l

kþ 2l
K3=2ðmiRÞ �

km2
i þ ðkþ 2lÞðp2 �m2

i Þ
ðkþ 2lÞmi

RK1=2ðmiRÞ
� ��

R3=2; ð44Þ
Moreover, for large value of b i.e. for large value of S, K0ðmiSÞ and K1ðmiSÞ tend to zero. Thus for large value of b the asymp-
totic expression of �rRðIÞ and �rhðIÞ are given as
�rRðIÞ ¼
v2

p

ffiffiffi
S
p

R2

�
e�m2ðS�RÞ 4l

kþ2l 1� 1
m1S

� �
þ p2

m1
S

h i
� 4l

kþ2l 1� 1
m2R

� �
þ p2

m2
R

h i
� e�m1ðS�RÞ 4l

kþ2l 1� 1
m2S

� �
þ p2

m2
S

h i
� 4l

kþ2l 1� 1
m1R

� �
þ p2

m1
R

h i
p2�m2

1
m1

4l
kþ2l 1� 1

m2S

� �
þ p2

m2
S

h i
� p2�m2

2
m2

4l
kþ2l 1� 1

m1S

� �
þ p2

m1
S

h i ;

ð45Þ
! 0 as S!1
and
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�rhðIÞ

¼ v2

p

ffiffiffi
S
p

R2

e�m1 ðS�RÞ 2l
kþ2l 1� 1

m1 R

� �
�

h
km2

1þðkþ2lÞðp2�m2
1 Þ

ðkþ2lÞm1
R
i
� 4l

kþ2l 1� 1
m2S

� �
þ p2

m2
S

h i
� e�m2 ðS�RÞ 2l

kþ2l 1� 1
m2 R

� �
�

h
km2

2þðkþ2lÞðp2�m2
2 Þ

ðkþ2lÞm2
R
i
� 4l

kþ2l 1� 1
m1 S

� �
þ p2

m1
S

h i
p2�m2

1
m1

4l
kþ2l 1� 1

m2S

� �
þ p2

m2
S

h i
� p2�m2

2
m2

4l
kþ2l 1� 1

m1 S

� �
þ p2

m1
S

h i ;

ð46Þ
! 0 as S!1:
Therefore, as b!1
�rR ¼
X
i¼1;2

Bi �
4l

kþ 2l
K3=2ðmiRÞ �

p2

mi
RK1=2ðmiRÞ

� ��
R3=2; ð47Þ

�rh ¼
P

i¼1;2
Bi

2l
kþ2l K3=2ðmiRÞ �

km2
i
þðkþ2lÞðp2�m2

i
Þ

ðkþ2lÞmi
RK1=2ðmiRÞ

h i.
R3=2; ð48Þ
where Bi’s (i ¼ 1;2) are given as
B1 ¼ �
v1

p

�
m1 4lm2K3=2ðm2Þ þ ðkþ 2lÞp2K1=2ðm2Þ
� �

4l ðp2 �m2
2Þm1K3=2ðm1ÞK1=2ðm2Þ�

�
p2 �m2

1Þm2K1=2ðm1ÞK3=2ðm2Þ
� �

þ ðkþ 2lÞp2ðm2
1 �m2

2ÞK1=2ðm1ÞK1=2ðm2Þ
;

ð49Þ

and
B2 ¼
v1

p

�
m2 4lm1K3=2ðm1Þ þ ðkþ 2lÞp2K1=2ðm1Þ
� �

4l ðp2 �m2
2Þm1K3=2ðm1ÞK1=2ðm2Þ�

�
ðp2 �m2

1Þm2K1=2ðm1ÞK3=2ðm2Þ
�
þ ðkþ 2lÞp2ðm2

1 �m2
2ÞK1=2ðm1ÞK1=2ðm2Þ

:

ð50Þ
The values of m1 and m2 are the same for this problem and those in [8] though the dimensionless forms are different. There-
fore, the above results are equivalent to those in [8].

6. Numerical results and discussions

To get the solutions for displacement, temperature distribution and stresses in the space-time domain we have to apply
the Laplace inversion formula to the Eqs. (31), (33), (35) and (36), respectively, which have been done numerically using the
method of [25] for fixed value of the space variable and for g ¼ gi, i ¼ 1ð1Þ7, where gi’s are computed from roots of the
shifted Legendre polynomial of 7� (see Appendix) with S ¼ 4. The computations for the state variables are carried out for dif-
ferent values of R(R P 1Þ and values of gi = 0.0257750,0.138382,0.352509,0.693147,1.21376,2.04612,3.67119. The materi-
als chosen for numerical evaluation are copper material. The physical data for copper are taken as [29].
q ¼ 8:96 g=cm3; � ¼ 0:0186; T0 ¼ 20 	C;

k ¼ 1:387� 1012 dy=cm2; l ¼ 0:448� 1012 dy=cm2;

Ce ¼ 0:23 cal=g 	C; K ¼ 0:92 cal=cm 	C s;
and the hypothetical values of relaxation time parameters are taken as
t0 ¼ 1:0� 10�7 s; sq ¼ 2:0� 10�7 s; sT ¼ 1:5� 10�7 s; sm ¼ 1:0� 10�7 s:
In the case of G–N theory K� is an additional material constant depending on the material. For copper material K� is taken as
K� ¼ Ceðkþ2lÞ

4 [10].
The results of the numerical evaluation of the thermo-elastic stress variations, temperature distribution and displace-

ment are illustrated in Figs. 1–6. The variation of the stresses, temperature and displacement are observed when the step
input of temperatures v1 ¼ 4 and v2 ¼ 3 are applied on the inner boundary R ¼ 1 and outer boundary S ¼ 4 of the shell,
respectively in three-phase-lag model and TEWED (GN-III) model. Almost oscillatory natures are observed for the profiles
of the stress components (rR and rh), temperature distribution and displacement. It is also observed that the qualitative
behavior are almost same for both the models (three-phase-lag model and TEWED (GN-III) model). Fig. 1a and 1b show
the variation of the thermo-elastic radial stress rR against radial distance R for time g ¼ 1:21 and 0.026, respectively. In
Fig. 1a, the amplitude of oscillation for thermo-elastic radial stress rR is more pronounced in the case of three-phase-lag
model in comparison with TEWED (GN-III) model. It is also observed that due to the presence of viscosity term in the
three-phase-lag model the amplitude of the thermo-elastic radial stress rR has appreciably decreased for viscous case in
comparison with non-viscous case. Similar behavior is also observed for thermo-elastic radial stress rR in the case of TEWED
(GN-III) model.
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In Fig. 1b, when time is small (g ¼ :026) i.e. at early stage of wave propagation both the models give close results, whereas
for comparatively large time (Fig. 1a) the waves propagate with different speeds. It is clear from figures that the numerical
results for the radial stress are found to satisfy the theoretical boundary conditions.

Figs. 2a and 2b are plotted for thermo-elastic hoop stress rh against radial distance R for time g ¼ 1:21 and .026, respec-
tively for three-phase-lag model and TEWED (GN-III) model. It is clear from Fig. 2a that the maximum stress occurs at the
inner boundary. It is also clear that oscillatory nature is more prominent in the case of three-phase-lag model in comparison
with TEWED (GN-III) model when viscosity term is encountered, whereas for non-viscous case both the models give close
results for time g ¼ 1:21. It is observed from Fig. 2b that at the early stage (g ¼ :026) the maximum stress occurs near
the boundaries and it almost disappears in the interior of the shell for both the models (both viscous and non-viscous case),
whereas for comparatively large time (Fig. 2a) the wave propagates with different speeds (viscous case).
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Figs. 3 and 4 depict the variations of rR and rh versus time g for R ¼ 1:4, respectively. It is seen that the stress waves prop-
agate with time and magnitudes of both the stresses in three-phase-lag model are large in comparison with TEWED (GN-III)
model for both viscous and non-viscous case.

Fig. 5 shows the graphs of temperature distribution (H) against the radial distance R for fixed time g ¼ 1:21. Here, it is
observed that the magnitude of temperature distribution in three-phase-lag model is slightly greater than that correspond-
ing to the TEWED (GN-III) model for both viscous and non-viscous case. Also the magnitude of temperature distribution (H)
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is large for non-viscous case in comparison with viscous case. It is also seen that the numerical results satisfy the boundary
conditions (v1 ¼ 4 on R ¼ 1 and v2 ¼ 3 on S ¼ 4), which are in agreement with our theoretical results.

Fig. 6 is plotted for radial variation of the displacement for fixed time g ¼ 1:21. Here, we observe that the amplitudes of
oscillation is greater for the three-phase-lag model in comparison with the TEWED (GN-III) model for both the viscous and
non-viscous case. It is also observed that in the viscous case the amplitude of thermo-elastic displacement is appreciably
decreased for both the models in comparison with non-viscous case. For all above numerical calculations FORTRAN-77 pro-
gramming Language has been used.
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Appendix

Let the Laplace transform of riðR;gÞ be given by
�rjðR; pÞ ¼
Z 1

0
e�pgrjðR;gÞdg: ðA:1Þ
We assume that rjðR;gÞ is sufficiently smooth to permit the use of the approximate method we apply.
Putting x ¼ e�g in equation (A.1) we obtain
�rjðR; pÞ ¼
Z 1

0
xp�1gjðR; xÞdx; ðA:2Þ
where
gjðR; xÞ ¼ rjðR;�logxÞ: ðA:3Þ
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Applying the Gaussian quadrature rule to the equation (A.2) we obtain the approximate relation
Xn

i¼1

Wix
p�1
i gjðR; xiÞ ¼ �rjðR; pÞ; ðA:4Þ
where xi’s(i ¼ 1;2; . . . ;n) are the roots of the shifted Legendre polynomial and Wi’s(i ¼ 1;2; . . . ;n) are the corresponding
weights [Bellman] and p ¼ 1ð1Þn.

For p ¼ 1ð1ÞnÞ, the equations (A.4) can be written as
W1gjðR; x1Þ þW2gjðR; x2Þ þ 
 
 
 þWngjðR; xnÞ ¼ �rjðR;1Þ
W1x1gjðR; x1Þ þW2x2gjðR; x2Þ þ 
 
 
 þWnxngjðR; xnÞ ¼ �rjðR;2Þ

..

.

W1xn�1
1 gjðR; x1Þ þW2xn�1

2 gjðR; x2Þ þ 
 
 
 þWnxn�1
n gjðR; xnÞ ¼ �rjðR; nÞ
Therefore,
gjðR; x1Þ
gjðR; x2Þ

::

::

::

gjðR; xnÞ

0BBBBBBBB@

1CCCCCCCCA
¼

W1 W2 
 
 
 Wn

W1x1 W2x2 
 
 
 Wnxn


 
 
 
 
 


 
 
 
 
 


 
 
 
 
 


W1xn�1
1 W2xn�1

2 
 
 
 Wnxn�1
n

0BBBBBBBB@

1CCCCCCCCA

�1 �rjðR;1Þ
�rjðR;2Þ







�rjðR;nÞ

0BBBBBBBB@

1CCCCCCCCA
: ðA:5Þ
(As the matrix is the product of diag{Wi} multiplied by Vander Monde matrix, it can be shown that the matrix is non-
singular.)

Hence gjðR; x1Þ, gjðR; x2Þ, . . ., gjðR; xnÞ are known.
For n ¼ 7 we have
Roots of the shifted
 Corresponding Weights
Legendre Polynomial

2.5446043828620886E�2
 6.4742483084434816E�2

1.2923440720030282E�1
 1.3985269574463828E�1

2.9707742431130145E�1
 1.9091502525255938E�1

5.0000000000000000E�1
 2.0897959183673466E�1

7.0292257568869853E�1
 1.9091502525255938E�1

8.7076559279969706E�1
 1.3985269574463828E�1

9.7455395617137909E�1
 6.4742483084434816E�2
From equations in (A.5) we can calculate the discrete values of gjðR; xiÞ i.e., rjðR;giÞ; (i ¼ 1;2; . . . ;7) and finally using inter-
polation we obtain the stress components riðR;gÞ; (i ¼ R; h).
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