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INTRODUCTION 

The topic here is the representation of discrete groups as automorphisms 
of finite-dimensional vector spaces over a field. The results here are mainly 
generalizations to the class of solvable groups of finite torsion-free rank of 
results of Mostow concerning polycyclic groups. 

In discussing the finite-dimensional representations of a group f over a 
field k, one is led to consider the “continuous dual” k[r]O of the group 
algebra, where “continuous” refers to the topology on k[r] in which a fun- 
damental system of neighborhoods of zero is the family of kernels of finite- 
dimensional representations of r over k. k[r]” has the structure of a co- 
algebra--indeed, of a Hopf algebra-and the locally finite-dimensional 
k[f]-modules correspond to the k[f]’ comodules. The advantage of 
looking at k[f]” is that any finite-dimensional k[F]“-comodule is a sub- 
comodule of the direct sum of finitely many copies of k[r]“. A further 
advantage is that, when k is algebraically closed, k[fJ” is the polynomial 
algebra of a pro-affme algebraic group Gk(IJ whose rational represen- 
tations correspond exactly to the locally finite-dimensional representations 
of f over k. This brings to bear the structural results on pro-afftne 
algebraic groups, which are strongest when the base field k is of charac- 
teristic zero. 

In Section 1, we examine the unipotent radical U,(T) of the pro-affine 
group Gk(IJ associated with a discrete group r, and we prove that, on the 
category of solvable groups of finite torsion-free rank (i.e., the groups of 
type A, in Mal’cev’s classification [lo] ), the assignment of Uk(ZJ to f is 
an exact functor to the category of unipotent affrne algebraic groups. In 
Section 2, we consider a certain homomorphic image Bk(I) of G,(T) which 
we call the basic k-group associated with I-; this group is the “lowest” 
homomorphic image of Gk(r) to “preserve” the unipotent radical U,(f). 
The assignment of Bk(f) is functorial on a subcategory of the category of 
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solvable groups (the category contains all solvable groups but its 
morphisms are only the “subnormal” morphisms). We also determine the 
kernel of the canonical map from f to Bk( f). Finally, in Section 3, we 
determine the “unipotent radical” of a solvable group r of type A, and the 
kernel of the canonical map from f to Gk(I). This gives a necessary and 
sufficient condition for a solvable group of type A, to have a faithful locally 
finite-dimensional representation over a field of characteristic zero. 

When working over fields of characteristic zero, we can often avoid 
having to assume that the field is algebraically closed. The price we pay for 
this is that we must work with Hopf algebras rather than with groups, and 
this accounts for the rather heavy use in our proofs of the structure theory 
of commutative Hopf algebras. 

1. THE FUNCTOR OF REPRESENTATIVE FUNCTIONS AND 
THE UNIPOTENT RADICAL 

Let f be a (discrete) group and k a field. We denote by Rk(f) the Hopf 
algebra of k-valued representative functions on r [6, p. 23; in the notation 
of [13], R,(f) is the Hopf dual k[IJ” of the group algebra k[f]. The 
assignment of &(I-) to f is the object part of a functor from the category 
of groups to the category of (commutative, reduced) Hopf algebras over k. 

The ideas of exact sequences and of extensions carry over from the 
category of groups to the category of commutative Hopf algebras over a 
field (see [ 151 and [ 1 ] ). Specifically, a sequence A + 1 B -+,( C of 
morphisms of commutative Hopf algebras is called exact if the kernel of b 
is the normal Hopf ideal corresponding to the sub Hopf algebra a(A) of B. 
If r, -+ Tz + r3 + 1 is an exact sequence of morphisms of groups, then the 
corresponding sequence of morphisms of Hopf algebras Rk( 1) + Rk(f3) + 
Rk(r2) + Rk(r,) is exact in this sense. 

If the field k is algebraically closed, then Rk(r) is the polynomial algebra 
of a pro-aftine algebraic group which we denote by G( Rk(f)) (or, simply, 
G,(f)). We call Gk(lJ the universal pro-algebraic hull of I-. 

Remark. Rk(lJ depends crucially on k. For example, if we take I- to be 
the quasi-cyclic p-group Z(p% ), then, for k = Q, we get Rk(f) to consist of 
just the constant functions, while for k the field obtained by adjoining the 
primitive p” roots of unity for IZ = 1, 2, 3,..., Rk(r) separates the elements of 
f. Thus, for field extensions K of k, it is not generally true that 
RK(f) % Rk(f) ok K. As a further example, let k be any field, and t an 
element of a larger field such that t is transcendental over k, r= L. 
K = k(t). Then the function f + K that sends the element n of Z to t” is an 
element of R,(f), but is clearly not in Rk(r) Ok K. However, we do get 
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the equality Rk(f) Ok K= Rk(L) if r is finitely generated and K an 
algebraic extension of k, as we see from the following lemma. 

LEMMA 1. Let k he u field and K an algebraic extension ofk. Let A he a 
,fmitely-generated algebra over k, and let A0 denote the continuous dual of A 
(with respect to the topology where the two-sided ideals of finite-codimension 

,form a ,fundamentul system of neighborhoods of zero). Then (A ok K)’ is 
nuturully isomorphic with A0 ok K. 

Proqf!f: It is easy to see that the canonical injection of A* Ok K into 
(A @/, K)*, where * denotes the full dual, maps A0 0 K into (A @ K)‘. 
Now, if ,fe (A @ K)‘, and if J is an ideal of finite codimension in A 0 K on 
which ,f vanishes, then let I denote the kernel of the A-module map 
A + A 0 K/J. In order to prove that .f’is in the image of A0 0 K, it suffices 
to show that I is of finite codimension in A. Let u, ,..., u, be a K-basis of 
A 0 K/J with u, = 1, and let y, ,..., y,, be k-algebra generators of A. Then, 
since K is algebraic over k, there is an intermediate field F that is finite- 
dimensional over k and such that Cl:; Fu; contains all of the transforms 
yi’ ui. Now C Fu, is finite-dimensional over k and contains the image of A 
in A 0 K/J. This proves that the kernel I is of finite codimension in A. 

CONVENTION. For the rest of Section 1, we assume that the field k is of 
characteristic zero. 

For any commutative Hopf algebra H, we denote by H, the quotient of 
H by the normal Hopf ideal that corresponds to the coradical of H. Then, 
H,, is an irreducible Hopf algebra (see [ 141) and, if k is algebraically 
closed, the quotient map H + H,, is the polynomial map corresponding to 
the inclusion of the unipotent radical U(H) into the pro-affine group G(H) 
associated with H. 

Notation. For an abelian group A, we denote by r,(A) the torsion-free 
rank of A, i.e., the dimension of the Q-space A Om Q. We can (uniquely) 
extend r. to solvable groups in such a way that if B and C are solvable and 
BQC, then r,,(C) = r,,(B) + r,(B/C). We use the terminology of Mal’cev 
[ IO] and call a solvable group I- an A, group if ro( r) is finite. 

THEOREM 2. Let I- he a solvable A, group and k a field (of characteristic 
zero). Then ( Rk(I)),, is the polynomial algebra of u unipotent affine 
algebraic k-group U,(T) of dimension ro(r). Moreover, the assignment of 
U,(T) to I- is the object part of an exact functor ,from the category of A ,- 
groups to the category qf unipotent affine algebraic k-groups. Finally, ,for 
every extension ,field K qf k, ( Rk(r)),, ok K is cunonicully~ isomorphic with 
RK(n,,. 
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Proof. First, we deal with the case in which k is algebraically closed, 
and show that U,(f) is afftne of dimension r,(Z). 

As in [l 1, 3.31, U,( ) is a right-exact functor on solvable groups, so we 
can factor out of r the largest normal periodic subgroup z(f). Thus, by 
[ 10, Theorem 31, we may assume that I- is an Ad-group (i.e., has a finite 
subnormal series with AI abelian factors whose periodic parts are finite), 
and that r(T) is trivial. Thus, by [ 10, Theorem 51, the Hirsch-Plotkin 
radical p(T) of r is nilpotent (and torsion-free). 

Next, we gather some results on torsion-free nilpotent A ,-groups. First, 
for any nilpotent group N, the group G,(N) is a pro-ahine nilpotent group 
(since every finite-dimensional image of G,(N) is nilpotent, as can be seen 
by [ 3, Chap. V, p. 1191) so that its unipotent radical U,(N) is a direct fac- 
tor. This means that the map R,(N) -+ (R,(N)), restricts to an 
isomorphism of the sub-Hopf algebra V,(N) of unipotent representative 
,functions (i.e., representative functions g such that N acts unipotently on 
the module [N-g] spanned by the left-translates of g ) onto (Rk( N)),,. 
Now, N embeds into its Mal’cev completion (or, O-localization) m (see, e.g., 
[ 16, 8.9]), which is a torsion-free radicable nilpotent group such that for 
each x E rli, some positive power of x is in N. Since every unipotent 
representation of N is the restriction of a unipotent representation of N (as 
easily follows from the exactness of the localization functor, [ 16, 8.1 I I), we 
see that, for any field F (of characteristic zero), the restriction map 
V,(N) + V,(N) is surjective, and that the kernel of the restriction map is a 
sub N-module of P’,(N). This implies easily that the kernel of the restric- 
tion map is trivial, so that we have V,(N) z V,(N). Moreover, 
rO( N) = rO( N) (this is true in the abelian case (see, e.g., [S, p. 1071) and, 
thus, by exactness of localization, for all nilpotent A,-groups). 

Now, functorially associated with N is an r,(N)-dimensional nilpotent 
Lie algebra L(N) over Q (see, e.g., [ 12, Theorem 2.4.21). A unipotent 
representation of N on a finite-dimensional F-space V defines a nilpotent 
representation of L(N) 0 Q F on V, and vice versa. This defines a Hopf 
algebra isomorphism between V,(N) and the Hopf algebra @L(N)@ F) of 
nilpotent representative functions of L(N) 0 F whence, by [6, pp. 231 and 
2081, we see that V,(W) is generated as an algebra by r,,(N) =n 
algebraically independent elements ,f ,,..., f, such that d(fi)- 
(lO.f,+f,Ol) modF[f ,,..., hfi,]@F[f ,,..., f,-,] (where A is the com- 
ultiplication map). Now, let F’ be an algebraic closure of F and let us look 
at the following commutative diagram: 

V,(N)OF’- (R,(N)),@F’ 

II I 
I’ 

V,(N) - (RAN)), 
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To see that the upper horizontal map (which is formed by tensoring 
with F’ the restriction to V,(N) of the quotient mapj) is an injection, we 
argue as follows. From [14], there is an algebra isomorphism 
1’: R,-(N) + R,-(N),,@ (RF(N)),, where (RI,(N))” is the coradical of R,(N); 
specifically, v is the map (q@ 7~) 0 A where q is the quotient map and 7c a 
projection onto the coradical. Applying v to the generating elements f, of 
V,.(N), and using the fact that rc acts trivially on V,(N), we see that, on 
V,.-(N), v is just the map ,f’-,i(f)@ 1, whence j is injective on V,(N). The 
map p comes from the inclusion R,(N) @ F’ + R,.(N) which induces a sur- 
jection of the corresponding algebraic groups which, in turn, induces a sur- 
jection of the unipotent radicals of those groups. Since (R,(N)),@ F’ is 
easily seen to equal (R.(N)OF’),, (we need just to note that the coradical 
of R,-(N)@ F’ is exactly the tensor product with F’ of the coradical of 
R,-(N) [ 141) the map p is then the polynomial map corresponding to a 
surjection of groups, so is injective. It follows that all of the maps in the 
above diagram are isomorphisms. 

Thus, from the known structure of V,(N) and the above discussion, we 
conclude that, for every field F of characteristic zero and every torsion-free 
nilpotent A ,-group N, (R,..(N)),, is the polynomial algebra of a u,(N)- 
dimensional unipotent afhne algebraic F-group (i.e., the algebra 
homomorphisms to F separate the elements of (R,(N)),) and that, for 
every extension field K of F, one has (R,(N)), z (R,.(N)), @ K. 

Now we return to the situation at the beginning of the proof-viz. that f 
is an A,-group whose torsion radical r(T) is trivial, and k is an 
algebraically closed field. 

By a result of Charin [2, Theorem 53, r has a subnormal series 
1 c p(r) c M c f such that T/M is finite and M/p(f) is free abelian. Thus, 
there is a subnormal series 

p(I-)=M,<M,< ... <M,=M 

between p(T) and M such that each M, is the semidirect product of Mix , 
and an abelian subgroup of M,. Thus, by a theorem of Mostow on exten- 
sions of representations [ 11, Theorem 3.21, 

1 + u,(p(f)) -+ U,(M) 

is exact. Since U,( ) is a right-exact functor, we see then that 
dim U,(M)=dim U,(T) = ro(T) (see [ll, 3.31). This is enough to prove 
that the functor U,( ) is exact on A ,-groups. 

Now, if k is any field of characteristic zero (not necessarily algebraically 
closed) and if r is any A ,-group, then Rk(I)u z Rk(r/~(r)),. (This is seen 
by looking at the exact sequence 

R,(l) -+ R,(l’/z(O) + Mr) -+ &(T(/‘)) 
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Tensoring with an algebraically closed field, then passing to the unipotent 
radicals of the associated groups yields the result.) Moreover, one sees 
similarly that, for any normal subgroup f’ of finite index in f, 
Mf’) u = &(~L 

From the above-quoted result of Charin, then, we may assume that f is 
built up from a nilpotent torsion-free group r, by a succession of 
semidirect products with free abelian groups. Let us write the intermediate 
groupsasT,,wheref,+,=T,>aA,+,. We show that each of the sequences 

k + (MA,)), + Mrr)u + R,(L , ), + k (*I 

is exact and is a split extension of commutative Hopf algebras (see [ 1 ] ). 
In order to prove that each of the sequences is exact at the right end, we 

need only show that the map Rk(f),, + Rk(fO)u is surjective. Since Rk(fu)!, 
is isomorphic with the sub Hopf algebra Vk(rO) of unipotent representative 
functions on I-,, it suffices to prove that the image of the restriction map 
R,(r) --t Rk( r,) contains Vk( I-,,) or, equivalently, that every finite-dimen- 
sional unipotent f,-module over k embeds into a finite-dimensional f- 
module. If the field k is algebraically closed, this is a consequence of 
Mostow’s extension theorern [ 11, Theorem 3.21. However, since each A, is 
finitely-generated, we can apply the considerations in the proof of Lemma 1 
to show that we get the result for general fields from the result in the 
algebraically closed case. This shows then that each sequence (*) is exact 
and, using the isomorphism R,(A,),z V,(A,), we see that it represents a 
split extension. This implies that (Rk(r,)!, is the co-.smash product of the 
Hopf algebras Rk(ri , ) and R,(A,),, (see [ 1, p. 2091). In particular, as an 
algebra, ( Rk(f-,))lr is isomorphic with the tensor product of R,(T, ,)u with 
(R,(A,)),. Thus, we see inductively that the elements of Rk(IJu are 
separated by algebra homomorphisms to the base field, and that Rk(r)[, is 
the polynomial algebra of a unipotent aftine algebraic k-group U,(T) of 
dimension r,,(T). For an extension field K of k, since RJf),, will be built 
from co-smash products of Rh.(r,)u’~, with R,(A,),‘s we see that 
Rti(U I, z Rk( I), 0 K. This concludes the proof of Theorem 2. 

2. THE BASK GROUP FUNCTOR 

Let k be a field of characteristic zero, and let H be a commutative Hopf 
algebra over k. For the moment, let us denote the comultiplication, mul- 
tiplication, and antipode maps on H by A, p, and q, respectively. As in Sec- 
tion 1, we let H, denote the coradical of H and H, the quotient of H by the 
normal Hopf ideal corresponding to H,. Let n: H + H, be a Hopf algebra 
projection [ 14, Theorem 11, q: H + H, the quotient map, and j: H, --+ H 
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the inclusion. Then, as in [ 14, Corollary 71, the map f= (q@ 71) 0 A is an 
isomorphism of algebras from H to H, 0 H,. Moreover, from [ 141 we see 
that the inverse of f is a map g: H,@ H, + H which factors into the 
composite of a map i@j: H, 0 HO -+ H 0 H followed by the multiplication 
map p. Specifically, i comes from factoring through H, the map t = 
u,~(i@(n~jon))oA: H+H. One verities that, in the notation of [13], 

We see then, that i maps H, isomorphically as an algebra onto a left- 
coideal subalgebra 7(H,) of H such that the multiplication map 
i( H,) 0 H, + H is an isomorphism of algebras. Since it is a tensor factor, 
i( H,) is a direct summand of H and, thus, is injective as a left H-comodule. 
Since i( H,) n H, = k, and since every sub comodule of t(H,) must meet H, 
nontrivially, we see that i(H,) is an essential extension of the trivial H- 
comodule. 

Now, switching left to right, we can summarize. 

LEMMA 3 (Takeuchi). If k is a field of characteristic zero and H a com- 
mutative Hopf algebra over k, then there is a right-coideal subalgebra J of H 
such that 

(i ) J is isomorphic as an algebra with H,, 

(ii) J is an injective hull of the trivial H-comodule, 

(iii) the multiplication map on H yields an isomorphism of algebras 
JBkHo-t H. 

In particular, if f is an A,-solvable group and H = &(r), then J is an 
injective hull (in the cateory of locally finite-dimensional r-modules over k) 
of the trivial r-module, and, by Theorem 2 and the proof of Lemma 3, for 
any field extension K of k, J, = J Ok K is a right-coideal subalgebra of the 
Hopf algebra RK(f) that satisfies the properties of Lemma 3. 

Remark. If C is a co-algebra and V a right-coideal of C, then the 
smallest sub co-algebra of C to contain V is exactly the space cf( V) of coef- 
ficient functions of V (in the notation of [4]). In particular, the smallest 
sub coalgebra of C to contain V will contain every right-coideal of C that is 
isomorphic as a C-comodule with V. 

Notation. A pro-affine algebraic group G over a field of characteristic 
zero has a largest normal (pro-) reductive subgroup, which we denote by 
Q(G). The group Q(G) centralizes the unipotent radical U(G) of G (see 
[9, Lemma 43 or [ 11, Lemma 4.61). 

Now, let k be a field of characteristic zero, and let K be an algebraic 
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closure of k. Let r be a solvable A ,-group, let B,Jr) = GK(r)/Q(G,(r)) 
and let BK(Z) denote the algebra of polynomial functions on Bk(IJ 

THEOREM 4. In the above notation, BK(IJ is an affine algebraic K-group, 
and its polynomial algebra BK(lJ has a k-form 23,Jf) which is the smallest 
sub-Hopf algebra of Rk(f) to contain an injective hull of the trivial Rk(lJ- 
comodule. 

Proof: Write Q for Q(G,(T)) and G for G,(f). Let H, be the smallest 
sub Hopf algebra of Rk(r) to contain an injective hull of the trivial Rk(IJ- 
comodule. Then, by the discussion following Lemma 3, H, 0 K = H,. 
Moreover, by Lemma 3, HK(RK(rj)O = R,(T). 

Now, let T denote the reductive pro-afline algebraic group 
corresponding to the coradical RK(IJO of RK(r), and G, that 
corresponding to H,. Then, we get a commutative diagram: 

where c dualizes the multiplication map HK@ (RK(I’))O + RK(f), p, is the 
projection onto the first factor, and p is the restriction map. Thus, ker p is 
a subgroup of G that maps injectively into T. Since I- is solvable, the 
connected component T, of the identity in T is a pro-toroid, so that 
(ker(p)), is a pro-toroid, whence ker p is reductive. Thus, ker p c Q, and 
H, I BK( IJ. 

On the other hand, if P is any maximal reductive subgroup of G, V a G- 
module, and ZJ the Q-fixed part of V, then U is a sub G-module of V, and 
so has a P-module complement, W say, in V. Now, Q is contained in P, so 
that W is the sum of all simple sub Q-modules of V on which Q acts non- 
trivially. Q centralizes the unipotent radical U(G) of G, so that the translate 
g. W of W by any element g of U(G) is isomorphic as a Q-module with W, 
hence is W. Thus, W is a sub G-module of V and U is a direct G-module 
summand in V. It follows that an injective hull of the trivial G-module is 
acted upon trivially by Q, which shows that H, c BK(r). 

This finishes the proof of Theorem 4 except for the assertion that BK(r) 
is afline, which is in [9, p. 1521. 

Remarks. We call B,(f) the basic K-group associated with r. The 
above result shows that the groups discussed by Donkin [4] and Magid 
[9] in connection with polycyclic groups exist in a more general situation 
and are, in fact, identical. 
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If f is a group and rar, then the image in G,JZ) of G,Jf’) will be a 
normal subgroup (see, e.g., [3, Chap. V p. 1171) so that Q(GJ r’)) will 
map into Q(GK(r)). Moreover, if r is a solvable A ,-group, then, by 
Theorem 2, U,(r) injects into U,(r), whence the kernel of the map 
G,(r) + G,(r) is reductive. Thus, we see that, on the category of A, 
solvable groups with subnormal morphisms (i.e., morphisms whose image is 
a subnormal subgroup of the codomain) the assignment I--+ BK(IJ is the 
object part of a functor that is semi left-exact and semi right-exact (but not 
“exact-in-the-middle,” see [4, p. 1201). 

For any group I-, we consider the canonical group homomorphism from 
r to the basic K-group associated with r. 

PROPOSITION 5. !f’ r is a solvable A,-group, then the kernel qf the 
canonical map r+ BK(r) is the largest periodic normal subgroup r(T) qf r. 

Proof: First, suppose that T(r) is trivial. Then, by the result of Charin 
quoted in the proof of Theorem 2, r has a torsion-free nilpotent normal 
subroup I; and a subnormal series r, a r, a UT,, with T, normal and 
of finite index in r and each r,+ , the semidirect product of r, with a free 
abelian group A,+, . Now, r, and each A, have faithful finite-dimensional 
unipotent representations over K (this is a well-known result of Charin’s, 
and can be seen from the discussion of nilpotent torsion-free groups in the 
proof of Theorem 2). Further, as in the proof of Theorem 2, we can apply 
Mostow’s extension theorem to show that r has a faithful finite-dimen- 
sional representation over K and that (since s(f) is trivial) no element of r 
other than the neutral element acts semisimply in all representations of I’. 

That is enough to show that the natural map r+ GK(r) is injective, and 
that its image has trivial intersection with Q(G,(r)). Thus, the factored 
map r + B,( I’) is injective. 

Now, in the general case, let 7c denote the map r+ r/T(r). From the 
fact that U,(T) z u,(r/T(r)), we see that the kernel of the map BJx): 
B,(r) + B,( T/z( r)) is reductive, and thus trivial. Thus, B1((x) is an 
isomorphism, and the conclusion of the proposition follows from the earlier 
part of the proof. 

3. THE UNIPOTENT RADICAL AND THE REPRESENTATION KERNEL 
OF A SOLVABLE GROUP 

Notation. For any group I-, we denote by N(T) the intersection of the 
normal subgroups of finite index in r, and by M(T) the intersection of the 
commutator subgroups of the normal subgroups of finite index in I‘ (i.e., 
M(T) = fi{ [f’, f’]: r’ normal of finite index in I-i ). 
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As before, for any algebraically closed field k, we denote by G,(f) the 
universal pro-algebraic hull of I-. Let v denote the natural map r+ G,(f). 

PROPOSITION 6. In the uhove notrrtion, N(f) is the inverse image under v 
of’ the connected component c~f the identity G,(f), in G,(f). Indeed, there is 
un isomorphism of groups,from G,(T)/G,(T), to the pro-finite completion p 
of f that commutes with the canonicul mops ,from f. 

Proof: The profinite completion f of I- is the projective limit of the 
groups T/N, where N runs over the family of normal subgroups of finite 
index in r. The kernel of the canonical map from f to I? is N(T). 

Let R denote the family of finitely-generated sub-Hopf algebras of &(fJ 
ordered by inclusion. For p E R let G(p) denote the affine algebraic group 
associated with p and let G(p), denote the connected component of the 
identity in G(p). Then, as in [7, 2.13, G,(I’)/G,(f), is the projective limit 
of the G([~)/G([I),‘s for p E R. 

For p E R let N,, denote the kernel of the map I’+ G(p)/G(p), . Since the 
image of I’ is dense in G(p), we see that the induced map p: 
I./N,, + G(P)IG(P), is an isomorphism of groups. Now, the map 
G, (1)/G, (f) , -+ f/N,, (from inverting p) depends only on N,, , not on p. To 
see this, suppose that O, p E R and that N,= N,,. Let r denote the tensor 
product of r~ and p. Then, N, = N,, and it suffices to show that the maps 
from G,(I’)/G,(f), to r/N, and f/N,, are the same. This comes from the 
commutativity of the diagram: 

G,(WG,(O, - G(P)/W), - TIN,, 

\/ / 
G(T)IG(T), - UN, 

Clearly, all normal subgroups of finite index in f occur among the NI,‘s. 
Thus, for every normal subgroup N of finite index in f, there is a 
morphism from Gk(I)/Gk(r), to T/N, and these maps commute with the 
restriction maps among the f/N’s This defines an injective morphism of 
groups $ from Gk(r)/Gk(r), to f that commutes with the canonical maps 
from f. In particular, the kernel of the canonical map r + G,(f)/G,(f), is 
N(r), so that, for each normal subgroup N of finite index in r, there is a 
natural map from T/N to Gk(IJ/Gk(r), , and these maps induce a 
morphism of groups from f to G,(f)/G,(T), which, when followed by Ic/, 
gives the identity on f? Thus, $ is an isomorphism of groups. This con- 
cludes the proof. 
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PROPOSITION 7. Let k he an algebraically closed field of characteristic 
zero, and f a solvable group. Then M(T) is the inverse image under v of the 
unipotent radical U,(f) qf Gk(f). 

Proof: That M(I’) is contained in v ~ ’ (U,(T)) is a consequence of the 
LieeKolchin-Mal’cev theorem. Conversely, it is clear from Proposition 6 
that v ‘(U,(T)) is contained in N(f). If x E N(f), and x $ M(T), then there 
is a normal subgroup r’ of finite index in f such that x E r, x $ [r, r]. 
Now, an abelian group embeds into a divisible abelian group which is a 
direct sum of Q’s and Z(por, )‘s. Thus, for each element y of a divisible 
group D, there is a one-dimensional representation of D over k on which y 
acts nontrivially. Thus, there is a representation of r’ (which, by inducing, 
gives a representation of r) on which x acts non-unipotently. Thus, 
v-‘(U,(l-))=M(f-). 

PROPOSITION 8. Let r be a solvable group of type A, and let k be an 
algebraically closed field of characteristic zero. Then the kernel of v: 
f + Gk(f) is the largest normal periodic subgroup z( M( r)) of M(T). 

Proof: By Proposition 7, M(f) acts unipotently on all r-modules over 
k. On the other hand, it is clear that periodic elements of r act semisimply 
on all r-modules. Thus, z(M(T)) c ker v. 

By Theorem 4, ker v is contained in r(T) and, by the proof of 
Proposition 7 we see that ker v c M(r). Since M(T) is characteristic in r, 
M(f) n 5(r) = t( M( I-)), which concludes the proof. 

COROLLARY. A necessary and sufficient condition that a solvable group I- 
of type AI have a faithful locally-finite dimensional representation over a 
,field of characteristic zero is that M(f) should be torsion-free. 

Remark. An example of Warlield’s [ 16, (5.11)] shows that the con- 
dition that r be of type A, cannot be dispensed with in Theorem 2, in 
Proposition 5, or in Proposition 8. His example is of a nilpotent torsion- 
free group r such that the kernel of the canonical map V: r+ Gk(r) is the 
commutator subgroup of r which is isomorphic with the additive group of 
rational numbers. 
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