
Discrete Applied Mathematics 13 (1986) 27-32 
North-Holland 

27 

ON A N  A P P L I C A T I O N  OF C O N V E X I T Y  TO D I S C R E T E  

SYSTEMS 

Svatopluk POLJAK 
Technical University, Dept. o f  System Engineering, Thdkurova 7, 166 29 Praha 6, Czecho- 
slovakia 

Daniel TURZIK 
Institute o f  Chemical Technology, Dept. o f  Mathematics, Suchbdtarova 5, 166 28 Praha 6, 
Czechoslovakia 

Received 9 September 1983 
Revised 19 July 1985 

We prove the following result: Let A be a symmetric matrix, f be a gradient (or certain sub- 
gradient) of a convex function, and {Yi} be a sequence defined by Yi+l=f(AYi), Yo arbitrary. 
Then the only possible periods of {Yi} are 1 or 2. 

Introduction 

The paper is motivated by the study of discrete systems with a transition mapping 
g: Q-~ Q independent on time. Such systems appear in various applications, for a 
survey see [2]. We prove the following result: 

Theorem 1. Let  u : R m ~ R  be a convex differentiable function and A be a (real) 
symmetric matrix o f  size m. Let  g : R  m ~ R  m be a mapping defined by g(x)= 
Vu(Ax), where Vu is the gradient o f  u. I f  the sequence y,g(y), . . . ,gkO'), ... is perio- 
dical f o r  some y ~ R m, then its period is either 1 or 2. 

The proof of Theorem 1 is not too complicated. We prove a slightly more general 
statement (Theorem 2), where the gradient mapping 17u is replaced by the acyclic 
subgradient f defined below. Theorem 2 covers a lot of previous results, where the 
mapping f were of special types like threshold or majority functions. This result is 
in some sense best possible with respect to proof techniques used in [3] or [4], and 
provides a geometrical insight on this are.a. 

Further, we show some applications to periodical behaviour of discrete systems. 
The final section deals with a generalization of cyclically monotone mappings. 
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. 

We briefly recall some notions of  convex analysis [14]. A vector ~ is a subgradient 
of  a convex function u in x if 

u(y) -u(x)>_~(y-x)  for eve ryy .  

Each subgradient ~ determines a supporting hyperplane H(x, ~) to the graph of  u, 

n ( x ,  ~) = {(y,z): z - u ( x ) = ~ ( y - x ) ,  y E R  m, z E R } .  

We say that f :  R m ~ R  m is a subgradient function of  a convex function u, if f (x )  
is a subgradient of  u in x for every x. 

Definition. A subgradient function f is acyclic if the following condition holds for 
every n e N  and e v e r y  X l , X 2 , . . . , X n , X n + l = X l E R m :  If  (Xi+l, ld(Xi+l)) lies on the 
hyperplane H(xi, f(xi) ) for all i =  1 , . . . , n ,  then H(xl , f (x l ) )= . . . .  H(xn,f(x,,)). It 
means that  all the supporting hyperplanes coincide. 

Let g : Q ~  Q be a mapping and y E Q. The trajectory Traj(y,g)  is the sequence 

Traj(y,  g )=  (y, g(y), . . . ,  gkO'), ...) 

where gk+ l (y )=g(gk(y) ) .  An integer T > 0  is the period of  Traj(y,g)  if gt+ r(y)= 
g t (y )  for some t and T is minimal with this property. Clearly, if Q is a finite set, 
then period T must  exist, and it need not exist for Q infinite. 

Theorem 2. Let u be a convex function on R m and A be a symmetric matrix o f  size 
m. Let f be an acyclic subgradient o f  u. Let T be a period o f  Traj(y, fA)  for  some 
y ~ R m. Then T< 2. Moreover, T= I provided the matrix A is positive semidefinite. 

Proof. Consider Yl , - - - ,Yr  ~Rm such thatfAO, t)=Yt+l for every t =  1, . . . ,  T. All in- 
dices are taken mod T. Let the expression E be given by 

T 

(1) E = ~ ( ( a y  t)yt + 1 -- (AYt)Yt  - 1 )" 
t = l  

Then by the symmetry of  A 

T 

t = l  

Substitute x t = AYt 

T 

t = l  

T 

(Y tAYt  + 1 - Y t -  IAYt  ) = O. 

and Yt+l =f(xt) into (1). Then 

( x t f  (xt ) - x t f  ( x t -  2) ) 

t=l 
= ~ f ( x t ) ( X t - - X t - 2 )  
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T 

>- ( u ( x , ) - u ( x , _ 2 ) ) = o .  
t=l 

Hence, as E = 0 ,  g(xt)--U(Xt_2)=f(xt)(Xt--Xt_2) for t =  1,. . . ,  T. By the definition 
of acyclic subgradient we have f ( x l )  =f(x3) . . . .  and f ( x 2 )  = f ( x 4 )  . . . .  . Thus, T_< 2. 

Let A be positive semidefinite. We have, using T_2 ,  

0 = ( u ( x 2 ) -  + - u(x2))  

----f(x 1 )(X 2 -- X 1) ÷ f ( x 2 ) ( X I  -- X2) 

= Y2A (Y2 - Y l )  +Yl  A (Yl -Y2)  

=(Y 2-Y l )A (Y 2 -Y l ) .  

Then Y2 =Yl as A is positive semidefinite. [] 

Theorem 1 immediately follows from Theorem 2 as every gradient u is an acyclic 
subgradient. 

. 

In this section we show an application to discrete systems. We derive two previous 
results. The applications are derived in detail in [9] and [11]. 

Goles and Olives [4] considered models with f : R S - * R  m, f =fl  x ... X fm,  where 
each f / :R--* R was a nondecreasing function. As each such f / i s  an acyclic subgra- 
dientt of some convex ui :R-~R,  i--- 1, . . . ,  m, the function f is an acyclic subgra- 
dient of u : Rm-~ R,  where U(Xl, . . . ,Xm)=Ul(Xl)+ "'" + Um(Xm). 

Poljak and Stlra [8] considered models with f =  g x-- .  x g, where g : R  p--*R p was 
a majority function. They defined the majority function g by g(xl , . . . ,Xp)= 

(Yl, ---,Yp), where 

ys= 1 if xs>xr for r < s  and xs>-Xr for r > s  
Ys= 0 otherwise, s =  1, . . . ,  p. 

Such majority function is an acyclic subgradient of the convex function 
u(xl, ... ,xp)= max(xl, ... ,Xp). Hence, the function f is also an acyclic subgradient 
as it is the product of acyclic subgradients. 

. 

The purpose of this section is to support our statement in the introduction that 
Theorem 2 is 'best possible' for Euclidean spaces. In [9] we axiomized the proof 
techniques of a series of papers, e.g. [3], [4] and [5]. We introduced the notions of 
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a cyclically monotone mapping and a symmetric mapping with respect to a binary 

operation , ,  and proved Theorem 3. In this paper we introduce the notion of a 
potential which provides a dual characterization of c.m. mappings. 

Definition. Let S and Q be finite or infinite sets, and • be a real-valued mapping 
on S x Q. We will write x , y  for x e  S and y e Q. A mapping f :  S ~ Q is cyclically 

monotone (abbreviated as c.m.) if 

Vn Vx], ... ,xn ~ S: 
n n 

xi* f (xi)  > ~., xi* f(xi+l). 
i=l  i=1 

The subscripts are taken mod n. We say that a c.m. mapping f :  S ~  Q is strongly 
c.m. if the condition 

n n 

xi* f(xi)= xi* f(xi+,) 
i=l  i=l  

= f (Xl )=. . .=f (xn)  

holds for every n e N. 
Let us say that a mapping a : Q ~ S  is symmetric if a ( x ) , y = a ( y ) , x  for every 

x , y ~ Q .  

Theorem 3 [9]. Let S and Q be two se ts  and • be a real-valued function on S x Q. 
Let f :  S ~  Q be a strongly c.m. mapping, and a: Q ~  S be a symmetric mapping. I f  
Traj(y, fa) has a period T for  some y e Q, then T< 2. [] 

Theorem 2 is a special case of Theorem 3 if the operation • is the scalar product, 
which follows from Propositions 4 and 5 below. 

We say that a mapping u" S ~ R  is a potential of a mapping f :  S ~ Q  if 

Vx, y ~ S :  u(x)-y(y)>_x* f ( y ) - y *  f(y) .  

Proposition 4. A mapping f :  S ~ Q is c.m. i f  and only i f  there exists a potential u 

off .  

If S= Q = R  m and * is the scalar product, then Proposition 4 says that f is c.m. 
iff it is a subgradient function of some convex function u. This was proved by 
Rockafeller in [13]. In fact, Proposition 4 may be proved in the same way. Namely, 
for a given c.m. mapping f ,  a potential u may be defined as 

u(x)=suP(i=~ 0 (Xi+l *f(xi)--xi*f(xi))) ,  

where x0 is a fixed element and supremum is taken over all finite sequences 
Xo, X~, ... ,xk+~ =x0 e S. Another proof of  Proposition 4, which uses duality in the 
assignment problem and compactness principle, will appear in [12]. The differences 
between our and Rockafellar's approach are discussed in detail in [6]. 
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Let us turn to the symmetric mappings. Clearly, if A is a symmetric matrix of size 
m, then the linear mapping a(x) = A x  is symmetric. On the other hand the following 

holds. 

Proposition 5. Let  Q be a subset o f  R m and a: Q ~  Q be symmetric.  Then a is 
linear. 

Proof. Let x l, ... ,Xk be a base in Q (i.e. the maximum number of linearly indepen- 
dent vectors in Q), and let x e  Q. then there exist unique coefficients cl, ..., Ck ~ R 
so that a(x)= ~k=l CjXj. We have x ia(x)=xa(x i )  for i=  1, . . . , k  by the symmetry of  
a. This is equivalent to 

k 

(2) ~ cj(xixj) =xa(xi) for i= 1, . . . ,  k. 
j = l  

We can look at (2) as at a system of k linear equations for variables c h . . . ,  Ck. As 

the matrix Z =  (zij), z i j=xixj ,  is regular the system has a unique solution determin- 
ed by values a(xl ) , . . . ,  a(x~). It follows immediately that a is a linear mapping. [] 

As there is an increasing amount of literature related to the topic of the paper, 
and some later papers may appear sooner, we would like to survey briefly our con- 

tributions. 
The area was first studied by Goles and Olivos who were motivated by cellular 

automata and obtained a lot of results for threshold and multithreshold functions. 

A similar statement but for a different type of  functions, was independently obtain- 
ed in [8]. The immediate predecessor of  this paper was [9] quoted here on several 
places. In the meantime after finishing the first and before writing this revised ver- 
sion, we considered generalizations in some further directions: The limit behaviour 
for systems with an infinite number of states in [7], the number of steps before a 
system falls into a period in [10], applications to social systems in [11], and the con- 

nection to convexity in [6]. 
The role of convexity in discrete systems stimulated also research of other 

authors, e.g. [1]. 
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