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We show that there exist natural q-analogues of the b-functions for the prehomo-
geneous vector spaces of commutative parabolic type and calculate them explicitly
in each case. Our method of calculating the b-functions seems to be new even for
the original case q = 1.  2001 Academic Press

1. INTRODUCTION

Among prehomogeneous vector spaces those of commutative parabolic
type have special features since they have additional information coming
from their realization inside simple Lie algebras. In [9] we constructed a
quantum analogue Aq�V � of the coordinate algebra A�V � for a prehomo-
geneous vector space �L� V � of commutative parabolic type. If �L� V � is
regular, then there exists a basic relative invariant f ∈ A�V �. In this case
a quantum analogue fq ∈ Aq�V � of f is also implicitly constructed in [9].
The aim of this paper is to give an explicit form of quantum analogue of
the b-function of f .

Let tf �∂� be the constant coefficient differential operator on V corre-
sponding to the relative invariant tf of the dual space �L� V ∗�. Then the
b-function b�s� of f is given by tf �∂�f s+1 = b�s�f s. See [4, 10, 15] for the
explicit form of b�s�.
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For g ∈ Aq�V � we can also define a (sort of q-difference) operator tg�∂�
by

�tg�∂�h� h′	 = �h� gh′	 �h� h′ ∈ Aq�V ���
where � � 	 is a natural nondegenerate symmetric bilinear form on Aq�V �
(see Section 7). We can show that there exists some bq�s� ∈ ��q�
qs� satis-
fying

tfq�∂�f s+1
q = bq�s�f s

q �s ∈ �≥0�
Our main result is the following.

Theorem 1.1. If we have b�s� = ∏
i�s + ai�, then we have

bq�s� =
∏
i

q
s+ai−1
0 
s + ai�q0

(up to a constant multiple),

where q0 = q2 (type B, C) or q (otherwise), and 
n�t = �tn − t−n�/�t − t−1�.
We shall prove this theorem using an induction on the rank of the cor-

responding simple Lie algebra. We remark that a quantum analogue of
b-function for type A was already obtained in Noumi et al. [16] using a
quantum analogue of the Capelli identity. The analogues of differential
operators in [16] are different from ours (see Remark 7.4 below).

The author expresses gratitude to Professors A. Gyoja and T. Tanisaki.

2. PREHOMOGENEOUS VECTOR SPACES

Let G be a connected linear algebraic group over the complex num-
ber field �. A finite dimensional G-module V is called a prehomogeneous
vector space if there exists a Zariski open orbit O in V . We denote the
ring of polynomial functions on V by �
V �. A nonzero element f ∈ �
V �
is called a relative invariant of a prehomogeneous vector space �G�V � if
there exists a character χ of G such that f �gv� = χ�g�f �v� for any g ∈ G
and v ∈ V . Let Si = �v ∈ V �fi�v� = 0� �1 ≤ i ≤ l� be the one-codimensional
irreducible components of S = V \O. Then fi �1 ≤ i ≤ l� are algebraically
independent relative invariants, and for any relative invariant f there exist
c ∈ � and mi ∈ � such that f = cf

m1
1 · · · fml

l (see Sato and Kimura [19]).
These functions f1�    � fl are called basic relative invariants.

A prehomogeneous vector space is called regular if there exists a relative
invariant f such that the Hessian Hf = det�∂2f/∂xi ∂xj� is not identically
zero, where �xi� is a coordinate system of V . Let �G�V � be a prehomoge-
neous vector space with a reductive group G. Then it is regular if and only
if S is a hypersurface (see [19]).
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3. COMMUTATIVE PARABOLIC TYPE

Let � be a simple Lie algebra over the complex number field � with
Cartan subalgebra �. Let � ⊂ �∗ be the root system and W ⊂ GL��� the
Weyl group. For α ∈ � we denote the corresponding root space by �α.
We denote the set of positive roots by �+ and the set of simple roots by
�αi�i∈I0

, where I0 is an index set. For i ∈ I0 let hi ∈ ��!i ∈ �∗� si ∈ W
be the simple coroot, the fundamental weight, and the simple reflection
corresponding to i, respectively. We denote the longest element of W by
w0. Let � � � � �× �→ � be the invariant symmetric bilinear form such that
�α� α� = 2 for short roots α. For i� j ∈ I0 we set

di =
�αi� αi�

2
� aij =

2�αi� αj�
�αi� αi�



We define the antiautomorphism x �→ tx of the enveloping algebra U���
of � by txα = x−α and thi = hi, where �xα�α ∈ �� is a Chevalley basis of �.

For a subset I of I0 we set

�I = � ∩∑
i∈I

�αi� �I = �⊕
( ⊕

α∈�I

�α

)
�

�±I =
⊕

α∈�+\�I

�±α� WI = �si � i ∈ I	

Let LI be the algebraic group corresponding to �I . Assume that �+I �= 0
and 
�+I ��+I � = 0. Then it is known that I = I0\�i0� for some i0 ∈ I0 and
�LI��

+
I � is a prehomogeneous vector space, which is called of commuta-

tive parabolic type. Since �−I is identified with the dual space of �+I via the
Killing form, the symmetric algebra S��−I � is isomorphic to �
�+I �. By the
commutativity of �−I we have S��−I � = U��−I �. Hence �
�+I � is identified
with U��−I �. Under this identification the locally finite left U��I�-module
structure on �
�+I � obtained from the adjoint action of LI on �+I corre-
sponds to the ad�U��I��-module structure on U��−I �. There exists finitely
many LI-orbits C1� C2�    � Cr� Cr+1 in �+I satisfying the closure relation
�0� = C1 ⊂ C2 ⊂ · · · ⊂ Cr ⊂ Cr+1 = �+I . In the remainder of this paper
we denote by r the number of nonopen orbits in �+I . For p ≤ r we set
� �Cp� = �f ∈ �
�+I � � f �Cp� = 0�. We denote by �m�Cp� the subspace
of � �Cp� consisting of homogeneous elements with degree m. It is known
that � p�Cp� is an irreducible �I-module and � �Cp� = �
�+I �� p�Cp�. Let
fp be the highest weight vector of � p�Cp�, and let λp be the weight of fp.
We have the irreducible decomposition

�
�+I � =
⊕

µ∈∑r
p=1 �≥0λp

V �µ��
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FIG. 1.

where V �µ� is an irreducible highest weight module with highest weight µ
and V �λp� = � p�Cp� (see Schmid [20] and Wachi [24]).

If the prehomogeneous vector space �LI��
+
I � is regular, there exists a

one-codimensional orbit Cr . Then it is known that � r�Cr� = �fr� fr is the
basic relative invariant of �LI��

+
I � and λr = −2!i0

, where I = I0\�i0�. The
pairs ��� i0� where �LI��

+
I � are regular are given by the Dynkin diagrams

of Fig. 1. Here the white vertex corresponds to i0.
Assume that �LI��

+
I � is regular. For 1 ≤ p ≤ r = *�nonopen orbits� we

set γp = λp−1 − λp, where λ0 = 0. Then we have γp ∈ �+\�I . We denote
the coroot of γp by hγp

, and set �− = ∑r
p=1 �hγp

. We set

�+�p� =
{
β ∈ �+\�I � β��− =

γj + γk

2
for some 1 ≤ j ≤ k ≤ p

}
∪�γ1�    � γp��

�±�p� =
∑

β∈�+�p�
�±β�

��p� = 
�+�p���−�p��

(see Wachi [24] and Wallach [25]). Note that αi0
∈ �+�p� for any p and �+�r� =

�+\�I . Then it is known that �L�p���+�p�� is a regular prehomogeneous
vector space of commutative parabolic type, where L�p� is the subgroup of
G corresponding to ��p�. Moreover fj ∈ �
�+�p�� for j ≤ p, and fp is a basic
relative invariant of �L�p���+�p��. The regular prehomogeneous vector space
�L�r−1���

+
�r−1�� is described by the following.
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Lemma 3.1.

(i) For type �A2n−1� n� we have r = n, and �L�n−1���
+
�n−1�� is of type

�A2n−3� n− 1�.
(ii) For type �Bn� 1� we have r = 2, and �L�1���+�1�� is of type �A1� 1�.
(iii) For type �Cn� n� �n ≥ 3� we have r = n, and �L�n−1���

+
�n−1�� is of

type �Cn−1� n− 1�.
(iv) For type �Dn� 1� we have r = 2, and �L�1���+�1�� is of type �A1� 1�.
(v) For type �D2n� 2n� �n ≥ 3� we have r = n, and �L�n−1���

+
�n−1�� is

of type �D2n−2� 2n− 2�.
(vi) For type �E7� 1� we have r = 3, and �L�2���+�2�� is of type �D6� 1�.

We recall the definition of the b-function. Let �LI��
+
I � be a regular pre-

homogeneous vector space with r nonopen orbits in �+I . For h ∈ S��+I � �
�
�−I �, we define the constant coefficient differential operator h�∂� by

h�∂� expB�x� y� = h�y� expB�x� y� x ∈ �+I � y ∈ �−I �

where B is the Killing form on � (see [15]). It is known that for the relative
invariant fr there exists a polynomial br�s� such that for s ∈ �

tfr�∂�f s+1
r = br�s�f s

r 

This polynomial br�s� is called the b-function of fr . Then we have deg br =
deg fr = r. The explicit description of br�s� is given by

�A2n−1� n� � bn�s� = �s + 1��s + 2� · · · �s + n�

�Bn� 1� � b2�s� = �s + 1�
(
s + 2n− 1

2

)

�Cn� n� � bn�s� = �s + 1�
(
s + 3

2

)(
s + 4

2

)
· · ·

(
s + n+ 1

2

)

�Dn� 1� � b2�s� = �s + 1�
(
s + 2n− 2

2

)
�D2n� 2n� � bn�s� = �s + 1��s + 3� · · · �s + 2n− 1�
�E7� 1� � b3�s� = �s + 1��s + 5��s + 9�

(see [4, 10, 15]).

Remark 32. The b-function of type A can be calculated by the Capelli
identity. In general the b-functions of regular prehomogeneous vector
spaces are calculated by using the theory of simple holonomic systems of
microdifferential equations (see [18]).
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We define a symmetric nondegenerate bilinear form � � 	 on S��−I � �
�
�+I � by �f� g	 = �tg�∂�f ��0�.
Lemma 3.3 (see Wachi [24]). For f� g� h ∈ S��−I � � �
�+I � we have

(i) �ad�u�f� g	 = �f� ad�tu�g	 for u ∈ U��I�,
(ii) �f� gh	 = �tg�∂�f� h	.

By definition we have

�x−β� x−β′ 	 = δβ�β′
2

�β�β�
for β�β′ ∈ �+\�I . The comultiplication � of U��� is defined by ��x� =
x⊗ 1 + 1 ⊗ x for x ∈ �. We define the algebra homomorphism �̃ by
�̃�x� = τ��tx�, where x ∈ U��� and τ�y1 ⊗ y2� = ty1 ⊗ ty2. Since
tx−β�∂��fg� = tx−β�∂��f ��+ f tx−β�∂����, we have

�fg� h	 = �f ⊗ g� �̃�h�	 (3.1)

Remark 34. Let � � 	0 be a bilinear form on U��−I � = S��−I � satisfying
Lemma 3.3(i). It is known that �V �µ�� V �ν�	0 = 0 for the different irre-
ducible components V �µ� and V �ν� of U��−I � and that �u1� u2	0 = 0 for
the weight vectors u1 and u2 with the different weights. Moreover � � 	0
on V �µ� is unique up to constant multiple (see [2] and [5]). Therefore the
symmetric bilinear form � � 	0 on �
�+I � satisfying (3.1) and Lemma 3.3(i) is
uniquely determined by �x−β� x−β	0 �β ∈ �+\�I�. From this bilinear form
the differential operator t��∂� is defined by Lemma 3.3(ii).

4. QUANTIZED ENVELOPING ALGEBRA

The quantized enveloping algebra Uq��� of � (Drinfel’d [1], Jimbo [7])
is an associative algebra over the rational function field ��q� generated by
the elements �Ei� Fi�K

±1
i �i∈I0

satisfying the following relations

KiKj = KjKi� KiK
−1
i = K−1

i Ki = 1�

KiEjK
−1
i = q

ai j

i Ej� KiFjK
−1
i = q

−ai j

i Fj�

EiFj − FjEi = δi j

Ki −K−1
i

qi − q−1
i

�

1−ai j∑
k=0

�−1�k
[

1− ai j

k

]
qi

E
1−ai j−k

i EjE
k
i = 0 �i �= j��

1−ai j∑
k=0

�−1�k
[

1− ai j

k

]
qi

F
1−ai j−k

i FjF
k
i = 0 �i �= j��
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where qi = qdi , and


m�t =
tm − t−m

t − t−1 � 
m�t! =
m∏

k=1


k�t �
[
m
n

]
t

= 
m�t!

n�t!
m− n�t!

�m ≥ n ≥ 0�

For µ = ∑
i∈I0

miαi we set Kµ =
∏

i K
mi

i . We can define an algebra antiau-
tomorphism x �→ tx of Uq��� by

tKi = Ki�
tEi = Fi�

tFi = Ei

We define subalgebras Uq��±��Uq���, and Uq��±� of Uq��� by

Uq��+� = �K±1
i � Ei � i ∈ I0	� Uq��−� = �K±1

i � Fi � i ∈ I0	�
Uq��� = �K±1

i � i ∈ I0	�
Uq��+� = �Ei � i ∈ I0	� Uq��−� = �Fi � i ∈ I0	

We set �∗Z = ⊕i∈I0
�!i. For a Uq���-module M we define the weight space

Mµ with weight µ ∈ �∗Z by

Mµ =
{
m ∈M � Kim = q

µ�hi�
i m �i ∈ I0�

}


The Hopf algebra structure on Uq��� is defined as follows. The comulti-
plication �� Uq��� → Uq��� ⊗Uq��� is the algebra homomorphism satisfy-
ing

��Ki� = Ki ⊗Ki�

��Ei� = Ei ⊗K−1
i + 1⊗ Ei�

��Fi� = Fi ⊗ 1+Ki ⊗ Fi

The counit ε�Uq��� → ��q� is the algebra homomorphism satisfying

ε�Ki� = 1� ε�Ei� = ε�Fi� = 0

The antipode S�Uq��� → Uq��� is the algebra antiautomorphism satisfying

S�Ki� = K−1
i � S�Ei� = −EiKi� S�Fi� = −K−1

i Fi

The adjoint action of Uq��� on Uq��� is defined as follows. For x� y ∈
Uq��� write ��x� = ∑

k x
�1�
k ⊗ x

�2�
k and set ad�x��y� = ∑

k x
�1�
k yS�x�2�k �. Then

ad�Uq��� → End��q��Uq���� is an algebra homomorphism.
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For i ∈ I0 we define an algebra automorphism Ti of Uq��� (see Lusztig
[12]) by

Ti�Kj� = KjK
−ai j

i �

Ti�Ej� =



−FiKi �i = j�
−ai j∑
k=0

�−qi�−kE
�−ai j−k�
i EjE

�k�
i �i �= j�,

Ti�Fj� =



−K−1

i Ei �i = j�
−ai j∑
k=0

�−qi�kF �k�i FjF
�−ai j−k�
i �i �= j�,

where

E
�k�
i = 1


k�qi
!
Ek

i � F
�k�
i = 1


k�qi
!
Fk

i 

For w ∈ W we choose a reduced expression w = si1 · · · sik and set Tw =
Ti1
· · ·Tik

. It does not depend on the choice of the reduced expression by
Lusztig [13].

It is known that there exists a unique bilinear form � � ��Uq��−� ×
Uq��+� → ��q� such that for any x� x′ ∈ Uq��+�� y� y ′ ∈ Uq��−�, and
i� j ∈ I0

�y� xx′� = ���y�� x′ ⊗ x�� �yy ′� x� = �y ⊗ y ′� ��x���
�Ki�Kj� = q−�αi� αj�� �Fi� Ej� = −δi j�qi − q−1

i �−1�

�Fi�Kj� = 0� �Ki�Ej� = 0

(see Jantzen [6], Tanisaki [22]). Note that for µ ∈ ∑
i∈I0

�≥0αi the restriction
� � ��Uq��−�−µ×Uq��+�µ is nondegenerate. Here Uq��±�±µ are weight spaces
with weight ±µ relative to the adjoint action of Uq���.

Let y ∈ Uq��−�−µ for µ ∈ ∑
i∈I0

�≥0αi. For any i ∈ I0 the elements ri�y�
and r ′i�y� of Uq��−�−�µ−αi� are defined by

��y�∈y⊗1+∑
i∈I0

Kiri�y�⊗Fi+


 ⊕

0<ν≤µ
ν �=αi

KνUq��−�−�µ−ν�⊗Uq��−�−ν


�

��y�∈Kµ⊗y+∑
i∈I0

Kµ−αi
Fi⊗r ′i�y�+


 ⊕

0<ν≤µ
ν �=αi

Kµ−νUq��−�−ν⊗Uq��−�−�µ−ν�
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Lemma 4.1 (see Jantzen [6]).

(i) We have ri�1� = r ′i�1� = 0 and ri�Fj� = r ′i�Fj� = δij for j ∈ I0.

(ii) We have for y1 ∈ Uq��−�−µ1
and y2 ∈ Uq��−�−µ2

ri�y1y2� = q
µ1�hi�
i y1ri�y2� + ri�y1�y2�

r ′i�y1y2� = y1r
′
i�y2� + q

µ2�hi�
i r ′i�y1�y2

(iii) We have for x ∈ Uq��+� and y ∈ Uq��−�−µ

�y� Eix� = �Fi� Ei��ri�y�� x�� �y� xEi� = �Fi� Ei��r ′i�y�� x�
(iv) We have for y ∈ Uq��−�−µ

ad�Ei�y = �qi − q−1
i �−1�Kiri�y�Ki − r ′i�y��

From Lemma 4.1(ii) we have ri�Fn
i � = r ′i�Fn

i � = qn−1
i 
n�qi

Fn−1
i .

5. QUANTUM DEFORMATIONS OF
COORDINATE ALGEBRAS

In this section we recall basic properties of the quantum analogue of the
coordinate algebra �
�+I � of �+I satisfying 
�+I ��+I � = 0 (see [9]). We do not
assume that �LI��

+
I � is regular. We take i0 ∈ I0 as in Section 3.

We define a subalgebra Uq��I� by Uq��I� = �K±1
i � Ej� Fj�i ∈ I0� j ∈ I	.

Let wI be the longest element of WI , and set

Uq��−I � = Uq��−� ∩ T−1
wI

Uq��−�
We take a reduced expression wIw0 = si1 · · · sik and set

βt = si1 · · · sit−1
�αit

�� Yβt
= Ti1

· · ·Tit−1
�Fit

�
for t = 1�    � k. In particular Yβ1

= Fi0
. We have �βt �1 ≤ t ≤ k� = �+\�I

and Yβt
∈ Uq��−�−βt

. The set �Yn1
β1
· · ·Ynk

βk
�n1�    � nk ∈ �≥0� is a basis of

Uq��−I �.
Proposition 5.1 (see [9]).

(i) We have ad�Uq��I��Uq��−I � ⊂ Uq��−I �.
(ii) The elements Yβ ∈ Uq��−I � for β ∈ �+\�I do not depend on the

choice of a reduced expression of wIw0, and they satisfy quadratic fundamental
relations as generators of the algebra Uq��−I �.



590 atsushi kamita

The coordinate algebra �
�+I � of �+I is identified with the enveloping
algebra U��−I �, and the action of U��I� on �
�+I � corresponds to the adjoint
action on U��−I �. Hence we can regard the subalgebra Uq��−I � of Uq��−� as
a quantum analogue of the coordinate algebra �
�+I �. For example in the
case of type A we have �I � ��l1� l2� ∈ ��m × ��n�trace�l1� + trace�l2� = 0�
and �+I � Matm�n��� for some integers m and n. Then Uq��−I � is generated
by Yij �1 ≤ i ≤ m� 1 ≤ j ≤ n� satisfying the fundamental relations

YijYkl =



qYklYij �i = k� j < l or i < k� j = l�
YklYij �i < k� j > l�
YklYij + �q− q−1�YkjYil �i < k� j < l�.

(See [8] for the action of Uq��I�)
We label the LI-orbits Cp �1 ≤ p ≤ r + 1� in �+I as in Section 3. Since

�
�+I � is a multiplicity free �I-module, for the orbit Cp in �+I there exist
unique Uq��I�-submodules �q�Cp� and �

p
q �Cp� of Uq��−I � satisfying

�q�Cp��q=1 = � �Cp�� � p
q �Cp��q=1 = � p�Cp�

(see [9]).

Proposition 5.2 (see [9]).

�q�Cp� = Uq��−I �� p
q �Cp� = � p

q �Cp�Uq��−I �
Let fq�p be the highest weight vector of � p

q �Cp�. We have the irreducible
decomposition

Uq��−I � =
⊕

µ∈∑
p �≥0λp

Vq�µ��

where Vq�µ� is an irreducible highest weight module with highest weight µ

and Vq�λp� = �
p
q �Cp�. Explicit descriptions of Uq��−I ��� p

q �Cp�, and fq�p
are given in [8] in the case where � is classical and in [14] for the exceptional
cases.

Let f be a weight vector of Uq��−I � with the weight −µ. If µ ∈ mαi0
+∑

i∈I �≥0αi, then f is an element of
∑

βi1
��βim

∈�+\�I
��q�Yβi1

· · ·Yβim
. So

we can define the degree of f by deg f = m. In particular deg fq�p = p.

6. QUANTUM DEFORMATIONS OF
RELATIVE INVARIANTS

In the remainder of this paper we assume that �LI��
+
I � is regular, �i0� =

I0\I, and LI-orbits C1�    � Cr� Cr+1 satisfy �0� = C1 ⊂ C2 ⊂ · · · ⊂ Cr ⊂
Cr+1 = �+I . Then we regard the highest weight vector fq� r of � r

q�Cr� as the
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quantum analogue of the basic relative invariant. We give some properties
of fq� r in this section.

By � r
q�Cr� = ��q�fq� r and λr = −2!i0

, we have the following.

Proposition 6.1. We have

ad�Ki�fq� r = fq� r� ad�Ei�fq� r = 0 and ad�Fi�fq� r = 0

for any i ∈ I, and ad�Ki0
�fq� r = q−2

i0
fq� r .

Lemma 6.2.

(i) For i ∈ I we have ri�Uq��−I �� = 0.
(ii) For β ∈ �+\�I we have r ′i0�Yβ� = δαi0

�β.

Proof. (i) By Jantzen [6] we have

�y ∈ Uq��−��ri�y� = 0� = Uq��−� ∩ T−1
i Uq��−�

For any i ∈ I we have Uq��−I � ⊂ Uq��−� ∩ T−1
i Uq��−�. Hence we have

ri�Uq��−I �� = 0 for i ∈ I.

(ii) We show the formula by the induction on β. By the definition
of r ′i0 , it is clear that r ′i0�Yαi0

� = r ′i0�Fi0
� = 1. Assume that β > αi0

and the
statement is proved for any root β1 in �+\�I satisfying β1 < β. For some
i ∈ I we can write

Yβ = cad�Fi�Yβ′ = c �FiYβ′ − q−�αi�β
′�Yβ′Fi��

where β′ = β− αi and c ∈ ��q�. Hence we have

r ′i0�Yβ� = c�Fir
′
i0
�Yβ′ � − q�αi� αi0

−β′�r ′i0�Yβ′ �Fi�
If β′ = αi0

, then we have r ′i0�Yβ� = c�Fi − Fi� = 0 since r ′i0�Yβ′ � = 1. If
β′ �= αi0

, then r ′i0�Yβ� = 0 since r ′i0�Yβ′ � = 0.

Proposition 6.3. The quantum analogue fq� r is a central element of
Uq��−�.

Proof. For i ∈ I we have 
Fi� fq� r� = ad�Fi�fq� r . By Proposition 6.1 we
have to show 
Fi0

� fq� r� = 0. The quantum analogue fq� r is a linear combi-
nation of Yβj1

· · ·Yβjr
satisfying *�jk�βjk

= αi0
� ≤ 1 (see [8] and [14]). By

using Lemma 6.2 it is easy to show that r ′i0�fq� r� �= 0 and r ′i0
2�fq� r� = 0.

Hence we have

r ′i0
2�Fi0

fq� r� = r ′i0
2�fq� rFi0

� = �q2
i0
+ 1�r ′i0�fq� r�

By Proposition 5.2 there exists c ∈ ��q� such that Fi0
fq� r = cfq� rFi0

;
hence we have �q2

i0
+ 1�r ′i0�fq� r� = c�q2

i0
+ 1�r ′i0�fq� r�. Therefore we obtain

c = 1.
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The explicit description of the quantum analogue fq� r in the case where
� is classical is given as follows.

Lemma 6.4 (see [8]). We label the vertices of the Dynkin diagram as in
Fig. 1.

(i) Type(A2n−1� n) (r = n). For 1 ≤ i� j ≤ n we set βi� j = αn−i+1 +
· · · +αn+ · · ·+ αn+j−1 ∈ �+\�I and Yi� j = Yβi� j

. Then we have the quantum
analogue

fq� n =
∑

σ∈	n

�−q�?�σ�Y1� σ�1� · · ·Yn�σ�n��

where 	n is the symmetric group and ?�σ� = *��i� j��i < j� σ�i� > σ�j��.
This is a quantum determinant.

(ii) Type �Bn� 1� �r = 2�. For 1 ≤ i ≤ 2n− 1 we set

βi =
{
α1 + · · · + αi �1 ≤ i ≤ n�
α1 + · · · + α2n−i + 2α2n−i+1 + · · · + 2αn �n+ 1 ≤ i ≤ 2n− 1�

and Yi = Yβi
. Then we have the quantum analogue

fq� 2 =
n−1∑
i=1

�−q2�i+1−nYn+iYn−i + �q+ q−1�−2q−1�−q2�1−nY 2
n 

(iii) Type �Cn� n� �r = n�. For 1 ≤ i ≤ j ≤ n we set βi� j = αi + · · · +
αj−1 + 2αj + · · · + 2αn−1 + αn and Yi� j = ci� jYβi� j

, where ci� j = q + q−1 if
i = j and 1 if i �= j. For i < j we define Yj� i by Yj� i = q−2Yi� j . Then we have
the quantum analogue

fq� n =
∑

σ∈	n

�−q�−?�σ�Y1� σ�1� · · ·Yn�σ�n�

(iv) Type �Dn� 1� �r = 2�. For 1 ≤ i ≤ 2n− 2 we set

βi =




α1 + · · · + αi �1 ≤ i ≤ n− 1�
α1 + · · · + αn−2 + αn �i = n�
α1 + · · · + α2n−i

+ 2α2n−i+1 + · · · + 2αn−2 + αn−1 + αn �n+ 1 ≤ i ≤ 2n− 2�
and Yi = Yβi

. Then we have the quantum analogue

fq� 2 =
n−1∑
i=1

�−q�i+1−nYn+i−1Yn−i
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(v) Type �D2n� 2n� �r = n�. For 1 ≤ i < j ≤ 2n we set

βi� j =



αi + · · · + αj−1 + 2αj

+ · · · + 2α2n−2 + α2n−1 + α2n �j < 2n�
αi + · · · + α2n−2 + α2n �j = 2n��

and Yi� j = Yβi� j
. Then we have the quantum analogue

fq� n =
∑

σ∈S2n

�−q−1�?�σ�Yσ�1��σ�2� · · ·Yσ�2n−1�� σ�2n��

where S2n = �σ ∈ 	2n � σ�2k− 1� < σ�2k+ 1�� σ�2k− 1� < σ�2k� for all
k�. This is a quantum analogue of a Pfaffian.

Remark 65. In the case of type �E7� 1� there exist three nonopen orbits
C1� C2� C3 satisfying �0� = C1 ⊂  C2 ⊂  C3. Then we have the quantum
analogue fq� 3 =

∑27
j=1�−q��βj �−1Yjψj , where �β1�    � β27� = �+\�I� �β� =∑7

i=1 mi for β = ∑7
i=1 miαi, and ψ1�    � ψ27 are generators of � 2

q �C2�. See
Morita [14] for the explicit descriptions of βj and ψj . Note that �β1 =
αi0

� β2�    � β10� = �+�2� and ψ27 is a highest weight vector of � 2
q �C2�.

7. QUANTUM ANALOGUES OF b-FUNCTIONS

In Section 3 the symmetric bilinear form � � 	 on �
�+I � determines the
differential operator tg�∂� for g ∈ �
�+I � by �tg�∂�f� h	 = �f� gh	. For the
purpose of constructing a quantum analogue of tg�∂� we use a symmetric
bilinear form � � 	 on Uq��−I � satisfying

�ad�u�f� g	 = �f� ad�tu�g	 �u ∈ Uq��I�� f� g ∈ Uq��−I �� (7.1)

and

�fg� h	 = �f ⊗ g� �̃�h�	 �f� g� h ∈ Uq��−I ��� (7.2)

where �̃�x� = τ��tx� and τ�y1 ⊗ y2� = ty1 ⊗ ty2. This bilinear form is
uniquely determined by the restriction on the irreducible component
Vq�−αi0

� = ∑
β∈�+\�I

��q�Yβ of Uq��−I � from the condition (7.2). Simi-
larly to the classical case q = 1, the symmetric form on Vq�−αi0

� satisfying
(7.1) is unique up to constant multiple. Hence the symmetric bilinear form
on Uq��−I � satisfying (7.1) and (7.2) is unique up to constant multiple if
it exists. By using the natural paring ( , ) in Section 4 such a symmetric
bilinear form is explicitly constructed as follows. We set

�f� g	 = �q−1 − q�deg f �f� tg��
for the weight vectors f� g of Uq��−I �. It is easy to show that this bilinear
form � � 	 is symmetric.
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Proposition 7.1. Let f� g� h ∈ Uq��−I �.
(i) �fg� h	 = �f ⊗ g� �̃�h�	, where �̃�h� = τ��th� and τ�h1 ⊗ h2� =

th1 ⊗ th2.

(ii) For u ∈ Uq��I� we have

�ad�u�f� g	 = �f� ad�tu�g	
(iii) The bilinear form � � 	 is nondegenerate.

Proof. (i) It is clear from the definition.

(ii) It is sufficient to show that the statement holds for the weight
vectors f� g and the canonical generator u of Uq��I�. If u = Ki for i ∈ I0,
then the assertion is obvious. Let u = Ei for i ∈ I. By Lemmas 4.1 and 6.2
we have

�ad�Ei�f� tg� = �q−1
i − qi�−1�r ′i�f �� tg� = �f� tgEi�

Since �Uq��−I �� EiUq��+�� = 0 by Lemmas 4.1 and 6.2, we have

�f� tgEi� = �f� tgEi − q
−µ�hi�
i Ei

tg� = �f� t�ad�Fi�g���
where −µ is the weight of g. We have deg f = deg�ad�Fi�f �, and hence
the statement for u = Ei holds. By the symmetry of � � 	 it also holds for
u = Fi.

(iii) We take the reduced expression w0 = si1 · · · siksik+1
· · · sil such

that wIw0 = si1 · · · sik . We define Yβj
�1 ≤ j ≤ l� as in Section 5. Then

�Yn1
β1
· · ·Ynk

βk
Y

nk+1
βk+1

· · ·Ynl

βl
� is a basis of Uq��−�, and for j > k we have

Yβj
∈ Uq��−� ∩Uq��I�. Hence we have Uq��−� = Uq��−I � +

∑
i∈I Uq��−�Fi.

Since tUq��−� = Uq��+�, we have Uq��+� = tUq��−I � +
∑

i∈I EiUq��+�.
Moreover, we have �Uq��−I �� EiUq��+�� = 0 for i ∈ I. Hence if �f� g	 = 0
for any g ∈ Uq��−I �, then �f� u� = 0 for any u ∈ Uq��+�. Thus the assertion
follows from the nondegeneracy of ( , ).

Moreover we have the following.

Proposition 7.2. For β�β′ ∈ �+\�I we have

�Yβ�Yβ′ 	 = δβ�β′

[�β�β�
2

]−1

q



Proof. By the definition it is clear that �Yβ�Yβ′ 	 = 0 if β �= β′. In the
case where β = β′ we shall show the statement by the induction on β. Since
Yαi0

= Fi0
, we obtain �Yαi0

� Yαi0
	 = [�αi0

� αi0
�/2]−1

q
. Assume that β > αi0
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and the statement holds for any root β1 in �+\�I satisfying β1 < β. Then
there exists a root γ �< β� in �+\�I such that

Yβ = cγ�β ad�Fi�Yγ� Yγ = c′γ�β ad�Ei�Yβ�

where i ∈ I satisfying β = γ + αi and cγ�β� c
′
γ�β ∈ ��q�\�0�. We denote

by R the set of the pairs �γ�β� as above. By Proposition 7.1 we have for
�γ�β� ∈ R

�Yβ�Yβ	 = �Yβ� cγ�β ad�Fi�Yγ	 = cγ�β� ad�Ei�Yβ�Yγ	

= cγ�β

c′γ�β
�Yγ�Yγ	 =

cγ�β

c′γ�β

[�γ� γ�
2

]−1

q



Here we have for �γ�β� ∈ R

cγ�β = c′γ�β = 1 if �β�β� = �γ� γ��
cγ�β = �q+ q−1�−1� c′γ�β = 1 if 4 = �β�β� > �γ� γ� = 2�

cγ�β = 1� c′γ�β = �q+ q−1�−1 if 2 = �β�β� < �γ� γ� = 4

(see [8] and [14]). Hence we obtain �Yβ�Yβ	 = 
�β�β�/2�−1
q .

By Propositions 7.1 and 7.2 this bilinear form on Uq��−I � can be regarded
as the q-analogue of the symmetric bilinear form on �
�+I � defined in Sec-
tion 3.

Proposition 7.3.

(i) For any g ∈ Uq��−I � there exists a unique tg�∂� ∈ End��q��Uq��−I ��
such that �tg�∂�f� h	 = �f� gh	 for any f� h ∈ Uq��−I �. In particular we have

tYαi0
�∂� = 
di0

�−1
q r ′i0�

and for β > αi0

tYβ�∂� = cβ′� β
(
tYβ′ �∂�ad�Ei� − q

−β′�hi�
i ad�Ei�tYβ′ �∂�

)
�

where Yβ = cβ′� β ad�Fi�Yβ′ .
(ii) For f ∈ Uq��−I �−µ and g ∈ Uq��−I �−ν we have tg�∂�f ∈

Uq��−I �−�µ−ν�.

Proof. (i) The uniqueness follows from the nondegeneracy of � � 	. If
there exist tg�∂� and tg′�∂�, then we have t�gg′��∂� = tg′�∂�tg�∂�. There-
fore we have only to show the existence of tYβ�∂� for any β ∈ �+\�I .
By Lemma 4.1 we have tYαi0

�∂� = 
di0
�−1
q r ′i0 . Let β > αi0

. Then there
exists a root β′�<β� such that Yβ = cβ′�β ad�Fi�Yβ′ �cβ′�β ∈ ��q��.
By Proposition 7.1 we can show that tYβ�∂� = cβ′�β�tYβ′ �∂�ad�Ei� −
q
−β′�hi�
i ad�Ei�tYβ′ �∂�� easily.

(ii) The assertion follows from (i).
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This linear map tg�∂� is regarded as a quantum analogue of a differential
operator on �
�+I �.

Remark 74 Let �LI��
+
I � be the regular prehomogeneous vector space

of type �A2n−1� n�. We define the root vectors Yi� j �1 ≤ i� j ≤ n� as in
Lemma 6.4. For 1 ≤ i ≤ n let Ui be the subalgebra of Uq��−I � generated by
Yi� 1�    � Yi� n. Note that Yi� jYi� k = qYi� kYi� j for j < k. Then we have

tYk� l�∂��Ya1
i� 1 · · ·Yan

i� n�Yk� l = δk� iq
al−1
al�qYa1

i� 1 · · ·Yan

i� n

Therefore tYk� l�∂��Ui
is a sort of q-difference operator different from the

operator in Noumi et al. [16] (cf. [16, Propositions 2.2 and 5.2]).

Lemma 7.5. For i ∈ I

ad�Ei�tfq� r�∂� = tfq� r�∂�ad�Ei�� ad�Fi�tfq� r�∂� = tfq� r�∂�ad�Fi�
Proof. Let y1� y2 ∈ Uq�n−I �. Since ad�Fi�fq� r = 0 for i ∈ I, we have

ad�Fi��fq� ry2� = fq� r ad�Fi�y2. Hence we obtain

�ad�Ei�tfq� r�∂��y1�� y2	 = �y1� fq� r ad�Fi�y2	 = �y1� ad�Fi��fq� ry2�	
= �tfq� r�∂�ad�Ei��y1�� y2	

Similarly we obtain ad�Fi�tfq� r�∂� = tfq� r�∂�ad�Fi�.
By Proposition 7.3 and Lemma 7.5 the element tfq� r�∂��f s+1

q� r ��s ∈ �≥0� is
the highest weight vector with highest weight sλr = −2s!i0

. Since Uq��−I �
is a multiplicity free Uq��I�-module, there exists b̃q� r� s ∈ ��q� such that

tfq� r�∂��f s+1
q� r � = b̃q� r� sf

s
q� r 

Proposition 7.6. There exists a polynomial b̃q� r�t� ∈ ��q�
t� such that
b̃q� r� s = b̃q� r�qs

i0
� for any s ∈ �≥0.

Proof. Let ϕ = ϕ1 · · ·ϕm, where ϕj = r ′i0or ad�Ei� for some i ∈ I. Set
n = n�ϕ� = *�j�ϕj = r ′i0�. For k ∈ �≥0 and y ∈ Uq��−I �−µ we have

r ′i0�f k
q� ry� = q

k−1+µ�hi0
�

i0

k�qi0

f k−1
q� r r ′i0�fq� r�y + f k

q� rr
′
i0
�y�

by the induction on k. Moreover ad�Ei��f k
q� ry� = f k

q� r ad�Ei�y for i ∈ I.
Hence we have

ϕ�f s+1
q� r � =

n∑
p=1

cp�qs
i0
�f s+1−p

q� r yp�

where cp ∈ ��q�
t� and yp ∈ Uq��−I � does not depend on s. By Proposi-
tion 7.3 tfq� r�∂� is a linear combination of such ϕ satisfying n�ϕ� = r. The
assertion is proved.

We set bq� r�s� = b̃q� r�qs
i0
� for simplicity. We call bq� r�s� a quantum ana-

logue of the b-function. By definition we have

�f s+1
q� r � f s+1

q� r 	 = bq� r�s�bq� r�s − 1� · · · bq� r�0�
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8. EXPLICIT FORMS OF QUANTUM b-FUNCTIONS

Our main results is the following.

Theorem 8.1. Let br�s� =
∏r

i=1�s + ai� be a b-function of the basic rela-
tive invariant of the regular prehomogeneous vector space �LI� n

+
I �. Then the

quantum analogue bq� r�s� of br�s� is given by

bq� r�s� =
r∏

i=1

q
s+ai−1
i0


s + ai�qi0
(up to a constant multiple)�

where �i0� = I0\I.
We prove this theorem by calculating bq� r�s� in each case. Let �LI��

+
I �

be a regular prehomogeneous vector space with r + 1 LI-orbits. For p =
1�    � r we define �+�p�� ��
�, and �±�p� as in Section 3. Set I�p� = �i ∈ I0��αi

⊂
��
�� and Uq���p�� = �K±

i � Ej� Fj�i ∈ I�p� ∪ �i0�� j ∈ I�p�	. We define the
subalgebra Uq��−�p�� of Uq��−I �by

Uq��−�p�� = �Yβ�β ∈ �+�p�	

Then Uq��−�p�� is q-analogue of �
�+�p��, and fq�p ∈ Uq��−�p�� is a q-analogue
of basic relative invariant fp of the regular prehomogeneous vector space
�L�p���+�p��. We denote by bq�p�s� the q-analogue of the b-function of fp.

The regular prehomogeneous vector space �L�1�� �+�1�� is of type �A1� 1�,
and we have Uq��−�1�� = �Fi0

	� fq� 1 = cFi0
for c ∈ ��q�\�0�. Since

r ′i0�F
s+1
i0
� = qs

i0

s + 1�qi0

Fs
i0

for s ∈ �≥0, we obtain

bq� 1�s� = c2
di0
�−1
q qs

i0

s + 1�qi0



If we determine ap�s� ∈ ��q� by

�f s
q�p� f

s
q�p	 = ap�s��f s

q�p−1� f
s
q�p−1	�

then we have bq�p�s� = �ap�s + 1�/ap�s��bq�p−1�s�. Therefore we can
inductively obtain the explicit form of bq� r . The next two lemmas are useful
for the calculation of ap�s�.

Lemma 8.2. Let β ∈ �+�p�.

(i) tYβ�∂��f n
q�py� = tYβ�∂��f n

q�p�ad�K−1
β �y + f n

q�p
tYβ�∂�y

�y ∈ Uq��−�p���.
(ii) tYβ�∂��f n

q�p� = qn−1
i0

n�qi0

f n−1
q�p

tYβ�∂��fq�p�.
(iii) If β /∈ �+�p−1�, then we have tYβ�∂��f n

q�p−1� = 0.
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Proof. (i) This is proved easily by the induction on β. Note that
ad�Ei��fq�p� = 0 for i ∈ I.

(ii) Since fq�p is a central element of Uq� ¯��p��, this follows from (i).

(iii) Let β ∈ �+�p�\�+�p−1�. Then there exists some j ∈ I such that
β ∈ �>0αj +

∑
i �=j �≥0αi and γ ∈ ∑

i �=j �≥0αi for any γ ∈ �+�p−1�. Hence we
have Uq��−�p−1��−�λp−1−β� = �0�, and the statement follows.

Lemma 8.3. For 2 ≤ p ≤ r we have the decomposition

fq�p =
tp∑
j=1

Y
β
�p�
j

ad�u�p�j �fq�p−1

satisfying the following conditions:

(I) β
�p�
1 �    � β

�p�
tp
∈ �+�p�\�+�p−1�� u

�p�
1 �    � u

�p�
tp
∈ Uq���p�� ∩Uq��−�.

(II) For any j there exists a scalar c
�p�
j ∈ ��q� such that tY

β
�p�
j
�∂�fq�p =

c
�p�
j ad�u�p�j �fq�p−1

Proof. By Lemma 3.1 it is sufficient to show the existence for p = r. We
take fq� r as in Lemma 6.4 and Remark 6.5. It is easy to show that there
exist the following decompositions of fq�r satisfying (I) and (II).

(i) Type (A2n−1�� n) (r = n).

fq� n−1 =
∑

σ∈	n−1

�−q�?�σ�Y1� σ�1� · · ·Yn−1� σ�n−1��

fq� n =
n∑

j=1

�−q−1�n−jYn� jad�Fn+jFn+j+1 · · ·F2n−1�fq� n−1�

tYn�j�∂�fq� n = �−q�n+j−2ad�Fn+jFn+j+1 · · ·F2n−1�fq� n−1

(Note that we have

�−q−1�n−jad�Fn+jFn+j+1 · · ·F2n−1�fq� n−1

= �−q−1�n−j
∑

σ∈	n−1

�−q�?�σ�Y1� iσ�1� · · ·Yn−1� iσ�n−1��

where i1 = 1�    � ij−1 = j− 1� ij = j+ 1�    � in−1 = n. This is the quantum
analogue of the �n� j�-cofactor.)

(ii) Type �Bn� 1� �r = 2�.

fq� 1 = Y1 = F1�
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fq� 2 =
n−1∑
j=1

�−q2�j+1−nYn+jad�Fn−jFn−j−1 · · ·F2�fq� 1

+�q+ q−1�−2q−1�−q2�1−nYnad�FnFn−1 · · ·F2�fq� 1�

tYn+j�∂�fq� 2 =


�q+ q−1�−1�−q2�j−1ad�Fn · · ·F2�fq� 1 �j = 0�
−�q+ q−1�−1�−q2�j−2

× ad�Fn−j · · ·F2�fq� 1 �1 ≤ i ≤ n− 1�.
(iii) Type �Cn� n� �r = n�.

fq� n−1 =
∑

σ∈	n−1

�−q�−?�σ�Yi1� iσ�1� · · ·Yin−1� iσ�n−1� �ik = k+ 1��

fq� n = Y1� 1fq� n−1 +
n∑

j=2

�−q�−1−j

q+ q−1 Y1� jad�Fj−1Fj−2 · · ·F1�fq� n−1�

tY1� j�∂�fq� n =
{ �−q�2n−2�q+ q−1�fq� n−1 �j = 1�
−�−q�2n−jad�Fj−1 · · ·F1��fq� n−1� �j ≥ 2�.

(iv) Type �Dn� 1� �r = 2�.
fq� 1 = F1 = Y1�

fq� 2 =
n−1∑
j=1

�−q�j+1−nYn+j−1ad�Fn−jFn−j−1 · · ·F2�fq� 1�

tYn+j−1�∂�fq� 2 = �−q�n+j−3ad�Fn−j · · ·F2�fq� 1

(v) Type �D2n� 2n� �r = n�.
fq� n−1 =

∑
σ∈S2n−2

�−q−1�?�σ�Yiσ�1�� iσ�2� · · ·Yiσ�2n−3�� iσ�2n−2� �ik = k+ 2��

fq� n =
2n∑
j=2

�−q�2−jY1� jad�Fj−1Fj−2 · · ·F2�fq� n−1�

tY1� j�∂�fq� n = �−q�4n−2−jad�Fj−1Fj−2 · · ·F2�fq� n−1

(vi) Type �E7� 1� �r = 3�
fq� 2 = ψ27�

fq� 3 = �1+ q8 + q16�Y27ψ27

+ q−10 + q−8 − q−4 + 1+ q2

1+ q2

26∑
j=11

�−q��βj �−1Yjψj�

tYj�∂�fq� 3 = �1+ q8 + q16��−q��βj �−1ψj
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By Lemmas 8.2 and 8.3 we have

�f s1
q�pf

s2
q�p−1� f

s1
q�pf

s2
q�p−1	

=
tp∑
j−1

�tY
β
�p�
j
�∂��f s1

q�pf
s2
q�p−1�� g�p�j f s1−1

q�p f
s2
q�p−1	

=
tp∑
j=1

c
�p�
j q

s1−1
i0

q−s2�β�p�j � λp−1�
s1�qi0
�f s1−1

q�p g
�p�
j f

s2
q�p−1� f s1−1

q�p g
�p�
j f

s2
q�p−1	�

where g
�p�
j = ad�u�p�j �fq�p. Note that g

�p�
j fq�p = fq�pg

�p�
j since fq�p is a

central element of Uq��−�p�� and g
�p�
j ∈ Uq��−�p��. Moreover we can calculate

C
�p�
j �s1� s2� ∈ ��q� such that

〈
f s1−1
q�p g

�p�
j f

s2
q�p−1� f

s1−1
q�p g

�p�
j f

s2
q�p−1

〉 = C
�p�
j �s1� s2�

〈
f s1−1
q�p f

s2+1
q�p−1� f

s1−1
q�p f

s2+1
q�p−1

〉#
hence we have

�f s1
q�pf

s2
q�p−1� f

s1
q�pf

s2
q�p−1	 = C�p��s1� s2��f s1−1

q�p f
s2+1
q�p−1� f

s1−1
q�p f

s2+1
q�p−1	�

where C�p��s1� s2� =
∑tp

j=1 C
�p�
j �s1� s2�c�p�j q

s1−1
i0

q−s2�β�p�j �λp−1�
s1�qi0
. From this

formula we obtain

ap�s� =
s−1∏
t=0

C�p��s − t� t�

For example we calculate C
�p�
j �s1� s2� of type �A2n−1� n� as follows. We set

βij and Yij as in Lemma 6.4. The analogue fq�p �1 ≤ p ≤ n� is defined by

fq�p =
∑

σ∈	p

�−q�?�σ�Y1�σ�1� · · ·Yp�σ�p�

Similar to the proof of Lemma 8.3 we have tp = p�β
�p�
j = βp�j� u

�p�
j =

�−q�j−pFn+j · · ·Fn+p−1, and c
�p�
j = q2n−2. Clearly C

�p�
tp
�s1� s2� = 1. For 1 ≤

j ≤ tp − 1 we have

g
�p�
j = −q−1ad�Fn+j�g�p�j+1� g

�p�
j+1 = −q ad�En+j�g�p�j �

ad�En+j�fq�p = ad�En+j�fq·p−1 = 0�

ad�Fn+j�fq�p = 0� ad�Fn+j�fq�p−1 = −q δj�p−1g
�p�
p−1
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(see [8]). Therefore we have

ad�tu�p�j ��f s1−1
q�p g

�p�
j f

s2
q�p−1� = −q ad�tu�p�j+1�ad�En+j��f s1−1

q�p g
�p�
j f

s2
q�p−1�

= ad�tu�p�j+1��f s1−1
q�p g

�p�
j+1f

s2
q�p−1� = · · ·

= ad�tu�p�p−1��f s1−1
q�p g

�p�
p−1f

s2
q�p−1�

= q−s2f s1−1
q�p f

s2+1
q�p−1�

and

f s1−1
q�p g

�p�
j f

s2
q�p−1 = −q−1ad�Fn+j��f s1−1

q�p g
�p�
j+1f

s2
q�p−1� = · · ·

= �−q−1�p−j−1ad�Fn+j · · ·Fn+p−2��f s1−1
q�p g

�p�
p−1f

s2
q�p−1�

Since g
�p�
p−1fq�p−1 = q−1fq�p−1g

�p�
p−1, we have hence

f s1−1
q�p g

�p�
j f

s2
q�p−1 = q−s2 
s2 + 1�−1

q ad
(
u
�p�
j

)(
f s1−1
q�p f

s2+1
q�p−1

)


By Proposition 7.1 we have

�f s1−1
q�p g

�p�
j f

s2
q�p−1� f

s1−1
q�p g

�p�
j f

s2
q�p−1	

= q−s2 
s2 + 1�−1
q

〈
f s1−1
q�p g

�p�
j f

s2
q�p−1� ad�u�p�j ��f s1−1

q�p f
s2+1
q�p−1�

〉
= q−s2 
s2 + 1�−1

q

〈
ad�tu�p�j ��f s1−1

q�p g
�p�
j f

s2
q�p−1�� f s1−1

q�p f
s2+1
q�p−1

〉
= q−2s2 
s2 + 1�−1

q

〈
f s1−1
q�p f

s2+1
q�p−1� f

s1−1
q�p f

s2+1
q�p−1

〉
#

hence C
�p�
j �s1� s2� = q−2s2 
s2 + 1�−1

q for 1 ≤ j < tp − 1. Therefore ap�s� of
type �A2n−1� n� is given by

ap�s� = q
s�s+2p−3�

2

s∏
i=1


i+ p− 1�q

Similarly we have the following.

Lemma 8.4. We have the explicit descriptions of ap�s� �2 ≤ p ≤ r� (up to
constant multiple) as follows.

�A2n−1� n�: ap�s� = q
s�s+2p−3�

2

s∏
i=1


i+ p− 1�q �2 ≤ p ≤ r = n�,

�Bn� 1�: ap�s� = �q+ q−1�−sqs�s+2n−4�
s∏

i=1

[
i+ 2n− 3

2

]
q2

�p = r = 2�,
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�Cn� n�: ap�s� = �q+ q−1�sqs�s+p−2�
s∏

i=1

[
i+ p− 1

2

]
q2

�2 ≤ p ≤ r = n�,
�Dn� 1�: ap�s� = q

s�s+2n−5�
2

s∏
i=1


i+ n− 2�q
�p = r = 2�,

�D2n�2n�: ap�s� = q
s�4p+s−5�

2

s∏
j=1


j + 2p− 2�q
�2 ≤ p ≤ r = n�,

�E7� 1�: ap�s� = �1+ q8 + q16�2sq s�s+15�
2

s∏
i=1


i+ 8�q
�p = r = 3�

We note that a2�s� of type �E7� 1� is that of type �D6� 1� by Lemma 3.1.
From Lemma 8.4 we obtain the explicit form of bq� r�s� as follows.

�A2n−1� n�: bq� n�s� =
n∏

p=1

qs+p−1
s + p�q

�Bn� 1�: bq� 2�s� = �q+ q−1�−2q2s
s + 1�q2q2s+2n−3
[
s + 2n− 1

2

]
q2

�Cn� n�: bq� n�s� = �q+ q−1�n
n∏

p=1

q2s+p−1
[
s + p− 1

2

]
q2

�Dn� 1�: bq� 2�s� = qs
s + 1�qqs+n−2
s + n− 1�q
�D2n� 2n�: bq� n�s� =

n∏
p=1

qs+2p−2
s + 2p− 1�q
�E7� 1�: bq� 3�s� = �1+ q8 + q16�2qs
s + 1�qqs+4
s + 5�qqs+8
s + 9�q

Note that we have qi0
= q2 (type B�C) or q (otherwise).

REFERENCES

1. V. G. Drinfel’d, Hopf algebra and the Yang-Baxter equation, Soviet Math. Dokl. 32 (1985),
254–258.

2. H. Garland and G. J. Zuckerman, On unitarizable highest weight modules of Hermitian
pairs, J. Fac. Sci. Tokyo 28 (1982), 877–889.

3. A. Gyoja, Highest weight modules and b-functions of semi-invariants, Publ. Res. Inst.
Math. Sci. 30 (1994), 353–400.

4. R. Howe and T. Umeda, The Capelli identity, the double commutant theorem, and mul-
tiplicity free actions, Math. Ann. 290 (1991), 565–619.

5. J. E. Humphreys, Finite and infinite dimensional modules for semisimple Lie algebra, in
“Lie Theories and Their Applications,” Queen’s Papers in Pure and Appl. Math., Vol. 48,
pp. 1–64, Queen’s Univ., Kingston, Ont., Canada, 1978.



quantum b-functions 603

6. J. C. Jantzen, “Lectures on Quantum Groups,” Graduate Studies in Mathematics, Vol. 6,
American Mathematical Society, Providence, RI, 1995.

7. M. Jimbo, A q-difference analogue of U��� and the Yang-Baxter equation, Lett. Math.
Phys. 10 (1985), 63–69.

8. A. Kamita, Quantum deformations of certain prehomogeneous vector spaces III,
Hiroshima Math. J. 30 (2000), 79–115.

9. A. Kamita, Y. Morita, and T. Tanisaki, Quantum deformations of certain prehomogeneous
vector spaces I, Hiroshima Math. J. 28 (1998), 527–540.

10. T. Kimura, The b-functions and holonomy diagrams of irreducible regular
prehomogeneous vector spaces, Nagoya Math. J. 85 (1982), 1–80.

11. G. Lusztig, Quantum deformations of certain simple modules over enveloping algebras,
Adv. Math. 70 (1988), 237–249.

12. G. Lusztig, Quantum groups at roots of 1, Geom. Dedicata 35 (1990), 89–114.
13. G. Lusztig, “Introduction to Quantum Groups,” Progress in Mathematics, Birkhäuser,
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