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We prove the following result: Let A be a symmetric matrix, f be a gradient (or certain sub-
gradient) of a convex function, and {y;} be a sequence defined by y; ,=f(4y;), y, arbitrary.
Then the only possible periods of {y;} are 1 or 2.

Introduction

The paper is motivated by the study of discrete systems with a transition mapping
g: O— Q independent on time. Such systems appear in various applications, for a
survey see [2]. We prove the following result:

Theorem 1. Let u: R™— R be a convex differentiable function and A be a (real)
symmetric matrix of size m. Let g:R™—R™ be a mapping defined by g(x)=
Vu(Ax), where Vu is the gradient of u. If the sequence y,g(¥), ..., gk, ... is perio-
dical for some ye R"™, then its period is either 1 or 2.

The proof of Theorem 1 is not too complicated. We prove a slightly more general
statement (Theorem 2), where the gradient mapping Vu is replaced by the acyclic
subgradient f defined below. Theorem 2 covers a lot of previous results, where the
mapping f were of special types like threshold or majority functions. This result is
in some sense best possible with respect to proof techniques used in [3] or [4], and
provides a geometrical insight on this area.

Further, we show some applications to periodical behaviour of discrete systems.
The final section deals with a generalization of cyclically monotone mappings.
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We briefly recall some notions of convex analysis [14]. A vector £ is a subgradient
of a convex function « in x if

u()—ux)=&é(y—x) for every y.
Each subgradient ¢ determines a supporting hyperplane H(x, £) to the graph of u,
- HxO={(n2:z~ux)=¢(—x), yeR™, zeR}.

We say that f: R™— R™ is a subgradient function of a convex function u, if f(x)
is a subgradient of « in x for every x.

Definition. A subgradient function f is acyclic if the following condition holds for
every ne N and every X|,X, ..., XpXp1 =X €R™: If (x;,,u(x;,,)) lies on the
hyperplane H(x;, f(x;)) for all i=1,...,n, then H(x,, f(x}))=---=H(x,, f(x,)). It
means that all the supporting hyperplanes coincide.

Let g: Q— Q be a mapping and y e Q. The trajectory Traj(y, g) is the sequence

Traj(y,8)=(, g0, ---,8“0), ...)

where g¥*1(»)=g(g*(»)). An integer T>0 is the period of Traj(y,g) if g'*T(y)=
g'(y) for some ¢ and T is minimal with this property. Clearly, if Q is a finite set,
then period 7 must exist, and it need not exist for Q infinite.

Theorem 2. Let u be a convex function on R™ and A be a symmetric matrix of size
m. Let f be an acyclic subgradient of u. Let T be a period of Traj(y, fA) for some

YER™. Then T<2. Moreover, T=1 provided the matrix A is positive semidefinite.

Proof. Consider y,, ..., yr€ R™ such that fA(y,)=y,, forevery t=1,...,T. All in-
dices are taken mod 7. Let the expression E be given by

T
(1) E=t§1 Ay 1—(AyDyi-1)-

Then by the symmetry of A

T
E= Zl O Ay 1= Yi-1Ay,) =0.
t=

Substitute x,= Ay, and y,,; =f(x,) into (1). Then

T
E= t;} (e fOe) — x, f(x,-2))

T
= tgl SO ) —x,-2)
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T
= tgl (u(x) —u(x,_,))=0.

Hence, as E=0, u(x,)—u(x,_)=f(x,)(x,—x,_,) for t=1,..., T. By the definition
of acyclic subgradient we have f(x;) =f(x;)=--- and f(x,) = f(x;)=-:-. Thus, T'<2.
Let A be positive semidefinite. We have, using 7<2,

0= (u(xz) —ulx))) + (u(x;) —u(xy))
=f01)0e2 — x1) + S 002)(x) — x3)
=0A0 - )+ 1A —2)
== 1)AQ— )

Then y,=y, as A is positive semidefinite. []

Theorem 1 immediately follows from Theorem 2 as every gradient « is an acyclic
subgradient.

In this section we show an application to discrete systems. We derive two previous
results. The applications are derived in detail in [9] and [11].

Goles and Olives [4] considered models with f: R™—=R™, f=f; X --- X f,,, Where
each f; : R— R was a nondecreasing function. As each such f; is an acyclic subgra-
dient of some convex u;:R—R, i=1,...,m, the function f is an acyclic subgra-
dient of u:R™— R, where u(x,...,X,,) =u;(x;) + -+« + tU, (x,,)-

Poljak and Sira [8] considered models with f=g X --- X g, where g: R’ > R” was
a majority function. They defined the majority function g by g(xy,...,x,)=
015 -++5Yp), Where

yo=1 if x;>x, for r<s and x;=x, for r>s
ys=0 otherwise, s=1,..., p.

Such majority function is an acyclic subgradient of the convex function
u(xy, ..., Xxp) =max(x, ...,x,). Hence, the function f is also an acyclic subgradient
as it is the product of acyclic subgradients.

The purpose of this section is to support our statement in the introduction that
Theorem 2 is ‘best possible’ for Euclidean spaces. In [9] we axiomized the proof
techniques of a series of papers, e.g. [3], [4] and [5]. We introduced the notions of
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a cyclically monotone mapping and a symmetric mapping with respect to a binary
operation *, and proved Theorem 3. In this paper we introduce the notion of a
potential which provides a dual characterization of c.m. mappings.

Definition. Let S and Q be finite or infinite sets, and * be a real-valued mapping
on Sx Q. We will write x*y for xe S and ye Q. A mapping f:S— Q is cyclically
monotone (abbreviated as c.m.) if

n n
VnVxy,...,Xx,€S: _Zl X * f(x;)= .Zl X% f (X4 1)-
i= i=

The subscripts are taken mod n. We say that a c.m. mapping f:S— Q is strongly
c.m. if the condition

_; xi* f(x;) = ';1 xi*f(x;i 1) = )= =f(x,)

holds for every ne N.
Let us say that a mapping a: Q— S is symmetric if a(x) *y=a(y) *x for every
x,yeQ.

Theorem 3 [9]. Let S and Q be two sets and * be a real-valued function on SX Q.
Let f:S— Q be a strongly c.m. mapping, and a: Q— S be a symmetric mapping. If
Tra)(y, fa) has a period T for some ye Q, then T<2. []

Theorem 2 is a special case of Theorem 3 if the operation * is the scalar product,
which follows from Propositions 4 and 5 below.
We say that a mapping #:S— R is a potential of a mapping f: S—Q if

Vx,yeS: u@)-y)zx*f(y)-y=*f().

Proposition 4. A mapping f:S— Q is c.m. if and only if there exists a potential u
of f.

If S=Q=R"™ and = is the scalar product, then Proposition 4 says that f is c.m.
iff it is a subgradient function of some convex function #. This was proved by
Rockafeller in [13]. In fact, Proposition 4 may be proved in the same way. Namely,
for a given c.m. mapping f, a potential # may be defined as

k
u(x)=sup (_20 G 2 05) = x; *f(xi))),
where x; is a fixed element and supremum is taken over all finite sequences
Xgs X15 -+ s Xk 11 =X9 € S. Another proof of Proposition 4, which uses duality in the
assignment problem and compactness principle, will appear in [12]. The differences
between our and Rockafellar’s approach are discussed in detail in [6].
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Let us turn to the symmetric mappings. Clearly, if A4 is a symmetric matrix of size
m, then the linear mapping a(x) = Ax is symmetric. On the other hand the following
holds.

Proposition 5. Let Q be a subset of R™ and a: Q— Q be symmetric. Then a is
linear.

Proof. Let xj, ..., Xx; be a base in Q (i.e. the maximum number of linearly indepen-
dent vectors in Q), and let x e Q. then there exist unique coefficients c,,...,c,€R
so that a(x)= E};l ¢;jx;. We have x;a(x) =xa(x;) for i=1, ..., k by the symmetry of
a. This is equivalent to
ko
) Y ci(xxj)=xa(x;) fori=1,...,k.
j=1
We can look at (2) as at a system of k linear equations for variables ¢, ...,¢;. As
the matrix Z =(z;), z;;=X;X;, is regular the system has a unique solution determin-
ed by values a(x;), ..., a(x;). It follows immediately that a is a linear mapping. [

As there is an increasing amount of literature related to the topic of the paper,
and some later papers may appear sooner, we would like to survey briefly our con-
tributions.

The area was first studied by Goles and Olivos who were motivated by cellular
automata and obtained a lot of results for threshold and multithreshold functions.
A similar statement but for a different type of functions, was independently obtain-
ed in [8]. The immediate predecessor of this paper was [9] quoted here on several
places. In the meantime after finishing the first and before writing this revised ver-
sion, we considered generalizations in some further directions: The limit behaviour
for systems with an infinite number of states in [7], the number of steps before a
system falls into a period in [10], applications to social systems in [11], and the con-
nection to convexity in [6].

The role of convexity in discrete systems stimulated also research of other
authors, e.g. [1].
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